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Abstract: In this study, we consider the eigenvalue problems of fourth-order elastic beam equations.
By using Avery and Peterson’s fixed point theory, we prove the existence of symmetric positive
solutions for four-point boundary value problem (BVP). After this, we show that there is at least one
positive solution by applying the fixed point theorem of Guo-Krasnosel’skii.
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1. Introduction

Consider the problem of the fourth-order four-point boundary value as given below. We will
examine the existence of symmetric positive solutions for the following problem:

u′′′′ (z) + λy(z)( f (z, u(z), u′(z)) = 0, z ∈ [0, 1] (1)

u(0) = 0, u(1) = 0

µ u′′ (ω1) + αu′′′ (ω1) = 0, γ u′′ (ω2) + βu′′′ (ω2) = 0. (2)

which defines the corruptions of an elastic beam with two stable endpoints, where f : [0, 1]× [0, ∞) →
[0,∞) is continuous; y: (0, 1)→ [0,∞) is symmetric on (0, 1) and possibly singular at z = 0 and z = 1; λ

is called an eigenvalue and nontrivial solution as that λ is called an eigenfunction, with λ > 0; µ, α, γ
and β are nonnegative constants; 0 ≤ ω1 ≤ ω2 ≤ 1 and f (., u) is symmetric on [0, 1] for all u ∈ [0,∞),
f (z, u) = f (1 − z, u), for each (z, u) ∈ [0,1] × [0,∞).

u(z) = u(1− z), z ∈ [0, 1] and u(z) > 0, z ∈ (0, 1).

Fourth-order ordinary differential equations have important applications in engineering and
physical sciences as they form the models related to bending or deformation of elastic beams.
These problems, especially used in material mechanics, define the deformation of an elastic beam with
two fixed endpoints. Building beams in buildings and bridge construction requires serious calculations
to ensure the safety of the structure. As part of these calculations, it is important to evaluate the
maximum deviations in the beams. The main objective is to provide a solution to the problem that the
beam can safely support the intended load. Calculations often require complex and difficult operations.
At this stage, different techniques in numerical integration and applied mathematics are applied.

Equation (1) is called the beam equation and is examined under different boundary conditions.
Two or more point boundary value problems for these equations have attracted a significant amount of
attention. Two-point boundary value problems have been studied extensively. Multi-point boundary
value problems have also started to be examined in the literature. Many authors have investigated
the beam equation under various boundary conditions and with different approaches. These studies
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include Tymoshenko’s study on elasticity [1], Soedel’s study on the deformation of the structure on
monograms [2] and Dulácska study on the effects of [3] soil settlement.

Adequate conditions for the presence and absence of positive solutions for three-point boundary
value problems were established by Graef et al. [4]. Siddiqi and Ghazala [5] determined the solution
of the system of fourth-order boundary value problems using the non-cubic non-polynomial spline
method. Ghazala and Hamood [6] used the fourth-degree solution to solve the reproducing kernel
method (RKM) discrete boundary value problem. In the periodic beam equation examined with
nonlinear boundary conditions, they used the Rayleigh–Ritz approach method. Avery and Peterson
fixed point theorem, Iteration method and Leray–Schauder theorem have been used to solve these
problems (See Gupta [7], Feng and Webb [8], Ma [9]).

In reference [9], Ma considered the fourth-order boundary problem with the two-point boundary
conditions as follows:

y(4) (z)− f (z, y(z), y′′ (z)) = 0, 0 ≤ z ≤ 1,

y(0) = y(1) = y′′ (0) = y′′ (1) = 0.

Zhong and Chen [10] investigated the fourth-order nonlinear differential equation as follows:

y (4) (z)− f (z, y(z), y′′ (z)) = 0, 0 ≤ z ≤ 1,

with the ensuing four-point boundary value condition:

y(0) = y(1) = 0, c1 y′′ (ω1)−c2 y′′′ (ω1) = 0, c3 y′′ (ω2) + c4 y′′′ (ω2) = 0,

where f ∈ C([0, 1]× [0, ∞) × (−∞, 0], [0, ∞) ); c1, c2, c3, c4 are positive constants; and ω1 < ω2,
(ω1, ω2) ∈ (0, 1).

In addition, Chen et al. [11] studied the following problem:

y(4) (z) = f (z, y), 0 < z < 1

y(0) = y(1) = 0, c1y(ω1)−c2y(ω1) = 0, c3y(ω2) + c4y(ω2) = 0,

where f ∈ C([0, 1]× [0,+∞) , [0,+∞) ); µ is a positive constant, with (µ < 1); and kµ f (z, y) ≥ f (z, µy),
for any k ∈ (0, 1). In fact, Agarwal [12], Cabada [13] as well as De Coster and Sanchez [14] applied the
upper and lower solution method for the fourth-order equation under Lidstone boundary conditions
or other conditions:

y(4) (z) = λ f (z, y) + µg(z, y), 0 ≤ z ≤ 1,

y(0) = y(1) =y′′ (0) = y′′ (1) = 0.

In the case where f is nonlinear, it obtains an infinite number of solutions under symmetrical
conditions for λ = 1 and µ = 0.

In reference [15], they proved that the boundary value problem has at least one positive solution
in the superlinear case, i.e., max f 0 = 0 and min f ∞ = ∞, or in the sublinear case, i.e., min f 0 = ∞ and
max f ∞ = 0. These values can be as low as min f 0 = max f 0 = max f ∞ = min f ∞∈ {0, ∞}. The different
studies examining this include those by Liu [16], Sun [17], Han [18], Wei and Pang [19], Zhong et al. [10]
and Yao [20]. On the other hand, Adomian decomposition method was used to solve linear and
nonlinear ordinary differential equations by Biazar and Shafiof [21] and Mestrovic [22]. This method
provides the solution in a fast convergent series with computable terms. However, in order to solve
boundary value problems using Adomian decomposition method (ADM), some unknown parameters
must be determined and therefore, nonlinear algebraic equations must be solved. Geng and Cui [23]
developed a method for solving nonlinear quadratic two-point BVP with the combination of ADM
and RKM. Further detail can be found in studies of fourth-order boundary value problems [23–31].
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In this article, our problem relates to the classical bending theory of flexible elastic beams on a
nonlinear basis. Here, non-linear f (x) represents the force exerted on the elastic beam. We can use the
expanding method to solve fourth-order four-point BVP, which was developed by Geng and Cui [23].
In our study, we have considered the following two problems: the first one can have a value as low as
max f 0 = max f ∞ = 0 or min f ∞ = min f 0 = ∞. It can be as low as min f 0 = max f 0= max f ∞ = min
f ∞ ∈ {0,∞}. In the conventional bending theory, the distortion of a flexible beam at both endpoints is
given in Figure 1. Based on the theory, the in-plane displacement status in the x direction of the two
parts can be determined. F is used to represent the shear force along the beam. The shear force is used
to calculate the shear stress on the cross-section of the beam. The maximum shear stress occurs at the
neutral axis of the beam. This is the case of the superlinear problem.
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Figure 1. Based on the classical beam theory, the in-plane displacement of the two parts in the x direction
is shown. The maximum deviation in beams is fmax where fmax=

3V
2A (A = bh is the cross-sectional

area, V=dM/dx).

The aim of this present study is to establish sufficient conditions for fourth-order nonlinear (1)
and (2) problems with four-point boundary value conditions of min f 0 = max f 0= max f ∞ = min f ∞

∈ {0,∞}, or max f 0, max f ∞, min f 0, min f ∞ ∈ {0, ∞} and to prove that the boundary value problem
has at least one positive symmetric solution in the superlinear state. In contrast to the other studies,
the Krasnosel‘skii [15] method was used and the results were shown in the last section and an example
was given.

2. Preliminaries and Lemmas

Definition 1 ([19]). E is a real Banach space that takes a shut convex set P ⊂ E, which is non-empty. This is
defined as a contour of E in the following two conditional cases:

(1) x ∈ P, λ > 0 implies λx ∈ P;
(2) x ∈ P, −x ∈ P implies x = 0.

Definition 2 ([19]). If an operator is continuous, it is constantly constrained and the maps are set in
restricted clusters.

Definition 3 ([19]). Let P be a cone on E in Banach space. The function s is said to be concave on
P, if s : P → [0, ∞) is continuous and:

s(rx + (1− r)y) ≥ rs(x) + (1− r)s(y)

for all x, y ∈ P and r ∈ [0, 1].

Definition 4 ([17]). If u(z) = u(1 − z), z ∈ [0, 1], the function u is symmetric.
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Definition 5 [17]). If u [0, 1] is also positive and symmetric and corresponds to the solution of BVP (1) and
(2), u is called the symmetric function.

Theorem 1. Let E be a real Banach space, Ω be a bounded explicit subset of E, 0 ∈ Ω and T : Ω → E be a
completely continuous operator. Thus, there exists x ∈ ∂Ω such that Tx = λx where λ > 1, or there exists a
fixed point x* ∈ Ω.

Let χ and ϕ denote convex functions on P, η nonnegative concave functions and Φ nonnegative
continuous functions on P. The following convex clusters are available, with a, b, c, and d positive
real numbers:

P(χ, d) = {x ∈ P | χ(x) < d},

P(χ, η, b, d) = {x ∈ P | b ≤ η(x), χ(x) ≤ d},

P(χ, ϕ, η, b, c, d) = {x ∈ P | b ≤ α(x), ϕ (x) ≤ c, χ(x) ≤ d},

R(χ, Φ, a, d) = {x ∈ P | a ≤ Φ (x), χ(x) ≤ d}.

According to Avery and Peterson [32], we use the well-known fixed point theorem as shown
below in (1) and (2) to investigate positive solutions to the problem.

Theorem 2. Let E be a real Banach space and P ⊂ E be a cone in E. Let χ and ϕ denote convex functions on
P, η nonnegative concave functions and Φ nonnegative continuous functions on P convincing Φ(λx) ≤ λΦ(x)
for λ ∈ [0, 1]. Thus, for some positive numbers B and d, we have the following:

η(x) ≤ Φ(x) and ‖ x ‖≤ Bχ(x),

for all x ∈ P(χ, d). Presume: P(χ, d)→ P(χ, d) is an entirely continuous operator and there are positive
numbers a, b and c with a < b so that

(C1) x ∈ P(χ, ϕ, η, b, c, d)|η( x)〉 b 6= O and η(T x) > b for x ∈ P(χ, ϕ, η, b, c, d);
(C2) η(T x) > b for x ∈ P(χ, α, b, d) with ϕ(T x) > c;
(C3) 0 /∈ R(χ, Φ, a, d) and Φ(T x) < a for x ∈ R(χ, Φ, a, d) with φ(x) = a.

where T is at least three fixed points x1, x2, x3 ∈ P(χ, d), such that

χ(xi) ≤ d for i = 1, 2, 3; b < η(x1);

a < Φ(x2) with η(x2) < b; Φ(x3) < a.

The after lemma is described below.

Lemma 1. For u ∈ E, ‖ u ‖∞ ≤ ‖ u′ ‖∞, where ‖ u ‖∞ = supt∈[0,1] |u(z)|.
Thus, E is a Banach space when it is endowed with the norm ‖ u ‖= ‖ u′ ‖∞.

Lemma 2. Let x ∈ C [0, 1] = {x ∈ C[0, 1], x(z) ≥ 0, z ∈ [0, 1]} and δ = µβ + αγ + µγ (ω2 − ω1)
> 0, 0 ≤ ω1 < ω2 ≤ 1. Thus, the BVP is:

v′′ (z) = x(z), 0 < z < 1, (3)

µv(ω1) − αv′(ω1) = 0, γ v(ω2) + βv′(ω2) = 0 (4)
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for which, there is only one solution:

v(z) = λ
[∫ ω1

0 (s− z)x(s)ds + 1
δ

∫ ω2
ω1

(µ(ω1 − z)− α)(β + γ(ω2 − z))g(s)ds +∫ z
0 (z− s)x (s)ds

] (5)

where δ = µβ + αγ + µγ (ω2 − ω1).

Proof. (3) is known as

v(z) = M + Nz +
∫ t

0
(z− s)x (s)ds. (6)

where M can be N constants. Using boundary conditions, we describe (4) as:

M =
∫ ω1

0
sx(s)ds +

µω1 − α

δ

∫ ω2

ω1

(β + γ(ω2 − s))x(s)ds (7)

and
N= −

∫ ω1

0
x(s)ds +

µ

δ

∫ ω2

ω1

(β + γ(ω2 − s))x(s)ds (8)

Substituting (7) and (8) into (6), we acquire (5).
Let G (z, s) be the Green function of the following differential equation:

u′′ (z) = x(z), 0 < z < 1,u′′ (z) = x(z), 0 < z < 1,

u(0) = u(1) = 0

Thus, G(z, s) ≥ 0 for 0 ≤ z, s ≤ 1 and:

G(z, s) =

{
s(1 − z), 0 ≤ s ≤ z ≤ 1,
z(1 − s), 0 ≤ z ≤ s ≤ 1.

Here, we know that:

0 ≤ G(z, s) ≤ G(s, s) = s(1− s), 0 ≤ z, s ≤ 1 (9)

and
G(z, s) ≥ pG(s, s) = ps(1− s), z ∈ [p, 1 − p], s ∈ [0, 1],

where 0 < p < min{ω1, 1 − ω2} < 1
2 . Thus, u(z) ≥ p ‖ u ‖0, z ∈ [p, 1 − p].

Let P =
{

u ∈ C2 [0, 1]; u(0) = u(1) = 0
}

, which is endowed with the indenting u ≤ v if
u(z) ≤ v(z) for all z ∈ [0, 1], and the norm:

‖ u ‖= max
{
‖ u ‖0, ‖ u′ ‖0

}
where ‖ u ‖0 = maxz∈[0,1] |u(z)|. �

Lemma 3. I f u ∈ P, ‖ u ‖0 ≤ 3
4 ‖ u′ ‖0.

Define T : E → P by:

(Tu)(z) = λ

∫ 1

0
G(z, s)(Lu)(s)ds, (10)

where
(Lu)(s) : λ

[∫ s
ω1

(ξ − s)y (ξ) f (ξ, u(ξ), u′(ξ))dξ

+ 1
δ

∫ ω2
ω1

(α− µ(ω1 − s)))(γ(ω2 − ξ) + β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ
]

,
(11)

and G(z, s) as in (2.7), (Tu)(z) = Tu(1− z), 0 ≤ z ≤ 1
2 , Tu ∈ P.
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3. The Existence of Positive Solutions

In this section, we will investigate positive solutions to a cone related to our problem described
in (1) and (2) by giving sufficient conditions for λ and u. After this, we will continue to examine the
existence of these solutions.

Let E = C2[0, 1] be a Banache space of whole continuous functions as a norm:

‖ u ‖0= maxz∈[0,1]|u(z)|, E =
{

u ∈ C2[0, 1] : u(0) = u(1) = 0
}

.

P = {u ∈ E : u(z) ≥ 0, u symmetric, concave and nonnegative valued on [0, 1]}.
Let the nonnegative, increasing, continuous functionals χ, Φ, ϕ and η be χ(u) = max

0≤z≤1
|u′(z)|:

Φ(u) =ϕ(u) = max
0≤z≤1

|u(z)|, η(u) = min
p≤z≤1−p

|u(z)|.

Lemma 4. Let u(z) be symmetric on (0, 1), with µ, α, γ and β being nonnegative constants. Thus, the only
solution u(z) of the BVP described in (1) and (2) is symmetric on (0, 1).

Proof. From (5), we have:

u(z) =
∫ ω2

ω1

G(z, s) f (s, u(s), u′(s))ds.

Therefore, we know:

u(1− z) =
∫ ω2

ω1

G(1− z, s) f (s, u(s), u′(s))ds.

We have u(z) = u(1− z) and thus, f (1− z, u(1− z)) = f (z, u(z)).

u(1− z) =
∫ ω2

ω1

G(1− z, s) f (s, u(s), u′(s))ds,

=
∫ ω2

ω1

G(1− z, 1− s) f (1− s, u(1− s), u′(1− s))d(1− s),

=
∫ ω2

ω1

G(z, s) f (s, u(s), u′(s))ds

= u(z).

The BVP described in (1) is the only symmetric solution:

u(z)=
∫ ω2

ω1

G(z, s)
∫ ω2

ω1

L(s, ξ) f (ξ, u(ξ), u′(ξ))dξds

where
y(z) = u′′ (z) =

∫ ω2

ω1

L(z, s) f (s, u(s), u′(s))ds.

T : P → P is continuous and similarly, we obtain (Tu)(1 − z) = (Tu)(z).
We accept the following assumptions:
(B1) y : [0, ∞) × (−∞, 0] → [0, ∞) is continuous;
(B2) h ∈ C[0, 1], h(z) ≤ 0, ∀z ∈ [0, ω1], h(z) ≥ 0, ∀z ∈ [ω1, ω2], h(z) ≤ 0, ∀z ∈ [ω2, 1],

and h (z) are not equal to zero in any subrange of [0, 1]. �

Lemma 5. Assume that there is (B1) and (B2). If α ≥ µω1 and β ≥ γ (1 − ω2), T : P → P are
completely continuous.
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Proof. For each z ∈ [0, 1], we contemplate three situations:
Case (i): z ∈ [0, ω1]. For any u ∈ P, we have from (11), (B1), (B2) and α ≥ µω1 that

(Lu)(z) : λ
[∫ ω1

z (z− ξ)y (ξ) f (ξ, u(ξ), u′(ξ))dξ + 1
δ

∫ ω2
ω1

(α− µ(ω1 − z)))(γ(ω2 − ξ)+
β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ ]

(12)

Case (ii): z ∈ [ω1, ω2]. For each u ∈ P, (11) is available and we have from (B1), (B2) and
α ≥ µω1 that

(Lu)(z) = λ(
∫ z

ω1
((γ(ω2 − ξ) + β))y(ξ) f (ξ, u(ξ), u′(ξ))dξ

+ 1
δ

∫ ω2
z (α− µ(ω1 − z)))(γ(ω2 − ξ) + β) y (ξ) f (ξ, u(ξ), u′(ξ))dξ)

= λ( 1
δ

∫ z
ω1

(α + µ(ξ −ω1)))(γ(ω2 − z) + β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ

+ 1
δ

∫ t
z (α + µ(z−ω1)))(γ(ω2 − ξ) + β) y (ξ) f (ξ, u(ξ), u′(ξ))dξ) ≥ 0.

(13)

Case (iii): z ∈ [ω2, 1]. For each, u ∈ P, (2.9) is available and we have from (B1), (B2) and
β ≥ (1−ω2)γ that

(Lu)(z) = λ(
∫ ω2

ω1
(ξ − z)y (ξ) f (ξ, u(ξ), u′(ξ))dξ +

∫ z
ω2

(ξ−z)
y(ξ) f (ξ, u(ξ), u′(ξ))dξ + 1

δ

∫ ω2
ω1

(α− µ(ω1 − z)))(γ(ω2 − ξ)+
β) y (ξ) f (ξ, u(ξ), u′(ξ))dξ) = λ( 1

δ

∫ ω2
ω1

(α + µ(ξ −ω1))(−γ(z−ω2)+

β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ +
∫ z

ω2
(ξ − z) y (ξ) f (ξ, u(ξ), u′(ξ))dξ) ≥ 0.

(14)

Thus, from (13) and (14), we get:

(Lu)(z) ≥ 0, z ∈ [0, 1]. (15)

Therefore, we acquire:
(T u)(z) ≥ 0, z ∈ [0, 1]. (16)

Evidently, this becomes (T u)(0) = (T u)(1) = 0 and (T u)′(z) = −(Lu)(z) ≤ 0, z ∈ [0, 1].
Therefore, T : P → P . Furthermore, the Arzera–Ascoli theorem suggests that T is
completely continuous.

Note. By δ = µβ + αγ + µγ(ω2 − ω1) > 0, α ≥ µω1 and β ≥ γ(1 −ω2), we have α > 0 and
β > 0.

For whole u ∈ P, this becomes:

p(ϕ) ≤ ϑ(u) ≤ ϕ(u) = Φ(u), ‖ u ‖= max{ϕ(u), Φ(u)}ϑ(u) (17)

It is assumed that 0 < a < b ≤ 3/4 pd are constant values to reach our main result:
(B3) (z, u, v) ≤ d

Mλ , for (z, u, v) ∈
[
0, 1] × [0, 3

4 d
]
× [−d, 0],

(B4) (z, u, v) ≤ b
mλ , for (z, u, v) ∈ [p, 1 − p]×

[
b, b

p

]
× [−d, 0],

(B5) f (z, u, v) ≤ a
Nλ , for (z, u, v) ∈ [0, 1] × [0, a] × [− d, 0], where λ > 0 and

M =
∫ ω1

0
−ξy (ξ)dξ + (ω2 −ω1 +

αβ

δ
)
∫ ω2

ω1

y (ξ)dξ,

N = (
ω1

2

2
− ω1

2

6
)
∫ ω1

0
−ξy (ξ)dξ +

1
6
(ω2 −ω1 +

αβ

δ
)
∫ ω2

ω1

y (ξ)dξ,

m = min{m1, m2},

m1 =
α

δ

∫ ω2−p

ω1

G(p, s)ds
∫ ω2−p

s
(γ(ω2 − ξ) + β)y (ξ)dξ,
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m2 =
α

δ

∫ ω2−p

ω1

G(ω2 − p, s)ds
∫ ω2−p

s
(γ(ω2 − ξ) + β)y (ξ)dξ

Theorem 3. Let α ≥ µω1 and assume that (B1)–(B5) exist. Thus, BVP (1) and (2) becomes the minimum
positive solutions.

max
0≤z≤1

∣∣ui
′(z)

∣∣ ≤ d, for i = 1, 2, . . .

min
p≤z≤1−p

|u1(z)| > b, a < max
0≤z≤1

|u2(z)|, with min
p≤z≤1−p

|u2(z)| < b.

Proof. T : P → P, with the Arzela–Ascoli theorem, we show that T is continuous. Let us now
explain that all the conditions of the Theorem 2 are fulfilled. If u ∈ P(ϑ, d), ϑ(u) = max

0≤z≤1
|ui
′(z)| ≤ d.

We have max
0≤z≤1

|u(z)| ≤ 3
4 d, According to the assumption of (B3), f (z, u(z), u′ (z)) ≤ d

M . On the other

hand, from (13) and (14), we have:

max
0≤z≤ω1

(Lu)(z) ≤ λ(
∫ ω1

0 −ξy (ξ) f (ξ, u(ξ), u′(ξ))dξ + 1
δ

∫ ω2
ω1

α(γ(ω2 − ξ)+

β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ) ≤ λ(
∫ ω1

0 −ξy (ξ) f (ξ, u(ξ), u′(ξ))dξ + 1
δ

∫ ω2
ω1

α(γ(ω2−
ξ) + β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ≤ λ(

∫ ω1
0 −ξy (ξ) f (ξ, u(ξ), u′(ξ))dξ +

1
δ (γ(ω2 −ω1)β

∫ ω2
ω1

y(ξ) f (ξ, u(ξ), u′(ξ))dξ)

(18)

and

max
0≤z≤ω1

(Lu)(z) ≤ λ
δ

∫ z
ω1

(α + µ(z−ω1))(γ(ω2 − ξ) + β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ +

λ
δ

∫ ω2
z (α + µ(z− ω1))(γ(ω2 − ξ) + β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ= λ

δ (α+

µ(z−ω1))(γ(ω2 − ξ) + β)y(ξ) f (ξ, u(ξ), u′(ξ))d ≤ λ
δ (α + µ(ω2−

ω1))(γ(ω2 −ω1) + β)
∫ ω2

ω1
y(ξ) f (ξ, u(ξ), u′(ξ))dξ

(19)

If (18) and (19) are combined, we obtain the following:

(Tu) = max
z∈[0,1]

∣∣∣(Tu)′(z)
∣∣∣ = max

z∈[0,1]
|(Lu)(z)|

= max
{

max
0≤z≤ω1

|(Lu)(z)|, max
ω1≤z≤ω2

|(Lu)(z)|
}

≤ λ
∫ ω1

0 −ξy (ξ) f (ξ, u(ξ), u′(ξ))dξ + λ
δ (α + µ(ω2 −ω1))(γ(ω2−

ω1)β)
∫ ω2

ω1
y(ξ) f (ξ, u(ξ), u′(ξ))dξ = λ

∫ ω1
0 −ξy (ξ) f (ξ, u(ξ), u′(ξ))dξ+

λ(ω2 −ω1 +
αβ
δ )
∫ ω2

ω1
y(ξ) f (ξ, u(ξ), u′(ξ))dξ ≤ λd

M (
∫ ω1

0 −ξy (ξ)dξ+λ(ω2 −ω1+
αβ
δ )
∫ ω2

ω1
y(ξ)dξ = d

M M = d

(20)

Hence, T : P(χ, d) → P(χ, d).
Thus, according to Theorem 2, we choose (z) = b

p , 0 ≤ z ≤ 1. It is simple to see that u(z) =

b
p ∈ P(χ, ϕ, η, b, b

p , d) and α(u) = α( b
p ) > b, and so

{
u ∈ P(χ, ϕ, η, b, b

p , d) | α(u) > b} 6=Ø.

Therefore, if u ∈ P(χ, ϕ, η, b, b
p , d), b ≤ u(z) ≤ b

p , −d ≤ u′(z) ≤ 0 for p ≤ z ≤ (1− p). From

supposition (B4), we have f (z, u(z), u′(z)) > b
p for p ≤ z ≤ 1 − p and by the terms on α and the

cone P, we have to separate the two states by pursuing:
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State (i): η(Tu) = (Tu)(p). From (12), we have:

η(Tu) = (Tu)(p) = λ
∫ 1

0 G(p, s)(Lu)(s)ds ≥ λ
∫ ω2

ω1
G(p, s)(Lu)(s)ds,

≥ λ
δ

∫ ω2
ω1

G(p, s)
∫ ω2

s (α + µ(ω2 −ω1))(γ(ω2 −ω1) + β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ

≥ λα
δ

∫ 1−p
p G(p, s)

∫ 1−p
s (γ(ω2 −ω1) + β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ

≥ λ α
δ

b
m
∫ 1−p

ω1
G(p, s)

∫ 1−p
s (γ(ω2 −ω1) + β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ

= b
m m1 ≥ b.

(21)

State (ii): η(Tu) = (Tu)(1− p), which is the same as:

η(Tu) = (Tu)(1− p) ≥ λ
∫ 1

0 G(1− p, s)(Lu)(s)
≥ λ

∫ ω2
ω1

G(1− p, s)(Lu)(s)ds,
≥ λ

δ

∫ ω2
ω1

G(1− p, s)
∫ ω2

s (α + µ(ω2 −ω1))(γ(ω2 −ω1) + β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ

≥ λ α
δ

∫ 1−p
p G(1− p, s)

∫ 1−p
s (γ(ω2 −ω1) + β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ

≥ λ α
δ

b
m
∫ 1−p

ω1
G(1− p, s)

∫ 1−p
s (γ(ω2 −ω1) + β)y(ξ) f (ξ, u(ξ), u′(ξ))dξ

= b
m m2 ≥ b.

(22)

η(Tu) > b, ∀u ∈ P((χ, η, b,
b
p

, d).

This proves that the requirement (C1) of Theorem 2 is fulfilled. Furthermore, from (20) and
b ≤ 3

4 pd, we have:

η(Tu) ≥ pϕ(Tu) > p
b
p

= b,

for all u ∈ P(χ, η, b, d) with ϕ(Tu) > b
p . Thus, the requirement (C1) of Theorem 2 is fulfilled.

After all, we showed that Theorem 2 fulfils (C3). It is clear that Φ (0) = 0 < a, 0 /∈ R (χ, Φ, a, d).
Presume that u ∈ R(χ, Φ, a, d) with Φ(u) = a. Moreover, according to the assumptions (B5), (20)
and (21), we obtain the following:

Φ(Tu) = max
z∈[0,1]

|(Tu)(z)| = λ max
z∈[0,1]

∫ 1
0 G(z, s)(Lu)(s)ds≤ λ

∫ 1
0 G(s, s)(Lu)(s)ds

≤ λ
∫ ω1

0 G(s, s)ds max
s∈[0,ω1]

|(Lu)(s)|+ λ
∫ ω2

ω1
G(s, s)ds max

s∈[ω1,ω2]
|(Lu)(s)|

≤ λ
∫ ω1

0 G(s, s)ds(
∫ ω1

s (s− ξ )y (ξ) f (ξ, u(ξ), u′(ξ))dξ+ λ α
δ (γ(ω2 − ξ)+

β)
∫ ω2

ω1
y(ξ) f (ξ, u(ξ), u′(ξ))dξ) + λ

δ (α + µ(ω2 −ω1))(γ(ω2 − ξ)+
β)
∫ ω2

ω1
G(s, s)ds

∫ ω2
ω1

y(ξ) f (ξ, u(ξ), u′(ξ))dξ)

< λa
N
∫ ω1

0 G(s, s)ds
∫ ω1

0 −ξy(ξ)dξ+(ω2 −ω1+
αβ
δ ) λa

N
∫ ω1

0 G(s, s)ds
∫ ω2

ω1
y(ξ)dξ)+

λ(ω2 − ω1+
αβ
δ ) a

N
∫ ω2

ω1
G(s, s)ds

∫ ω2
ω1

y(ξ)dξ)

= λ
∫ ω1

0 G(s, s)ds
∫ ω1

0 −ξy(ξ)dξ+(ω2 −ω1+
αβ
δ ) λa

N
∫ ω1

0 G(s, s)ds
∫ ω2

ω1
y(ξ)dξ)

= λ a
N

{
(

ω2
1

2 −
ω3

1
2 )

} ∫ ω1
0 −ξy(ξ)dξ + 1

6 (ω2 −ω1+
αβ
δ )
∫ ω2

ω1
y(ξ)dξ) = a.

That is, the condition (C3) of Theorem 2 is ensured. As a result, it is indicated that there is at least
one positive solution to the problem (1) and (2) so that:

max
0≤z≤1

∣∣ui
′(z)

∣∣ ≤ d, for i = 1, 2, . . . min
p≤z≤1−p

|u1(z)| > b,

a < max
0≤z≤1

|u2(z)|, with min
p≤z≤1−p

|u2(z)| < b,

and the proof is complete.
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We are now using the fixed point theorem of Guo and Krasnosel’skii to prove the main results.
This theorem is first described below. �

Theorem 4 ([17]). E is a Banach space and P, E is a cone. Let Ω1 and Ω2 be the obvious subset of E with 0 ∈
Ω1 and Ω1 ⊂ Ω2. T : P ∩ (Ω2\Ω1)→P, it is an entirely continuous operator. Furthermore, assume that the
following conditions are met:

(A) ‖ Tu ‖ ≤ ‖ u ‖, ∀u ∈ P ∩ ∂ Ω1 and ‖ Tu ‖ ≥ ‖ u ‖, ∀u ∈ P ∩ ∂ Ω2 or
(B) ‖ Tu ‖ ≥ ‖ u ‖, ∀u ∈ P ∩ ∂ Ω1 and ‖ Tu ‖ ≤ ‖ u ‖, ∀u ∈ P ∩ ∂ Ω2 holds. Thus, T has a fixed

point in P ∩ (Ω2\Ω1).

4. Main Results

In this part, we argue against the presence of a positive solution of BVP (1) and (2). For suitability,
we set the following:

max f0 = lim
−v→0

max
z∈[0,1]

supu∈[0,+∞]
f (z, u, v)
−v

,

min f0 = lim
−v→0

min
z∈[0,1]

in fu∈[0,+∞]
f (z, u, v)
−v

max f∞ = lim
−v→+∞

max
z∈[0,1]

supu∈[0,+∞]
f (z, u, v)
−v

min f∞ = lim
−v→+∞

min
z∈[0,1]

in fu∈[0,+∞]
f (z, u, v)
−v

Throughout this section, we assume that µ, α, γ, β are nonnegative constants, 0 ≤ ω1 <ω2 ≤ 1
and δ = µβ + αγ + µγ (ω2 − ω1) > 0, −µ ω1 + α ≥ 0, γ(ω2 −1) + β ≥ 0. �

Lemma 6. Suppose −µω1 + α ≥ 0, γ(ω2 − 1) + β ≥ 0. This means that T(P) ⊂ P, where τ1 = ω1 + 1
4 (ω2

− ω1), τ2 = ω2− 1
4 (ω2 − ω1). P is a cone in E and If u ∈ P, min(−u′(z) )z∈{τ1,τ2} ≥ λ 1

4 ‖ u ‖ .

Theorem 5. Assume that f ∈ C([0, 1] ×[0, ∞) × (−∞, 0], [0, ∞)) and f is sublinear, i.e., min f∞ = ∞ and
max f0 = 0. Furthermore, there is at least one positive solution of BVP (1) and (2).

Proof. Since max f0 = ∞, for any ε satisfying 1
4 ε
∫ τ2
τ1

G( 1
2 (τ1 − τ2), ξ)dξ ≤ 1, there exists R1 > 0 so that:

(z, u, v) ≤ ε(−v), for z ∈ [0, 1], u ∈ [0, +∞], 0 ≤ −v ≤ R1 (23)

Set ΩR1 = {u ∈ P :‖ u ‖ < R1}.
If so, for u∈ ∂ΩR1 , we can get the folowing from Lemma 4, Lemma 6 and using (23) :

−(Tu)′(z)=
∫ τ2
τ1

G( 1
2 (τ1 − τ2), ξ) f (ξ, u(ξ), u′(ξ))dξ

≥
∫ τ2
τ1

G( 1
2 (τ1 − τ2), ξ) f (ξ, u(ξ), u′(ξ))dξ≥ ε

∫ τ2
τ1

G( 1
2 (τ1 − τ2), ξ)(−u′(ξ))dξ

≥ 1
4 ε ‖ u ‖

∫ τ2
τ1

G( 1
2 (τ1 − τ2), ξ)dξ≥‖ u ‖ .

This is also true:
‖ Tu ‖≥‖ u ‖, for u ∈ ∂ΩR1 (24)

From this point onwards, max f∞ = 0 for each ε∗ filling ε∗
∫ τ2
τ1

G(ξ, ξ)(−u′(ξ))dξ ≤ 1,
Set ΩR2= {u ∈ P :‖ u ‖ < R2} for u ∈ ∂ΩR2 .

f (z, u, v) ≤ ε∗ (−v), for z ∈ [0, 1], u ∈ [0, +∞], −v ≥ R (25)
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−(Tu)′(z)= λ
∫ τ2
τ1

G(ξ, ξ) f (ξ, u(ξ), u′(ξ))dξ

≤ λε∗
∫ τ2
τ1

G(ξ, ξ)(−u′(ξ))dξ

≤ u′∞=‖ u ‖,

and thus:
Tu ≥‖ u ‖, for u ∈ ∂ΩR2 . (26)

Hence from (24), (26) and Theorem 4, the operator T can obtain a fixed point u in ΩR2\ΩR1 where
u is a positive solution of (1) and (2) and satisfies R1 ≤ u ≤ R2. �

Theorem 6. Suppose that f ∈ C([0, 1] × [0, ∞) × (−∞, 0], [0, ∞)) and f is sublinear, i.e., min f0 = ∞
and max f∞ = 0. Furthermore, there is at least one positive solution of BVP (1) and (2).

Proof. Since min f0 = ∞, for any ε satisfying 1
4 ε ∗

∫ τ2
τ1

G( 1
2 (τ1 − τ2), ξ)dξ ≤ 1, there exists R1> 0

such that:
f (z, u, v) ≤ ε ∗ (−v), for z ∈ [0, 1], u ∈ [0, +∞], 0 ≤ −v ≤ R1. (27)

Set ΩR1 = {u ∈ P :‖ u ‖ < R1}. For u ∈ ∂ΩR1 , we can obtain the following from (23) and (27) :

−(Tu)′(z)= λ
∫ τ2
τ1

G( 1
2 (τ1 − τ2), ξ) f (ξ, u(ξ), u′(ξ))dξ

≥ λ
∫ τ2
τ1

G( 1
2 (τ1 − τ2), ξ) f (ξ, u(ξ), u′(ξ))dξ

≥ λε ∗
∫ τ2
τ1

G( 1
2 (τ1 − τ2), ξ)(−u′(ξ))dξ

≥ λ 1
4 ε∗ ‖ u ‖

∫ τ2
τ1

G( 1
2 (τ1 − τ2), ξ)dξ

≥‖ u ‖,

And thus:
‖ Tu ‖≥‖ u ‖, for u ∈ ∂ΩR1 . (28)

If max f∞ = 0, for any ε∗ convincing ε∗
∫ τ2
τ1

G(ξ, ξ)(−u′(ξ))dξ ≤ 1 there exists R∗ > R1 such that:

f (z, u, v) ≤ ε ∗ (−v), for z ∈ [0, 1], u ∈ [0, +∞], −v ≥ R∗. (29)

Since max f∞ = 0, two cases can be examined.
Case (i): Presume that f (z, u, v) is infinite. Thus, for any ε∗ satisfying 1

4 ε ∗∫ τ2
τ1

G( 1
2 (τ1 − τ2), ξ)dξ ≤ 1, there exists R∗ > R1 such that:

f (z, u, v) ≤ ε∗ (−v), for z ∈ [0, 1], u ∈ [0, +∞], −v ≥ R∗. (30)

Let f ∗ (q): [0,∞)→ [0,∞) define the function by:

f ∗ (q)= max{ f (z, u, v) : z ∈ [0, 1] , 0 ≤ u ≤ q, 0 ≤ −v ≤ q},

where lim
q→+∞

f ∗ (q)
q = 0 and:

f ∗ (q) ≤ ε∗q for q> R∗. (31)

If R2 > R∗, (30) and (31) can be written as

f (z, u, v) ≤ f ∗(R2) ≤ ε∗R2 for z ∈ [0, 1], 0 ≤ u ≤ R2, 0 ≤ −v ≤ R2. (32)

If u ∈ P with ‖ u ‖ = R2, from Lemma 1, we know that:

‖ u ‖∞ ≤ R2. (33)
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Thus, from (32), (33) and Lemma 6, we get the following for u ∈ P and ‖ u ‖ = R2:

−(Tu)′′ (z)=
∫ τ2

τ1

G(ξ, ξ) f (ξ, u(ξ), u′(ξ))dξ≤ ε∗R2

∫ τ2

τ1

G(ξ, ξ)(u′′ (ξ))dξ ≤ R2 =‖ u ‖ .

Case (ii): Suppose f (z, u, v) is bounded, i.e., There is a Q number such that f (z, u, v) ≤ Q
(Q > 0). Get R2 > max{Q

∫ τ2
τ1

G(ξ, ξ)dξ, R1}. For u ∈ P and ‖ u ‖ = R2, we obtain the following:

−(Tu)′′ (z)=
∫ τ2

τ1

G(ξ, ξ) f (ξ, u(ξ), u′(ξ))dξ≤ Q
∫ τ2

τ1

G(ξ, ξ)dξ ≤ R2 =‖ u ‖ .

Therefore, in both cases, we can set ΩR2 = {u ∈ P : u < R2} so that

‖ Tu ‖≤‖ u ‖, for u ∈ ∂ΩR2 . (34)

Hence, from (28), (34) and Theorem 5, T seems to be a fixed point, u is ΩR2\ΩR1 , u is a positive
solution of (1) and (2) and satisfies R1 ≤ u ≤ R2. �

Example 1. Consider the following boundary value problem system:

u′′′ (z) + λz
[
(
√

z
√

1−z)
2 ) (u′ )2 + In(u(z) + 1)

]
= 0, z ∈ (0, 1)

u(0) = 0, u(1) = 0
1
2 u′′ ( 1

4 ) − u′′′ ( 1
4 ) = , 2

3 u′′ ( 1
3 ) + 2u′′′ ( 1

3 ) = 0

where λ is a clearly a positive parameter:

f (z, u, v) = (

√
z
√

1− z)
2

) (v )2 + In(u(z) + 1), y(z) = z,ω1 =
1
4

,ω2 =
1
3
=

1
2

, α = 1, γ =
2
3

, β = 2

There is a nonnegative constant satisfying µβ + αγ + µγ(ω2 − ω1) > 0, 0 ≤ ω1 < ω2 ≤ 1.

f (z, u) is symmetric on [0, 1] for all u ∈ [0, ∞) .

∫ 15
48

13
48

G(
1
2
(

13
48
− 15

48
), s)ds≤ 1, min f∞ = ∞ and max f0 = 0.

Namely, this is:

max f0 = lim
−v→0

f (z, u, v)
−v

= lim
−v→0

(
√

z
√

1−z)
2 ) (v )2 + In(u(z) + 1)

−v
= 0,

max f∞ = lim
−v→+∞

f (z, u, v)
−v

= lim
−v→+∞

(
√

z
√

1−z)
2 ) (v )2 + In(u(z) + 1)

−v
= ∞.

Thus, according to Theorem 5, BVP has at least one positive solution.

5. Conclusions

The four-point fourth-order boundary value problem is used to calculate the deflection at any
point in the beam. The maximum deviation is determined by the symmetry of the beam. If it is unclear
where the maximum deviation occurs, it is possible to determine this with the above-mentioned
equations. The equation used in this study determines the location and time of the change in the beam
slope. The problem examined is used to solve the deflection in the beam.
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In this paper, we first evaluated the properties of the symmetrical solutions for the fourth-order
boundary value problems [4–11,15–19]. We have examined the requirements. After this, we used the
fixed point index as a different method compared to the fourth-order boundary value problems [4,9,10].
In Section 3, we investigated the existence of symmetric positive solutions by giving sufficient
conditions for λ and u in our problem. We have proved with the Lemma 4 and Theorem 3 that
under certain conditions, the problem has a minimum symmetric positive solution with Avery and
Peterson’s fixed point theorem. Unlike other studies, in the last section, we showed that in a superlinear
case of a non-linear problem with four-point boundary value conditions, there is at least one positive
symmetric solution obtained by the method of Krasnosel‘skii [15]. We have given an example that
proves Theorem 5.

In previous studies, two-point and three-point boundary value problems are generally
emphasized. This study is different because it is a four-point boundary value problem and the
symmetric solution is the solution. The given boundary conditions indicate that the non-linear beam
rests against two ends with an elastic response. Moreover, the solution of (1) and (2) gives the balance
of the beam that will prevent it from bending when exposed to a force. This corresponds to the bending
moment in the tip in physics. The symmetrical solution means that the beams are exposed to slow
oscillations in the elastic bearings. As part of these calculations, the maximum deviations in the beams
will be evaluated and the beam will be supported in a safe manner. Therefore, these results will shed
light for engineers in some typical beam deformation problems and are a useful contribution to the
current literature.
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