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Abstract: Recently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors,
four bosons, and four fermions have been computed. In this paper, we further analyze these results
in terms of BC3, the signed permutation group of three elements, and BC4, the signed permutation
group of four elements. It is shown how all 36,864 adinkras can be generated via BC4 boson × BC3

color transformations of two quaternion adinkras that satisfy the quaternion algebra. An adinkra inner
product has been used for some time, known as the gadget, which is used to distinguish adinkras.
We show how 96 equivalence classes of adinkras that are based on the gadget emerge in terms of BC3

and BC4. We also comment on the importance of the gadget as it relates to separating out dynamics in
terms of Kähler-like potentials. Thus, on the basis of the complete analysis of the supersymmetrical
representations achieved in the preparatory first four sections, the final comprehensive achievement of
this work is the construction of the universal BC4 non-linear σ-model.

Keywords: adinkras; equivalence classes; holography; holoraumy; representation theory; supersymmetry;
sigma models
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1. Introduction

Adinkras are diagrams that encode supersymmetric (SUSY) transformation laws with complete
fidelity in one spacetime dimension and in two spacetime dimensions [1]. Different colored lines in
adinkra diagrams encode the action of distinct one-dimensional supercharges on the field variables
of a supermultiplet. The lines connect nodes that encode fields related by the supersymmetry
transformation. Adinkras are useful theoretical tools for many reasons. First, adinkras are elegant
and concise classification tools that encode a plethora of mathematics similar to Dynkin diagrams
and Feynman diagrams. Second, adinkras have proven useful in discovering previously-unknown
supersymmetric multiplets [2]. We seek to further develop adinkras as a search tool to uncover finite
realizations of off-shell supersymmetric representations: most notably 4D, N = 4 super Yang–Mills
theory and 10D and 11D supergravity. Such representations lie outside the no-go theorem of [3].
A finite representation of the off-shell superconformal hypermultiplet has recently been uncovered [4].

Symmetry 2019, 11, 120; doi:10.3390/sym11010120 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-1491-1484
http://dx.doi.org/10.3390/sym11010120
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/11/1/120?type=check_update&version=2


Symmetry 2019, 11, 120 2 of 42

This is promising evidence pointing toward the possibility of a finite realization of 4D, N = 4
super Yang–Mills theory. The utility of adinkras in analyzing extended supersymmetric systems was
demonstrated in [5] where the adinkra parameter χ0 was used to classify which 4D, N = 2 off-shell
supersymmetric systems can be represented with finite numbers of auxiliary field and which cannot.
Third, adinkras relate supersymmetric systems that exist in different dimensions, possibly providing
a holographic path to uncover unknown representations. Adinkras can be “shadows” of higher
dimensional supersymmetry where an adinkra can be drawn that encodes the entire transformation
laws when the system is considered to depend only on one or two of the spacetime dimensions.

Classifying supersymmetric systems in terms of which adinkras they reduce to is known as
supersymmetric genomics [6–8], whereas building higher dimensional supersymmetry from lower
dimensional supersymmetry (dimensional enhancement) is known as supersymmetric holography [9–17].
As there are generally more low-dimensional than high-dimensional supersymmetric systems,
a classification scheme is necessary to sort out which lower dimensional systems are related to which
higher dimensional systems. Defining equivalence classes is essential to the adinkra sorting process.

In this paper, we report the discovery of 96 equivalence classes of four-color, four-boson,
and four-fermion adinkras. These equivalence classes can be thought of as classes of inner products
within an orthogonal basis for adinkras: two adinkras can be thought of as equivalent if they decompose
the same way in this basis, thus having a normalized inner product of one. As shown in [12,16], a set
of holoraumy (the word “holoraumy” was defined in [15] as a combination of the Greek word holos
(complete) and the German word raum (space)) matrices ṼIJ can be constructed from the transformation
laws encoded by the adinkra. These holoraumy matrices exist in a space spanned by six basis elements
αâ and βâ. The basis elements αâ and βâ form mutually-commuting su(2) algebras. An inner product
was first defined for this basis in [12]. This inner product has been called the gadget in many subsequent
works such as [16,18,19]. The gadget between two adinkra representations equals one if the adinkras
have identical ṼI J ’s. Following [19], we define holoraumy-equivalence classes of adinkras whose inner
products equal one. We organize our results in terms of BC3 and BC4: the signed permutation groups of
three and four elements, respectively. The relationships between the different holoraumy-equivalence
classes are presented in terms of BC3 color transformations that map one equivalence class to another.
The main results of this paper are

1. the discovery of the BC3 mappings to all Ṽ-equivalence classes,
2. the generation of all 36,864 four-color, four-boson, and four-fermion adinkras in terms

of BC4 boson × BC3 color transformations of two Ṽ-inequivalent adinkras, dubbed the
quaternion adinkras,

3. the presentation of a formula that encodes all 36,864 four-color, four-boson, and four-fermion
adinkras in terms of their Ṽ-equivalence classes,

4. the explanation of the count of all possible gadget values in terms of equivalence classes, and
5. the connections between the gadget, holoraumy, and dynamics through Kähler-like potentials.

The second and third results will elucidate why there are 36,864 four-color, four-boson, and
four-fermion adinkras, as well as encode all such adinkras in two succinct equations. The matrix
representations of the quaternion adinkras we define satisfy the quaternion algebra. Though lesser
discussed at present, describing supersymmetry in the language of quaternions has been investigated
before [20].

The fifth result is the major achievement of this work. For the first time, a universal non-linear σ-model
is defined over the entirety of the 36,864 adinkras that provide the basis for all linear representations
of 1D, N = 4 supersymmetry.

The vast majority of our previous efforts in the study of adinkras has concentrated on the issue
of building a rigorous representation theory. However, there have been two exceptions. In the work
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of [21], it was shown how to couple one-dimensional SUSY models with arbitrary extensions of
the numbers of worldline supersymmetries to external magnetic fields. The existence of a “super
Zeeman effect” was noted. The other exception [22] explored the question of the compatibility of
the traditional superfield approach of one-dimensional supersymmetrical theories with the approach
of using adinkras in these same theories. Compatibility was shown, and this opens the path for
explaining how the adinkra approach leads to a uniform and universal formalism for describing the
“model space” of 1D, N = 4 supersymmetric σ-models.

The topic of one-dimensional N = 4 σ-models, which began in 1991 [23–25], developed into
a substantial literature [26–51], some even prior to the work in [22]. Parts of this work have been
empowered by some of the insights (e.g., “root superfields” provide one example) gained from adinkras.
The efficacy of these models can be seen by the range of concepts to which they connect such as:

(a) Hopf maps,
(b) superconformal mechanics,
(c) supersymmetric Calogero models,
(d) supersymmetric CP(n) mechanics,
(e) superconformal mechanics and black holes,
(f) supersymmetric WDVVequations and roots, and
(g) Hyper-Kähler and Clifford–Kähler geometries with torsion.

The reader should keep in mind that the recitation and citations of this paragraph constitute only
a very small slice of the literature. If one looks at the cited work of this paragraph, it can be noted there
was an effort to establish a universal formalism, via the use of harmonic superspace techniques [36–38],
to describe all such models. Such a universal formalism is what we mean by the use of the term
“model space.” We next review the issue of the control of the model space in the more familiar context
of 4D, N = 1, 2D, N = 2, and 2D, N = (2, 0) σ-models. These are domains in which these issues are
well understood and settled. We use this discussion as the basis for the construction of a universal
formalism for describing the universal BC4 Coxeter group non-linear σ-model.

This paper is organized as follows. In Section 2, we briefly review adinkras and how they
can describe higher dimensional systems, as well as show how Ṽ-equivalence classes have already
been used to distinguish some of these systems. We illustrate the process of SUSY holography,
demonstrating the missing steps and commenting on possible solutions. In Section 3, we introduce the
quaternion adinkras, and in Section 4, we report the 96 Ṽ-equivalence classes that are generated from
the quaternion adinkras and span all 36,864 four-color, four-boson, and four-fermion adinkras. We use
these equivalence classes to explain the counts of the four different gadget values calculated in [19]
and present the formula that encodes all 36,864 four-color, four-boson, and four-fermion adinkras.
In Sections 5 and 6, we demonstrate connections between holoraumy and dynamics. Specifically,
in Section 5, we demonstrate how the holoraumy for each of four different 2D SUSY sigma models is
different from the others, thus having gadgets differ from unity. In Section 6, we demonstrate how
the holoraumy matrices appear in a set of 1D SUSY actions generated by a Kähler-like potential and
demonstrate how a particular choice of Kähler-like potential yields the common action for all 36,864
1D SUSY models investigated throughout the rest of the paper. The connections shown in Sections 5
and 6 will be particularly important as we continue our quest to develop SUSY holography.

2. Adinkra Review

In this section, we review how adinkras are used to encode supersymmetry entirely in
one-dimension and partially in four-dimensions. We demonstrate the (at present incomplete) holographic
map from 1D adinkras to 4D SUSY. For a more complete review, we refer the reader to [6–8], whose
conventions we follow for four-dimensional gamma matrices (γµ)ab.
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2.1. Adinkras and One-Dimensional Supersymmetry

Consider four bosonic fields Φi and four fermionic fields Ψ ĵ in one dimension, that of time.
The Lagrangian for these fields is:

L = 1
2 δijΦ̇iΦ̇j − i 1

2 δî ĵΨîΨ̇ ĵ (1)

where a dot above a field indicates a time derivative, Φ̇i = dΦi/dτ for example. We now explain how
the two adinkras shown in Figure 1 each encode a set of SUSY transformation laws that leave the
Lagrangian (1) invariant.

1

1 2 3 4

2 3 4 1

1 2 3 4

2 3 4

Figure 1. The cis- (left) and trans- (right) adinkra. The black nodes are the fermions Ψî, and the white
nodes are the bosons Φi in the transformation laws.

The white nodes of the adinkras encode the bosons Φi, and the black nodes encode the
fermions multiplied by the imaginary number iΨ ĵ. A line connecting two nodes indicates a SUSY
transformation law between the corresponding fields. Each of the N = 4 colors encodes a different
SUSY transformation. A solid (dashed) line indicates a plus (minus) sign in SUSY transformations.
In transforming from a higher node to a lower node (higher mass dimension field to one-half lower
mass dimension field), a time derivative appears on the field of the lower node.

For the two adinkras in Figure 1, we define χ0 = +1 for the leftmost adinkra (the cis-adinkra) and
χ0 = −1 for the rightmost adinkra (the trans-adinkra), which allows us to simultaneously write the
transformation laws encoded by each adinkra as follows. For boson to fermion, we have:

D1Φ1 =iΨ1, D2Φ1 = iΨ2, D3Φ1 = χ0iΨ3, D4Φ1 = −iΨ4 (2a)

D1Φ2 =iΨ2, D2Φ2 = −iΨ1, D3Φ2 = χ0iΨ4, D4Φ2 = iΨ3 (2b)

D1Φ3 =iΨ3, D2Φ3 = −iΨ4, D3Φ3 = −χ0iΨ1, D4Φ3 = −iΨ2 (2c)

D1Φ4 =iΨ4, D2Φ4 = iΨ3, D3Φ4 = −χ0iΨ2, D4Φ4 = iΨ1 (2d)

For fermion to boson, we have:

D1Ψ1 =Φ̇1, D2Ψ1 = −Φ̇2, D3Ψ1 = −χ0Φ̇3, D4Ψ1 = Φ̇4 (3a)

D1Ψ2 =Φ̇2, D2Ψ2 = Φ̇1, D3Ψ2 = −χ0Φ̇4, D4Ψ2 = −Φ̇3 (3b)

D1Ψ3 =Φ̇3, D2Ψ3 = Φ̇4, D3Ψ3 = χ0Φ̇1, D4Ψ3 = Φ̇2 (3c)

D1Ψ4 =Φ̇4, D2Ψ4 = −Φ̇3, D3Ψ4 = χ0Φ̇2, D4Ψ4 = −Φ̇1 (3d)

Adinkras such as those in Figure 1 that have all bosons at the same height and all fermions at the
same height are known as valise adinkras. The SUSY transformation laws encoded by a valise adinkra
can be succinctly written as:

DIΦ = iLIΨ, DIΨ = RIΦ̇, (4)

with RI and LI inverses and transposes of each other:

RI = LT
I = L−1

I . (5)
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The adinkra matrices LI and RI satisfy the GR(d, N) algebra, also known as the garden algebra:

LIRJ + LJRI = 2δIJI4, RILJ + RJLI = 2δIJI4. (6)

The GR(d, N) algebra is the algebra of general, real matrices encoding the supersymmetry
transformation laws between d bosons, d fermions, and N supersymmetries. The adinkras in Figure 1
each have d = 4 and N = 4. Hitherto, the word adinkra shall refer to d = 4, N = 4 valise adinkras,
unless otherwise specified. With the bosonic (i, j, k, . . . ) and fermionic (î, ĵ, k̂, . . . ) indices exposed,
Equations (4) and (6) are:

DIΦi = i(LI)
ĵ

i Ψ ĵ, DIΨ ĵ = (RI)
i

ĵ Φ̇i, (7)

(LI)
ĵ

i (RJ)
k

ĵ + (LJ)
ĵ

i (RI)
k

ĵ = 2δIJδ
k

i , (8)

(RI)
i

ĵ (LJ)
k̂

i + (RJ)
i

ĵ (LI)
k̂

i = 2δIJδ
k̂

ĵ . (9)

Using Equation (7), we concisely write the matrices LI and RI for the transformation laws in
Equations (2) and (3) for the cis- and trans-adinkra as:

L1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , L2 =




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


 ,

L3 = χ0




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 , L4 =




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 .

(10)

R1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , R2 =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 ,

R3 = χ0




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 , R4 =




0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


 .

(11)

A SUSY transformation between two fields is encoded as a nonzero entry in the corresponding
row and column of each of the corresponding L and R matrices. A solid (dashed) line in an adinkra
encodes a plus (minus) one in the corresponding matrix entry. The only difference between the
cis- and trans-valise adinkras in Figure 1 is the orange lines, where they are dashed in one adinkra,
solid in the other; hence, matrices L1, L2, and L4 are identical, but L3 is opposite for the cis- and
trans-valise adinkras. For an arbitrary d = 4, N = 4 valise adinkra, we define χ0 from the following
chromocharacter equation [6]:

Tr(LILT
J LKLT

L) = 4(δIJδKL − δILδJK + δIJδKL + χ0 εIJKL) (12)

We have for all d = 4, N = 4 valise adinkras, χ0 = ±1. Here, we define the χ0-equivalence class:

Two adinkras are χ0-equivalent if they share the same value of χ0.
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2.2. Adinkras and Four-Dimensional Supersymmetry

In this section, we will describe how adinkras can partially encode SUSY transformations in
four-dimensions. All valise adinkras belong to either the χ0 = +1 or χ0 = −1 equivalence class. In [6],
it was shown that the cis- and trans-valise adinkras can encode the zero-brane reduced transformation
laws (the transformation laws when only temporal dependence of the fields is considered) of the
4D, N = 1 chiral multiplet (CM), tensor multiplet (TM), and vector multiplet (VM). In terms of χ0

equivalence classes, we have specifically that χ0 = +1 for CM and χ0 = −1 for VM and TM. This first
step of simply identifying which type of fields are described by adinkras nodes is at present unknown
simply given the adinkra.

Given that starting point, however, we now demonstrate how the 4D transformation laws can be
seen to arise from the adinkra representations that exist on the zero-brane, as shown in Figures 2–4 for
CM, VM, and TM. Along with the nodal definitions, the other missing piece of such a full holographic
map is how to fill in the spatial dependence. This will be illustrated in the following. While showing the
parts of the map from the zero-brane to 4D that exist (namely that time-dependent parts), we will also
demonstrate that the χ0-equivalence class can be used to separate partially which adinkras correspond
to which higher dimensional multiplets. Holoraumy allows us to separate more completely, which we
discuss in the next section.

A B
∫
dτF

∫
dτG

ψ1 ψ2 ψ3 ψ4

A1 A2 A3

∫
dτ d

λ1 λ2 λ3 λ4

1

Figure 2. A valise adinkra for the chiral multiplet CM.

ϕ 2B12 2B23 2B31

χ1 χ2 χ3 χ4

1

Figure 3. A valise adinkra for the tensor multiplet TM.

A1 A2 A3

∫
dτ d

λ1 λ2 λ3 λ4

1

Figure 4. A valise adinkra for the vector multiplet VM.

The adinkras in Figures 2–4 encode the transformation laws in Equation (4) with the following
node identifications and adinkra matrices LI and RI. The node identifications for each adinkra are:

CM : iΨ1 = ψ1 , iΨ2 = ψ2 , iΨ3 = ψ3 , iΨ4 = ψ4 (13a)

Φ1 = A , Φ2 = B , Φ3 =
∫

dτF , Φ4 =
∫

dτG (13b)
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TM : iΨ1 = χ1 , iΨ2 = χ2 , iΨ3 = χ3 , iΨ4 = χ4 (14a)

Φ1 = ϕ , Φ2 = 2B12 , Φ3 = 2B23 , Φ4 = 2B31 (14b)

TM : iΨ1 = λ1 , iΨ2 = λ2 , iΨ3 = λ3 , iΨ4 = λ4 (15a)

Φ1 = A1 , Φ2 = A2 , Φ3 = A3 , Φ4 =
∫

dτ d (15b)

The LI for the CM, TM, and VM adinkras are shown below. Note that the RI are the transposes
of these as in Equation (5).

L(CM)
1 =




1 0 0 0
0 0 0 −1
0 1 0 0
0 0 −1 0


 , L(CM)

2 =




0 1 0 0
0 0 1 0
−1 0 0 0
0 0 0 −1


 ,

L(CM)
3 =




0 0 1 0
0 −1 0 0
0 0 0 −1
1 0 0 0


 , L(CM)

4 =




0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


 .

(16)

L(TM)
1 =




1 0 0 0
0 0 −1 0
0 0 0 −1
0 −1 0 0


 , L(TM)

2 =




0 1 0 0
0 0 0 1
0 0 −1 0
1 0 0 0


 ,

L(TM)
3 =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 −1


 , L(TM)

4 =




0 0 0 1
0 −1 0 0
1 0 0 0
0 0 1 0


 .

(17)

L(VM)
1 =




0 1 0 0
0 0 0 −1
1 0 0 0
0 0 −1 0


 , L(VM)

2 =




1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 −1


 ,

L(VM)
3 =




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


 , L(VM)

4 =




0 0 1 0
−1 0 0 0
0 0 0 −1
0 1 0 0


 .

(18)

The Lagrangian for the CM, VM, and TM are, in terms of their Φi and Ψi, all the same:
Equation (1). Substituting in the nodal definitions Equations (13)–(15), we arrive at their respective
Lagrangians and transformation laws, where we start to see differences:

L(0)CM = 1
2 Ȧ2 + 1

2 Ḃ2 + i 1
2 (γ

0)abψaψ̇b +
1
2 F2 + 1

2 G2 (19)

L(0)TM =2
(

Ḃ2
12 + Ḃ2

23 + Ḃ2
31

)
+ 1

2 ϕ̇2 + 1
2 i(γ0)abχaχ̇b (20)

L(0)VM = 1
2 (Ȧ2

1 + Ȧ2
2 + Ȧ2

3) +
1
2 i(γ0)abλaλ̇b +

1
2 d2 (21)
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Again, we are using the gamma matrix conventions of [6]. The corresponding transformation
laws for the CM are:

Da A = ψa, DaB = i (γ5)a
bψb,

DaF = (γ0)a
b ∂τψb, DaG = i (γ5γ0)a

b ∂τψb,

Daψb = i (γ0)ab ( ∂τ A )− (γ5γ0)ab ( ∂τ B )− iCabF + (γ5)abG.

(22)

The corresponding transformation laws for the TM are:

Da ϕ = χa, DaBm n = − 1
4 ([γm, γn])a

bχb,

Daχb = i(γ0)ab ∂τ ϕ− i 1
2 (γ

0 [γm, γn])ab ∂τ Bm n.
(23)

where early Latin indices a, b, · · · = 1, 2, 3, 4 and late Latin indices m, n, · · · = 1, 2, 3. Furthermore, we
define Bmn = −Bnm. The corresponding transformation laws for the VM are:

Da Am = (γm)a
bλb, Dad = i(γ5γ0)a

b ∂τλb,

Daλb = − i (γ0γm)ab ( ∂τ Am ) + (γ5)ab d.
(24)

So far, the only missing piece in the holographic map has been the nodal definitions. The next
step, where we insert the spatial dependence, is the other unknown piece. Said another way, a main
open question in SUSY holography is:

What needs to be added to zero-brane Lagrangians such as (19), (20), (21), and their corresponding
transformation laws (22), (23), and (24) to arrive at full 4D, N = 1 off-shell SUSY representations?

Though we do not generally know a holographic procedure, from dimensional reduction, we know
the answer [6]. Below are the 4D transformation laws and corresponding Lagrangians that reduce to the
zero-brane transformation laws and Lagrangians. We introduce Greek indices µ, ν, · · · = 0, 1, 2, 3 where
for the CM we have merely to introduce more derivatives on the gauge fields and more derivatives
and gamma matrices for the fermions:

LCM =− 1
2 (∂µ A)(∂µ A)− 1

2 (∂µB)(∂µB) + i 1
2 (γ

µ)abψa∂µψb +
1
2 F2 + 1

2 G2 (25)

Da A = ψa, DaB = i (γ5)a
bψb

Daψb = i (γµ)ab
(

∂µ A
)
− (γ5γµ)ab

(
∂µB

)
− iCabF + (γ5)ab G

DaF = (γµ)a
b ∂µψb, DaG = i (γ5γµ)a

b ∂µψb

(26)

For the TM and VM, in addition to adding more derivatives and more gamma matrices, we must
also introduce components that were gauge fixed to zero at the adinkra level: B01, B02, and B03 for the
TM and A0 for the VM. For the TM, we have:

LTM =− 1
3 HµναHµνα − 1

2 ∂µ ϕ∂µ ϕ + 1
2 i(γµ)bcχb∂µχc (27)

where:
Hµνα ≡ ∂µBνα + ∂νBαµ + ∂αBµν (28)

Da ϕ = χa

DaBµ ν = − 1
4 ([ γµ , γν ])a

b χb

Daχb = i (γµ)a b ∂µ ϕ − (γ5γµ)a b εµ
ρ σ τ∂ρBσ τ

(29)

For the VM, we have:
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LVM =− 1
4 FµνFµν + 1

2 i(γµ)abλa∂µλb +
1
2 d2 (30)

Da Aµ = (γµ)a
bλb

Daλb = − i 1
2 (γµγν)ab Fµ ν + (γ5)ab d

Dad = i(γ5γµ)a
b ∂µλb

(31)

where:

Fµν = ∂µ Aν − ∂ν Aµ (32)

The preceding illustrates four missing steps in the SUSY holography procedure.

1. Nodal field definitions and which adinkras encode which particle spins.
2. How to augment with spatial derivatives.
3. How to introduce gamma matrices.
4. How to introduce more degrees of freedom for the gauge fields.

The second has arguably a simple solution as applied to the previous examples: simply replace
γ0∂τ → γµ∂µ. This is related to the third point about γµ matrices, which was addressed in [15,16],
where a correspondence between the zero-brane holoraumy matrices and the 4D gamma matrices
was shown. The first and fourth are the least understood, but likely will have a common solution:
knowing which particle spins are encoded by a given adinkra should lead to the knowledge of which
gauge degrees of freedom must be added and vice versa. In the remainder of this paper, we continue
to develop holoraumy as tool to be applied to the first and fourth steps in future works.

We conclude this section with some comments on the χ0-equivalence class. Performing the
calculation in Equation (12) on the adinkra LI-matrices for the CM, VM, and TM results in χ0 = +1 for
the CM and χ0 = −1 for the VM and TM. The CM is therefore in a different χ0-equivalence class from
the VM and TM. Furthermore, the nodes of the chiral, tensor, and vector valise adinkras in Figures 2–4
can be rearranged to arrive at different adinkras that equivalently encode the SUSY transformations.
We define permutations of the nodes as flops and sign flips of the nodes as flips. Flipping and flopping
the nodes of a representationR to a new representationR′ corresponds to multiplication by matrices
X and Y as in:

Φ(R′) = XΦ(R), Ψ(R′) = YTΨ(R)

L(R′)
I = XL(R)

I Y , R(R′)
I = YTR(R)

I X
T .

(33)

The matrices X and Y can in principle be any non-singular matrix; however, in this paper, they will
be elements of BC4.

As Equation (12) is invariant with respect to such nodal flips and flops, they leave the adinkra in
the same χ0-equivalence class. Both the tensor and vector adinkras can be node flopped and flipped to
the trans-adinkra (χ0 = −1) in Figure 1, and the chiral adinkra can be node flopped and flipped to the
cis-adinkra (χ0 = +1) in Figure 1 [6]. The χ0-equivalence class can therefore be used to distinguish
adinkras that are representative of the chiral multiplet from adinkras that are representative of the
tensor or vector multiplet.

2.3. V- and Ṽ-equivalence Classes

Once χ0-equivalence classes are seen to separate the chiral multiplet from both the tensor and
vector multiplets, the natural questions is: Do other equivalence classes exist that separate the vector
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and tensor multiplets? In [12,16,18,19], the holoraumy matrices VIJ and ṼIJ were seen to do just that
(these are the conventions of [19], which we use throughout this paper):

VIJ = −i 1
2 L[IRJ] =

3

∑̂
a=1

(κ â
IJα

â + κ̃ â
IJβ

â) (34)

ṼIJ = −i 1
2 R[ILJ] =

3

∑̂
a=1

(`â
IJα

â + ˜̀ â
IJβ

â) . (35)

The matrices αâ and βâ are given in Appendix A.
Note that by construction `â

I J = −`â
J I and similarly for ˜̀, κ, and κ̃. For the CM, VM, and TM

adinkras in Equations (16)–(18), the only independent, non-vanishing ṼIJ coefficients are:

CM : `2
12 = `3

13 = `1
14 = `1

23 = −`3
24 = `2

34 = 1 (36a)

TM : ˜̀3
12 = ˜̀2

13 = ˜̀1
14 = − ˜̀1

23 = ˜̀2
24 = − ˜̀3

34 = 1 (36b)

VM : − ˜̀3
12 = ˜̀2

13 = − ˜̀1
14 = ˜̀1

23 = ˜̀2
24 = ˜̀3

34 = 1 (36c)

Once V and Ṽ are calculated for two adinkra representationsR andR′, their gadgets can be computed
as (these are the conventions of [12,19], which we use throughout this paper):

GB[(R), (R′)] = 1
48 ∑

IJ
Tr
(

V(R)
IJ V(R′)

IJ

)
= 1

12 ∑̂
aIJ
[κ

(R)â
IJ κ

(R′)â
IJ + κ̃

(R)â
IJ κ̃

(R′)â
IJ ] (37)

G[(R), (R′)] = 1
48 ∑

IJ
Tr
(

Ṽ(R)
IJ Ṽ(R′)

IJ

)
= 1

12 ∑̂
aIJ
[`
(R)â
IJ `

(R′)â
IJ + ˜̀(R)â

IJ
˜̀(R′)â

IJ ] (38)

For the chiral, tensor, and vector multiplets, we have the gadgets [12,16,18,19]:

G[(CM), (CM)] =G[(VM), (VM)] = G[(TM), (TM)] = 1 ,

G[(CM), (VM)] =G[(CM), (TM)] = 0, G[(VM), (TM)] = − 1
3 . (39)

Gadgets are thought of as inner products in a κ, κ̃, `, and ˜̀ space that is normalized to one for identical V
and Ṽ’s. We conclude that the chiral, vector, and tensor multiplets are all in separate Ṽ-equivalence classes.

Generalizing, we define two adinkras to be V-equivalent or Ṽ-equivalent if they have identical
V’s or Ṽ’s, respectively. The set of all adinkras that are Ṽ-equivalent (V-equivalent) comprise a
Ṽ-equivalence class (V-equivalence class). We separate V-equivalence classes into κ- and κ̃-equivalence
classes and separate Ṽ-equivalence classes into ` and ˜̀-equivalence classes. Two adinkras are
κ-equivalent if and only if their κ coefficients are identical and their κ̃ coefficients vanish. Similarly,
we define two adinkras to be κ̃-equivalent if and only if their κ̃ coefficients are identical, and their
κ coefficients vanish. Two adinkras are `-equivalent if and only if their ` coefficients are identical
and their ˜̀ coefficients vanish. Similarly, we define two adinkras to be ˜̀-equivalent if and only if their
˜̀ coefficients are identical and their ` coefficients vanish.

In this paper, we focus on the gadget G, hitherto referred to as simply the gadget, and so focus
on `- and ˜̀-equivalence classes. It has been known for some time [13,17] that any adinkra has either
vanishing ` or vanishing ˜̀ coefficients. Therefore, the adinkras that belong to the `- and ˜̀-equivalence
classes constitute all possible adinkras. The main result of this paper is to explain the results of [19],
where all gadgets between all adinkras were presented, in terms of their `- and ˜̀-equivalence classes.
Note that gadgets between different `-equivalence classes are always less than one: they will either be
+1/3, 0, or −1/3. If a gadget between two adinkras is one, then they necessarily belong to the same `-
or ˜̀-equivalence class.
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3. Quaternion Adinkras

We denote the group of signed permutations of three elements as BC3. Any element of BC3 can
be expressed as a sign flip element Ha times a permutation element Sµ

3 . The indices take the values
a, b, c, · · · = 1, . . . 8 and µ, ν, · · · = 1, . . . , 6.

Ha ={(), (12), (13), (23), (1), (2), (3), (123)} (40)

Sµ
3 ={(), (12), (13), (23), (123), (132)} (41)

A line over a number indicates a sign flip for that element. The explicit matrix forms for these elements
are given in Appendix B. Hitherto, we shall refer to permutation elements as flops and sign flips as
simply flips.

A general element of BC3 is given by:

BCaµ
3 =HaSµ

3 (42)

The Vierergruppe VA, also known as the Klein four-group, is a subgroup of the permutation group of
four elements S4:

VA = {(), (12)(34), (13)(24), (14)(23)} (43)

where A, B, · · · = 1, 2, 3, 4. A general element of BC4, the group of signed permutations of four elements,
can be expressed as plus or minus one times an BC3 element times an element of the Vierergruppe.

BC±aµA
4 =± HaSµ

3V
A (44)

Left cosets of the Vierergruppe via S3 generate all elements of S4 as follows [13,52]:

V = {(), (12)(34), (13)(24), (14)(23)}
(12)V = {(12), (34), (1324), (1423)}
(13)V = {(13), (1234), (24), (1432)}
(23)V = {(23), (1342), (1243), (14)}
(123)V = {(123), (134), (243), (142)}
(132)V = {(132), (234), (124), (143)} .

(45)

Consider the adinkras in Figure 5, dubbed the quaternion adinkras Q and Q̃:

1

1 2 3 4

2 3 4 1

1 2 3 4

2 3 4

Figure 5. The quaternion adinkras Q (left) and Q̃ (right).
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These have the matrix representations:

L(Q)
1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , L(Q)

2 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 ,

L(Q)
3 =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 , L(Q)

4 =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 ,

(46)

L̃(Q̃)
1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , L̃(Q̃)

2 =




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


 ,

L̃(Q̃)
3 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 , L̃(Q̃)

4 =




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 .

(47)

Notice that Q̃ is the same as the trans adinkra in Figure 1.
We can express any adinkra matrices as elements of BC4. For the quaternion adinkras, we have:

L(Q)
I ={(), (13)(12)(34),−(23)(13)(24), (12)(14)(23)}

={I,−iα2,−iα3,−iα1} = {I, i, j, k}
(48)

L̃(Q̃)
I ={(), (23)(12)(34), (12)(13)(24), (13)(14)(23)}

={I, iβ3,−iβ2,−iβ1} = {I, ĩ, j̃, k̃}
(49)

with I = 1, 2, 3, 4. The matrices α and β are given in Appendix A, and I is the 4× 4 identity matrix.

Forgetting the bosonic and fermionic nature of the rows and columns of L(Q)
I and L̃(Q̃)

I , they satisfy the
quaternion multiplication rules (Technically, two L-matrices can not be multiplied together. Here, it is
meant that L2

I = −LIRI; no I sum and for I = 2, 3, or 4.):

L2
2 =L2

3 = L2
4 = L2L3L4 = −I (50)

L̃2
2 =L̃2

3 = L̃2
4 = L̃2L̃3L̃4 = −I . (51)

They are also mutually commuting:

[L(Q)
I , L̃(Q̃)

J ] = 0 for I = 2, 3, 4

The quaternion adinkras Q and Q̃ belong to separate ` and ˜̀-equivalence classes:

Q : `1
23 = `1

41 = `2
21 = `2

34 = `3
31 = `3

42 = +1 , ˜̀ â
IJ = 0 (52)

Q̃ : ˜̀1
23 = ˜̀1

41 = ˜̀2
31 = ˜̀2

42 = ˜̀3
12 = ˜̀3

43 = +1 , `â
IJ = 0 (53)

These values of ` and ˜̀ can be succinctly written as β matrices:

Q : i`1
IJ = β1

IJ , i`2
IJ = β3

IJ , i`3
IJ = β2

IJ , ˜̀ â
IJ = 0 (54)

Q̃ : i ˜̀1
IJ = β1

IJ , i ˜̀2
IJ = β2

IJ , i ˜̀3
IJ = −β3

IJ , `â
IJ = 0. (55)
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The gadget between the quaternion adinkras is therefore zero: G[(Q), (Q̃)] = 0. Both quaternion
adinkras belong to the χ0-equivalence class χ0 = −1.

4. The 96 Ṽ-Equivalence Classes of Adinkras

We define BC4 color transformations as BC4 elements acting on the color indices I, J, . . . of the
adinkras, BC4 boson transformations as BC4 elements acting on the bosonic indices i, j, . . . of the
adinkras, and BC4 fermion transformations as BC4 elements acting on the fermionic indices î, ĵ, . . . of
the adinkras.

BC4 color: (BC±aµA
4 ) J

I =±
(

HaSµ
3V

A
) J

I
(56)

BC4 boson: (BC±aµA
4 )

j
i =±

(
HaSµ

3V
A
) j

i
(57)

BC4 fermion: (BC±aµA
4 )

ĵ
î
=±

(
HaSµ

3V
A
) ĵ

î
(58)

The BC4 boson (fermion) transformations act on the adinkra matrices as the X (Y) matrices in
Equation (33). To generate adinkras starting from the quaternion adinkras, any combination of these
transformation laws can be used. As the gadget is invariant with respect to BC4 boson transformations,
we will use these transformation laws and exclude the fermion transformation laws so that the boson
transformations will take us around the orbit of the equivalence classes. We will also have to use
BC3 color transformations to be able to generate all adinkras as the BC4 boson does not have enough
elements to do so alone.

4.1. Examples

We now show how the representations discussed thus far can be generated from the quaternion
adinkras. Consider the following set of calculations that generate the CM:

(BC+362
4 )

j
i (−L(Q)

1 )
ĵ

j = [(13)(234)] j
i [−()]

ĵ
j

=




−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1







1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0







−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




=




1 0 0 0
0 0 0 −1
0 1 0 0
0 0 −1 0


 = [(24)(234)] ĵ

i

= (L(CM)
1 )

ĵ
i

(59)

(BC+362
4 )

j
i (L(Q)

2 )
ĵ

j = [(13)(234)] j
i (L(Q)

2 )
ĵ

j

=




−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1







1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0







0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0




=




0 1 0 0
0 0 1 0
−1 0 0 0
0 0 0 −1


 = [(34)(132)] ĵ

i

= (L(CM)
2 )

ĵ
i

(60)
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(BC+362
4 )

j
i (L(Q)

3 )
ĵ

j = [(13)(234)] j
i (L(Q)

3 )
ĵ

j

=




−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1







1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0







0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0




=




0 0 1 0
0 −1 0 0
0 0 0 −1
1 0 0 0


 = [(23)(143)] ĵ

i

= (L(CM)
3 )

ĵ
i

(61)

(BC+362
4 )

j
i (L(Q)

4 )
ĵ

j = [(13)(234)] j
i (L(Q)

4 )
ĵ

j

=




−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1







1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0







0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0




=




0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


 = (124) ĵ

i

= (L(CM)
4 )

ĵ
i

(62)

Putting this all together, we find that CM is generated from Q via the (BC+362
4 )

j
i = [(13)(234)] j

i
boson flip and flop and the (BC51

3 ) J
I = (1) J

I color flip:

(L(CM)
I )

ĵ
i =(BC+362

4 )
j

i (BC51
3 ) J

I (L
(Q)
J )

ĵ
j . (63)

A more succinct derivation of Equation (63) is shown below in permutation notation, where
colored text/numbers encode the corresponding free color index. For instance, a row of green in a
matrix indicates that that row multiplying a column vector yields the I = 1 element, violet I = 2,
orange I = 3, and red I = 4.
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(BC+362
4 ) k

i (BC51
3 ) J

I (L
(Q)
J )

ĵ
k = [(13)(234)] k

i (1)
J

I (L(Q)
J )

ĵ
k

= [(13)(234)] k
i




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







()
ĵ

k

[(13)(12)(34)] ĵ
k

−[(23)(13)(24)] ĵ
k

[(12)(14)(23)] ĵ
k




= [(13)(234)] k
i




−() ĵ
k

[(13)(12)(34)] ĵ
k

−[(23)(13)(24)] ĵ
k

[(12)(14)(23)] ĵ
k




=




−[(13)(234)] ĵ
i

[(13)(234)(13)(12)(34)] ĵ
i

−[(13)(234)(23)(13)(24)] ĵ
i

[(13)(234)(12)(14)(23)] ĵ
i




=




[(24)(234)] ĵ
i

[(34)(132)] ĵ
i

[(23)(143)] ĵ
i

(124) ĵ
i




= (L(CM)
I )

ĵ
i .

(64)

Similarly, we can calculate how other representations are generated from Q or Q̃:

(L(TM)
I )

ĵ
i = (BC+553

4 )
j

i (BC21
3 ) J

I (L̃
(Q̃)
J )

ĵ
j , (65a)

(L(VM)
I )

ĵ
i = (BC−342

4 )
j

i (BC41
3 ) J

I (L̃
(Q̃)
J )

ĵ
j , (65b)

(L(cis)
I )

ĵ
i = (BC+111

4 )
j

i (BC71
3 ) J

I (L̃
(Q̃)
J )

ĵ
j , (65c)

(L(trans)
I )

ĵ
i = (BC+111

4 )
j

i (BC11
3 ) J

I (L̃
(Q̃)
J )

ĵ
j . (65d)

Notice that the representations in Equations (63) and (65) all utilize color flips, but not flops. For an

example of color flips and flops and boson flips and flops, we define the representation (L̃−73426
I )

ĵ
i that

is generated as:

(L̃−73426
I )

ĵ
i ≡(BC−734

4 )
j

i (BC26
3 ) J

I (L̃
(Q̃)
J )

ĵ
j . (66)
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The details of this calculation are shown below:

(BC−734
4 ) k

i (BC26
3 ) J

I (L̃
(Q̃)
J )

ĵ
k = −[(3)(1432)] k

i [(12)(132)] J
I (L̃

(Q̃)
J )

ĵ
k

= −[(3)(1432)] k
i




0 −1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1







()
ĵ

k

[(23)(12)(34)] ĵ
k

[(12)(13)(24)] ĵ
k

[(13)(14)(23)] ĵ
k




= −[(3)(1432)] k
i




−[(23)(12)(34)] ĵ
k

−[(12)(13)(24)] ĵ
k

()
ĵ

k

[(13)(14)(23)] ĵ
k




=




[(3)(1432)(23)(12)(34)] ĵ
k

[(3)(1432)(12)(13)(24)] ĵ
k

−[(3)(1432)] ĵ
k

−[(3)(1432)(13)(14)(23)] ĵ
k




=




[(123)(24)] ĵ
i

[(134)(1234)] ĵ
i

[(124)(1432)] ĵ
i

[(1)(13)] ĵ
i




= (L̃−73426
I )

ĵ
i .

(67)

The explicit matrices for this representation are

L̃−73426
1 =




−1 0 0 0
0 0 0 −1
0 0 −1 0
0 1 0 0


 , L̃−73426

2 =




0 0 0 −1
1 0 0 0
0 −1 0 0
0 0 −1 0


 ,

L̃−73426
3 =




0 −1 0 0
0 0 −1 0
0 0 0 1
−1 0 0 0


 , L̃−73426

4 =




0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1


 .

(68)

The adinkra for L̃−73426
I is as in Figure 6.

1

1 2 3 4

2 3 4

Figure 6. A valise adinkra for the representation L̃−73426
I .

Now that we have seen how BC4 boson× BC3 color can generate different adinkra representations

from the quaternion adinkras, we will next discuss which transformations leave L(Q)
I and L̃(Q̃)

I invariant.
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Said another way, we will discuss the isometries of L(Q)
I and L̃(Q̃)

I . One isometry is demonstrated in
the following example.

(BC−312
4 ) k

i (BC−312
4 ) J

I (L
(Q)
J )

ĵ
k = [(24)(12)(34)] k

i [(24)(12)(34)] J
I (L(Q)

J )
ĵ

k

= [(24)(12)(34)] k
i




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0







()
ĵ

k

[(13)(12)(34)] ĵ
k

−[(23)(13)(24)] ĵ
k

[(12)(14)(23)] ĵ
k




= [(24)(12)(34)] k
i




[(13)(12)(34)] ĵ
k

−() ĵ
k

[(12)(14)(23)] ĵ
k

[(23)(13)(24)] ĵ
k




=




[(24)(12)(34)(13)(12)(34)] ĵ
i

−[(24)(12)(34)] ĵ
i

[(24)(12)(34)(12)(14)(23)] ĵ
i

[(24)(12)(34)(23)(13)(24)] ĵ
i




=




()
ĵ

k

[(13)(12)(34)] ĵ
k

−[(23)(13)(24)] ĵ
k

[(12)(14)(23)] ĵ
k




= (L(Q)
I )

ĵ
i .

(69)

There is a two-fold degenerate list of eight such isometry transformations for each quaternion
adinkra. The isometries of Q are:

(BC+312
4 )

j
i (BC+312

4 ) J
I = (BC−312

4 )
j

i (BC−312
4 ) J

I

= ((13)(12)(34))i
j((13)(12)(34))I

J = ((24)(12)(34))i
j((24)(12)(34))I

J (70a)

(BC+413
4 )

j
i (BC+413

4 ) J
I = (BC−413

4 )
j

i (BC−413
4 ) J

I

= ((23)(13)(24))i
j((23)(13)(24))I

J = ((14)(13)(24))i
j((14)(13)(24))I

J (70b)

(BC+214
4 )

j
i (BC+214

4 ) J
I = (BC−214

4 )
j

i (BC−214
4 ) J

I

= ((12)(14)(23))i
j((12)(14)(23))I

J = ((34)(14)(23))i
j((34)(14)(23))I

J (70c)

(BC+111
4 )

j
i (BC+111

4 ) J
I = (BC−111

4 )
j

i (BC−111
4 ) J

I

= ()i
j()I

J = (1234)i
j(1234)I

J . (70d)
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The isometries of Q̃ are:

(BC+412
4 )

j
i (BC+312

4 ) J
I = (BC−412

4 )
j

i (BC−312
4 ) J

I

= ((23)(12)(34))i
j((13)(12)(34))I

J = ((14)(12)(34))i
j((24)(12)(34))I

J (71a)

(BC+213
4 )

j
i (BC−413

4 ) J
I = (BC−213

4 )
j

i (BC+413
4 ) J

I

= ((12)(13)(24))i
j((14)(13)(24))I

J = ((34)(13)(24))i
j((23)(13)(24))I

J (71b)

(BC+314
4 )

j
i (BC+214

4 ) J
I = (BC−314

4 )
j

i (BC−214
4 ) J

I

= ((13)(14)(23))i
j((12)(14)(23))I

J = ((24)(14)(23))i
j((34)(14)(23))I

J (71c)

(BC+111
4 )

j
i (BC+111

4 ) J
I = (BC−111

4 )
j

i (BC−111
4 ) J

I

= ()i
j()I

J = (1234)i
j(1234)I

J . (71d)

Notice the two-fold degeneracy in BC4 boson× BC4 color that stems from the fact that for instance
(13) = −(24). Furthermore, the isometry transformations for both Q and Q̃ are all signed elements of
the Vierergruppe. This has consequences for the equivalence classes as explained in the next section.

4.2. Flipping and Flopping via BC4 Boson × BC3 Color: The Group Theory Reason for 36,864 Adinkras

As ṼIJ has only color indices and fermionic indices, explicitly (ṼIJ)î
ĵ, it is invariant with respect to

BC4 boson transformations. Owing to its color indices I, J, (ṼIJ)î
ĵ is not invariant with respect to all BC4

color transformations, but it will be invariant with respect to some BC4 color transformations. For a
given adinkra, (ṼIJ)î

ĵ will have an eight-fold set of BC4 color isometries stemming from the isometries
of the quaternion adinkras, Equations (70) and (71). Recall from the previous section that the isometry
transformations for Q and Q̃ were all elements of the signed Vierergruppe. Since the 48-element group
BC3 is BC4 with ±Vierergruppe removed, Equations (42) and (44), there is a total of 96 Ṽ-equivalence
classes: 48 BC3 color transformations of Q and 48 BC3 color transformations of Q̃. The 384 BC4 boson
transformations then fill each Ṽ-equivalence classes with its distinct adinkras. This explains the total
number of distinct adinkras as BC4 boson × BC3 color × 2 quaternions: 36,864 = 384× 48× 2.

4.2.1. Flipping and Flopping between Different Ṽ-Equivalence Classes via BC3 Color

Color flipping and flopping Q and Q̃ via BC3 color leaves us with the following set of 96 adinkras:

(Lbν
I )i

ĵ = (BCbν
3 )I

J(L(Q)
J )i

ĵ (72a)

(L̃bν
I )i

ĵ = (BCbν
3 )I

J(L̃(Q̃)
J )i

ĵ (72b)

Each is a member of a distinct `- or ˜̀-equivalence class as summarized in Tables 1–4. Each table
below describes 24 `- or ˜̀-equivalence classes of the same χ0-equivalence class. We define the 24
classes in each `-equivalence class table to comprise an isomer-equivalence class (either a trans- or
cis-equivalence class), and we define the 24 classes in each ˜̀-equivalence class table to comprise an
isometry-tilde-equivalence class (either a trans-tilde- or cis-tilde-equivalence class). We label these isomer-
and isomer-tilde-equivalence classes as A, B, Ã, and B̃ for l ∼ α, l ∼ β, l̃ ∼ α, or l̃ ∼ β, respectively.
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Table 1. The 24 `-equivalence classes that constitute the cis-equivalence class A with χ0 = +1. Shown
are the values of ` that constitute ṼI J for Lbν

I .

Class bν (BCbν
3 )I

J i`1
I J , i`2

I J , i`3
I J

A1 51 (1̄) −α1,−α2,−α3

A2 61 (2̄) α1,−α2, α3

A3 71 (3̄) α1, α2,−α3

A4 81 (123) −α1, α2, α3

A5 55 (1̄)(123) −α3, α1, α2

A6 65 (2̄)(123) α3,−α1, α2

A7 75 (3̄)(123) −α3,−α1,−α2

A8 85 (123)(123) α3, α1,−α2

A9 56 (1̄)(132) α2, α3,−α1

A10 66 (2̄)(132) α2,−α3, α1

A11 76 (3̄)(132) −α2, α3, α1

A12 86 (123)(132) −α2,−α3,−α1

A13 12 (12) −α3,−α2, α1

A14 22 (12)(12) α3,−α2,−α1

A15 32 (13)(12) −α3, α2,−α1

A16 42 (23)(12) α3, α2, α1

A17 13 (13) α2,−α1,−α3

A18 23 (12)(13) α2, α1, α3

A19 33 (13)(13) −α2, α1,−α3

A20 43 (23)(13) −α2,−α1, α3

A21 14 (23) α1, α3, α2

A22 24 (12)(23) −α1,−α3, α2

A23 34 (13)(23) −α1, α3,−α2

A24 44 (23)(23) α1,−α3,−α2

Table 2. The 24 `-equivalence classes that constitute the trans-equivalence class B with χ0 = −1.
Shown are the values of ` that constitute ṼI J for Lbν

I .

Class bν (BCbν
3 )I

J i`1
I J , i`2

I J , i`3
I J

B1 11 () β1, β3, β2

B2 21 (12) −β1, β3,−β2

B3 31 (13) −β1,−β3, β2

B4 41 (23) β1,−β3,−β2

B5 15 (123) β2,−β1,−β3

B6 25 (12)(123) −β2, β1,−β3

B7 35 (13)(123) β2, β1, β3

B8 45 (23)(123) −β2,−β1, β3
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Table 2. Cont.

Class bν (BCbν
3 )I

J i`1
I J , i`2

I J , i`3
I J

B9 16 (132) −β3,−β2, β1

B10 26 (12)(132) −β3, β2,−β1

B11 36 (13)(132) β3,−β2,−β1

B12 46 (23)(132) β3, β2, β1

B13 52 (1̄)(12) β2, β3,−β1

B14 62 (2̄)(12) −β2, β3, β1

B15 72 (3̄)(12) β2,−β3, β1

B16 82 (123)(12) −β2,−β3,−β1

B17 53 (1̄)(13) −β3, β1, β2

B18 63 (2̄)(13) −β3,−β1,−β2

B19 73 (3̄)(13) β3,−β1, β2

B20 83 (123)(13) β3, β1,−β2

B21 54 (1̄)(23) −β1,−β2,−β3

B22 64 (2̄)(23) β1, β2,−β3

B23 74 (3̄)(23) β1,−β2, β3

B24 84 (123)(23) −β1, β2, β3

Table 3. The 24 ˜̀-equivalence classes that constitute the cis-tilde-equivalence class Ã with χ0 = +1.
Shown are the values of ˜̀ that constitute ṼI J for L̃bν

I .

Class bν (BCbν
3 )I

J i ˜̀1
I J , i ˜̀2

I J , i ˜̀3
I J

Ã1 51 (1̄) −α1,−α3, α2

Ã2 61 (2̄) α1, α3, α2

Ã3 71 (3̄) α1,−α3,−α2

Ã4 81 (123) −α1, α3,−α2

Ã5 55 (1̄)(123) −α3, α2,−α1

Ã6 65 (2̄)(123) α3, α2, α1

Ã7 75 (3̄)(123) −α3,−α2, α1

Ã8 85 (123)(123) α3,−α2,−α1

Ã9 56 (1̄)(132) α2,−α1,−α3

Ã10 66 (2̄)(132) α2, α1, α3

Ã11 76 (3̄)(132) −α2, α1,−α3

Ã12 86 (123)(132) −α2,−α1, α3

Ã13 12 (12) −α3, α1, α2

Ã14 22 (12)(12) α3,−α1, α2

Ã15 32 (13)(12) −α3,−α1,−α2

Ã16 42 (23)(12) α3, α1,−α2
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Table 3. Cont.

Class bν (BCbν
3 )I

J i ˜̀1
I J , i ˜̀2

I J , i ˜̀3
I J

Ã17 13 (13) α2,−α3, α1

Ã18 23 (12)(13) α2, α3,−α1

Ã19 33 (13)(13) −α2,−α3,−α1

Ã20 43 (23)(13) −α2, α3, α1

Ã21 14 (23) α1, α2,−α3

Ã22 24 (12)(23) −α1, α2, α3

Ã23 34 (13)(23) −α1,−α2,−α3

Ã24 44 (23)(23) α1,−α2, α3

Table 4. The 24 ˜̀-equivalence classes that constitute the trans-tilde-equivalence class B̃ with χ0 = −1.
Shown are the values of ˜̀ that constitute ṼI J for L̃bν

I .

Class bν (BCbν
3 )I

J i ˜̀1
I J , i ˜̀2

I J , i ˜̀3
I J

B̃1 11 () β1, β2,−β3

B̃2 21 (12) −β1,−β2,−β3

B̃3 31 (13) −β1, β2, β3

B̃4 41 (23) β1,−β2, β3

B̃5 15 (123) β2,−β3, β1

B̃6 25 (12)(123) −β2,−β3,−β1

B̃7 35 (13)(123) β2, β3,−β1

B̃8 45 (23)(123) −β2, β3, β1

B̃9 16 (132) −β3, β1, β2

B̃10 26 (12)(132) −β3,−β1,−β2

B̃11 36 (13)(132) β3,−β1, β2

B̃12 46 (23)(132) β3, β1,−β2

B̃13 52 (1̄)(12) β2,−β1,−β3

B̃14 62 (2̄)(12) −β2, β1,−β3

B̃15 72 (3̄)(12) β2, β1, β3

B̃16 82 (123)(12) −β2,−β1, β3

B̃17 53 (1̄)(13) −β3, β2,−β1

B̃18 63 (2̄)(13) −β3,−β2, β1

B̃19 73 (3̄)(13) β3, β2, β1

B̃20 83 (123)(13) β3,−β2,−β1

B̃21 54 (1̄)(23) −β1,−β3, β2

B̃22 64 (2̄)(23) β1,−β3,−β2

B̃23 74 (3̄)(23) β1, β3, β2

B̃24 84 (123)(23) −β1, β3,−β2

We define the color-parity of a given equivalence class as being odd (even) if there is an odd (even)
number of total flips plus flops as listed in the (BCbν

3 )I
J column of Tables 1–4. Compare for instance
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the equivalence classes B̃6 and B̃16 in Table 4. The equivalence class B̃6 has odd color-parity: two
flips encoded by (12) and three flops encoded by (123) for a total of five flips plus flops. In contrast,
the equivalence class B̃16 has even color-parity: three flips encode by (123) and one flop encoded by
(12) for a total of four flips plus flops. Notice that the equivalence classes in each of the Tables 1–4
are numbered such that Classes 1–12 have odd color-parity and Classes 13–24 have even color-parity.
We also point out that the `â

IJ and ˜̀ â
IJ for each equivalence class satisfy:

`â
IJ =

1
2 χ0εIJ

KL`â
KL , ˜̀ â

IJ =
1
2 χ0εIJ

KL ˜̀ â
KL . (73)

This is due to the fact that classes A and Ã with χ0 = +1 have l ∼ α and l̃ ∼ α, classes B and B̃ with
χ0 = −1 have l ∼ β and l̃ ∼ β, and the fact that the α and β matrices satisfy:

αâ
IJ = + 1

2 εIJ
KLαâ

KL , βâ
IJ = − 1

2 εIJ
KLβâ

KL . (74)

The above property of the α and β matrices can be seen from inspection of their explicit forms in
Appendix A.

On the 96 adinkras (Lbν
I )i

ĵ and (L̃bν
I )i

ĵ defined in Equations (72), we perform BC4 boson
transformations generating 384 distinct adinkras within each `- and ˜̀-equivalence class:

(L±aµAbν
I )i

ĵ =(BC±aµA
4 )i

j(Lbν
I )j

ĵ , (L̃±aµAbν
I )i

ĵ = (BC±aµA
4 )i

j(L̃bν
I )j

ĵ . (75)

Equation (75) therefore encodes all 36,864 = 384× 96 adinkras. The counting is summarized below:

index ± a µ A b ν ∼ product

count 2 8 6 4 8 6 2 36,864

The representations we have used as examples throughout this paper, including their `- or
˜̀-equivalence classes, are:

L(Q)
I = L+11111

I ∈ B1 , (76a)

L̃(Q̃)
I = L(trans)

I = L̃+11111
I ∈ B̃1 , (76b)

L(cis)
I = L̃+11171

I ∈ Ã3 , (76c)

L(CM)
I = L+36251

I ∈ A1 , (76d)

L(TM)
I = L̃+55321

I ∈ B̃2 , (76e)

L(VM)
I = L̃−34241

I ∈ B̃4 . (76f)

4.2.2. The One Billion, Three Hundred Fifty Eight Million, Nine Hundred Fifty Four Thousand, Four
Hundred Ninety Six Gadgets, Revisited

As first computed in [19], there are 1,358,954,496 = 36,864× 36,864 possible gadget values amongst
the 36,864 adinkras. The majority of these vanish, and both the non-vanishing and vanishing gadgets
can now be easily understood in terms of BC4 boson × BC3 color. For instance, the 384 adinkras that
constitute each `- or ˜̀-equivalence class have gadgets with others within their equivalence classes
equal to one. Gadgets between different isomer- or isomer-tilde equivalence classes all vanish.

G[(Bn), (Am)] =G[(Bn), (B̃m)] = G[(Bn), (Ãm)] = 0 (77a)

G[(An), (Ãm)] =G[(An), (B̃m)] = G[(B̃n), (Ãm)] = 0 (77b)
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The only non-vanishing gadgets are those within the same isomer or isomer-tilde equivalence
class, and each takes the same matrix form where for instance the rows go over Am and the columns
go over An:

3G[(Am), (An)] =




3 − − − 0 0 0 0 0 0 0 0 + + − − + − + − − + + −

− 3 − − 0 0 0 0 0 0 0 0 + + − − − + − + + − − +

− − 3 − 0 0 0 0 0 0 0 0 − − + + + − + − + − − +

− − − 3 0 0 0 0 0 0 0 0 − − + + − + − + − + + −

0 0 0 0 3 − − − 0 0 0 0 + − + − − + + − + + − −

0 0 0 0 − 3 − − 0 0 0 0 − + − + + − − + + + − −

0 0 0 0 − − 3 − 0 0 0 0 + − + − + − − + − − + +

0 0 0 0 − − − 3 0 0 0 0 − + − + − + + − − − + +

0 0 0 0 0 0 0 0 3 − − − − + + − + + − − + − + −

0 0 0 0 0 0 0 0 − 3 − − + − − + + + − − − + − +

0 0 0 0 0 0 0 0 − − 3 − + − − + − − + + + − + −

0 0 0 0 0 0 0 0 − − − 3 − + + − − − + + − + − +

+ + − − + − + − − + + − 3 − − − 0 0 0 0 0 0 0 0

+ + − − − + − + + − − + − 3 − − 0 0 0 0 0 0 0 0

− − + + + − + − + − − + − − 3 − 0 0 0 0 0 0 0 0

− − + + − + − + − + + − − − − 3 0 0 0 0 0 0 0 0

+ − + − − + + − + + − − 0 0 0 0 3 − − − 0 0 0 0

− + − + + − − + + + − − 0 0 0 0 − 3 − − 0 0 0 0

+ − + − + − − + − − + + 0 0 0 0 − − 3 − 0 0 0 0

− + − + − + + − − − + + 0 0 0 0 − − − 3 0 0 0 0

− + + − + + − − + − + − 0 0 0 0 0 0 0 0 3 − − −

+ − − + + + − − − + − + 0 0 0 0 0 0 0 0 − 3 − −

+ − − + − − + + + − + − 0 0 0 0 0 0 0 0 − − 3 −

− + + − − − + + − + − + 0 0 0 0 0 0 0 0 − − − 3




G[(Am), (An)] =G[(Bm), (Bn)] = G[(Ãm), (Ãn)] = G[(B̃m), (B̃n)] (78)

The matrix above therefore encodes the possible gadget values within each isomer- and
isomer-tilde-equivalence class and shows some interesting color-parity features within each of these
classes. Recall from Tables 1–4 that Class Numbers 1–12 (13–24) have odd (even) color-parity. Keeping
this in mind while inspecting the block off-diagonal elements of the gadget matrix above, we notice
that even and odd color-parity classes are never orthogonal: they always have an inner product equal
to either plus or minus one-third. In fact, the plus one-third gadget only arises between classes of
different color-parity. Inspecting instead the block diagonal elements, where the classes have the same
color-parity, notice that different even (odd) flops are always orthogonal and different flips paired with
the same flop always have an inner product of minus one-third.

In [19], the 1,358,954,496 = 36,864 × 36,864 gadgets between all possible pairings of the 36,864
adinkras were exhaustively calculated. The counting of each is shown in Table 5. Notice that these
counts add up to the total number of gadgets: 1,358,954,496. Also shown in Table 5 is the number of
times each value appears in each of the matrices in Equations (77) and (78).

Table 5. The total count of each gadget value amongst all 1,358,954,496 gadgets and the number of
times each value occurs in each matrix described by Equations (77) and (78).

G[(R), (R′)] Count # Entries in Each Matrix (77) # Entries in Each Matrix (78)

0 1,132,462,080 576 192

−1/3 127,401,984 0 216

+1/3 84,934,656 0 144

1 14,155,776 0 24
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Noting that there are 12 = 2× 6 matrices described by Equation (77) (twice the number due to the
symmetry of the gadget), four matrices described by Equation (78), and that each matrix entry has a
degeneracy of 147,456 = 384× 384 (owing to there being 384 adinkras within each `- and ˜̀-equivalence
class), we see that the count of each gadget value in Equations (77) and (78) matches that of [19]:

count = (# OF entries in each matrix (77)× 12 matrices

+# OF entries in each matrix (78) × 4 matrices)× entry degeneracy (79a)

G[(R), (R′)] = 0 : 1, 132, 462, 080 = (576× 12 + 192× 4)× 147, 456 (79b)

G[(R), (R′)] = −1/3 : 127, 401, 984 = (0× 12 + 216× 4)× 147, 456 (79c)

G[(R), (R′)] = +1/3 : 84, 934, 656 = (0× 12 + 144× 4)× 147, 456 (79d)

G[(R), (R′)] = 1 : 14, 155, 776 = (0× 12 + 24× 4)× 147, 456 (79e)

5. Moving Toward 1D, N = 4 Minimal Valises AND BC4 Sigma-Models

The previous sections have been devoted to constructing a streamlined mathematical approach to
sorting among the 36,864 adinkras that possess four colors, four closed nodes, and four open nodes.
This is a problem in representation theory. At this point of our discussion, we will build on the previous
sections’ foundation to engage the application of this foundation to the construction of 1D, N = 4
non-linear sigma-models over the BC4 Coxeter group.

5.1. Review of the Discovery of Twisted Reps in Sigma-Models

For 4D, N = 1 σ-models [53], there are two ingredients, chiral superfields ΦI and a Kähler
potential K(ΦI , Φ̄I), which come together to define a dynamical system via the supersymmetrical
action formula:

S(4D)
σ =

∫
d4x d2θ d2θ̄ K(ΦI , Φ̄I) . (80)

This defines the most general possible 4D, N = 1 σ-model. For each choice of K(ΦI , Φ̄I) and choice
of the range of the superscript I on ΦI , there is a model that is well defined. It is also the case that
no other 4D, N = 1 σ-models exist. Therefore, there is a type of completeness description implicit
in the fact that there is only one 4D, N = 1 minimal superfield representation, which implies that a
specification of K completely describes the space of 4D, N = 1 σ-models. This situation is what we refer
to as “control of the model space.”

It is simple to reduce the action above to one where only two of the four spacetime manifold
coordinates are retained. One is led to write:

S(2D)
σ =

∫
d2x d2θ d2θ̄ K(ΦI , Φ̄I) , (81)

but control of the model space is lost. There is nothing wrong with the action above. However, what
changes is there exists another scalar supermultiplet in 2D, N = 2 superspace that does not exist in 4D,
N = 1 superspace.

As was first shown in the works of [54,55], a distinct 2D,N = 2 supersymmetric scalar multiplet,
the so-called “twisted chiral supermultiplet” (denoted by χ Î and where the range of the index I may be
different from that of the Î index) exists in the lower dimension. Thus, modifying the action to the form:

S(2D)
σ =

∫
d2x d2θ d2θ̄ K(ΦI , Φ̄I ; χ Î , χ̄ Î) , (82)

with the inclusion of the twisted chiral supermultiplet restores control of the model space for minimal
off-shell representations. It can be seen that a Kähler-like potential K still controls the geometry. In the
case of the four-dimensional N = 1 σ-model, this geometry describes a Riemannian Kähler manifold.
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In the case of the complete two-dimensional N = 2 σ-model, this geometry is a non-Riemannian
bi-Hermitian manifold with torsion.

The distinction between two-dimensional N = 2 σ-models constructed solely from chiral
supermultiplets or solely from twisted chiral supermultiplets in comparison to two-dimensionalN = 2
σ-models constructed from both chiral supermultiplets and twisted chiral supermultiplets arise from the
representation theory fact that the two types of supermultiplets are “usefully inequivalent” [56].

When two-dimensional N = 2 supermultiplets are reduced to one-dimensional N = 4
supermultiplets, the distinction between the chiral supermultiplet (CM) and twisted chiral supermultiplet
(TCM) can be seen in their gadget values [19]:

G [(CM) , (CM)] = G [(TCM) , (TCM)] = 1 ,

G [(CM) , (TCM)] = 0 .
(83)

As first discovered in [54,55] and later related to adinkras in [15,16,19], the 2D N = 2 twisted
chiral multiplet is the dimensionally-reduced 4D, N = 1 vector multiplet. We see in comparing
Equation (83) to Equation (39) that the gadget keeps track of this relationship between the twisted
chiral and vector supermultiplets.

The two-dimensional σ-model actions can also be reduced to one-dimensional σ-model actions,

S(1D)
σ =

∫
dτ d2θ d2θ̄ K(ΦI , Φ̄I ; χ Î , χ̄ Î) , (84)

and the works of [36–38] in principle capture all of these (as we only consider valise supermultiplets,
the chiral and twisted chiral superfields in (84) correspond to starting with their 4D progenitors where
both auxiliary fields have been replaced by three-forms). However, here, it is useful to recall the
experience of the reduction from 4D, N = 1 σ-models to 2D, N = 2 σ-models. The loss of control of the
model space came about because the actions and supermultiplets that appear in them are “blind” to
the appearance of ‘new’ supermultiplets that can result from the reduction process.

In order to demonstrate the loss once more, it is useful to show the reduction from 2D, N = 2
supersymmetry to first consider the intermediate step where we consider 2D,N = (4,0) supersymmetry.
This will allow the explicit demonstration of the emergence of new supermultiplets in the intermediate
step. Thus, any further reduction to 1D, N = (4,0) supersymmetry must inherit these supermultiplets
from 2D, N = (4,0) supersymmetry.

5.2. 2D, N = (4,0) Supersymmetry Considerations

We introduce the bosonic coordinates for the worldsheet τ and σ assembled into light cone
coordinates σ and σ such that:

dσ dσ = (dτ)2 − (dσ)2 . (85)

For (4,0) superspace, four Grassmann coordinates correspond to the + component of spinor helicity
with regard to the worldsheet Lorentz group. Therefore, we have:

ζ+ i =




ζ+ 1

ζ+ 2


 . (86)

As the Grassmann coordinates are complex, the “isospin” indices, denoted by i, j, . . . etc.) may be
regarded as describing an internal su(2) symmetry.
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Finally, we introduce the superspace “covariant derivatives”:

D+i =

(
∂

∂ζ+ i + i 1
2 ζ̄+ i∂

)
, D̄i

+ =

(
∂

∂ζ̄+ i
+ i 1

2 ζ+ i∂

)
, (87)

together with the light cone derivatives ∂ and ∂ to describe the tangent space to the supermanifold.
These definitions ensure the equations:

{D+i , D̄j
+ } = i δi

j ∂ . (88)

5.3. Reviewing the Known 2D, N = (4, 0) Minimal Scalar Valise Supermultiplets

Many years ago [57,58], it was demonstrated that there is a minimum of four distinct (4, 0)
valise supermultiplets each containing four bosons and four fermions. Thus, one can introduce a
“representation label” (R), which takes on four values denoted by SM-I, SM-II, SM-III, and SM-IV.
The field content of each is shown in Table 6. All fields with two such indices are traceless. The bosons
are A, B, φ, φi

j, Ai, and Bi, and of these, only φ and φi
j are real (or Hermitian).

Table 6. The field content of the 2D, N = (4,0) supermultiplets.

Multiplet Field Content
SM− I (A, B, ψ−i)

SM− II (φ, φi
j, λ− i)

SM− III (Ai, ρ−, π−)

SM− IV (Bi, ψ−, ψ−i
j)

Regarding the su(2) symmetry, the supercovariant derivatives, the bosonic fields, and the
fermionic fields are distributed among different irreducible representations, as shown in Table 7.

Table 7. The spin content of the 2D, N = (4,0) supermultiplets.

Quantity su(2)-Spin J value
A, B, φ, ρ−, π−, ψ− 0

D+i, D̄i
+, ψ−i, λ− i

1
2

φ−i
j, ψ−i

j 1

It is noteworthy that the first two of these supermultiplets (i.e., SM-I and SM-II) can be
interpreted as arising from a dimensional reduction process applied to the well-known 4D, N = 1
“chiral supermultiplet” and “vector supermultiplet”, respectively. With respect to the other two
supermultiplets, there are no discussions known to us that indicate they can arise solely as the
results of such dimensional reductions. The SM-III and SM-IV supermultiplets, however, are related
respectively to the SM-I and SM-II supermultiplets by a Klein transformation, where bosonic fields
and fermionic fields are exchanged one for the other.

These fields may be interpreted in two ways. In the first interpretation, all these are component
fields that are functions solely of light cone coordinates σ and σ . In the second interpretation,
these are each regarded as the lowest component of a corresponding superfield in the expansion over
the basis of the superspace Grassmann coordinates.

The “D-algebra” or “SUSY transformation law” for each supermultiplet is given in
Equations (89)–(92), which follow.
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SM-I Supermultiplet : (A, B, ψ−i)

D+iA = 2Cijψ
− j, D̄+

iA = 0,

D̄+
iB = i2ψ−i, D+iB = 0,

D̄+
iψ− j = i 1

2 Cij∂ A, D+iψ
− j = 1

2 δi
j ∂ B,

D̄+
iĀ = − 2Cijψ̄− j, D+iĀ = 0,

D+iB̄ = i2ψ̄−i, D̄+
iB̄ = 0,

D+iψ̄
−

j = − i 1
2 Cij ∂ Ā, D̄+

iψ̄− j = δi
j 1
2 ∂ B̄,

(89)

SM-II Supermultiplet : (φ, φj
k, λ− j)

D+i φ = iλ−i, D̄+
i φ = iλ̄−i,

D+i φj
k = 2δi

kλ− j − δj
kλ−i, D̄+

i φj
k = − 2δj

iλ̄−k + δj
kλ̄−i,

D+i λ̄− j = 1
2 δj

i∂ φ − i 1
2 ∂ φj

i, D+i λ− j = 0,

D̄+
i λ− j = 1

2 δj
i∂ φ + i 1

2 ∂ φj
i, D̄+

i λ̄− j = 0,

φ = φ∗, φi
j = (φj

i)∗, φi
i = 0,

(90)

SM-III Supermultiplet : (Ai, π−, ρ−)

D+iAj = Cijπ
−, D̄+

iAj = δj
iρ−,

D̄+
iĀj = − Cijπ̄−, D+iĀj = − δi

jρ̄−,

D+iρ
− = i ∂ Ai, D̄+

iρ− = 0,

D̄+
i ρ̄− = − i ∂ Āi, D+i ρ̄

− = 0,

D̄+
iπ− = iCij ∂ Aj, D+iπ

− = 0,

D+iπ̄
− = − iCij ∂ Āj, D̄+

iπ̄− = 0,

(91)

SM-IV Supermultiplet : (Bi, ψ−, ψ−i
j)

D̄+
iBj = δj

i ψ− + i2 ψ− j
i, D+iBj = 0,

D+iB̄ j = − δi
j ψ− + i2 ψ−i

j, D̄+
iB̄ j = 0,

D+iψ
− = i 1

2 ∂ Bi, D+iψ
−

j
k = 1

2 δi
k∂ Bj − 1

4 δj
k ∂ Bi,

D̄+
iψ̄− = − i 1

2 ∂ B̄i, D̄+
iψ− j

k = 1
2 δj

i ∂ B̄k − 1
4 δj

k ∂ B̄i,

ψ− = (ψ−)∗, ψ−i
j = (ψ− j

i)∗ , ψ−i
i = 0.

(92)

The fermionic holoraumy for each of these multiplets is given in Appendix C.

5.4. Uniformization via Real Formulations

In order to calculate the values of the first gadget, in the context of these (4, 0) supermultiplets
described previously, it is necessary to convert all their descriptions into a real basis where the
comparison process can be made in the simplest possible manner. In particular, the first step is to
obtain the “L-matrices” and “R-matrices” associated with each of the four representations: SM-I,
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SM-II, SM-III, and SM-IV. As was emphasized in the Appendix of the work in [59], “L-matrices”
and “R-matrices” can be identified in dimensions greater than one. In this particular example, the
“L-matrices” and “R-matrices” were shown for superspaces with three bosonic coordinates.

To begin, we note that for the operator D+i, we can write:

D+i =




D+1

D+2


 , D+1 =

(
D+ Â − i D+ B̂

)
, D+2 =

(
D+ Ĉ − i D+ D̂

)
, (93)

where the four “supercovariant derivatives” are defined with respect to the four real (Majorana) spinor
coordinates for the (4, 0) superspace ζ+ Â, ζ+ B̂, ζ+ Ĉ, and ζ+ D. It is important to note that the labels
Â, B̂, Ĉ, and D̂ are fixed values, not indices that take on different values.

Taking the complex conjugate of the results in (93), we find:

D̄+
i =




D̄+
1

D̄+
2


 , D̄+

1 =
(

D+ Â + i D+ B̂
)

, D̄+
2 =

(
D+ Ĉ + i D+ D̂

)
, (94)

which imply also the validity of the complex conjugate version of (88). Together, (93) and (94) imply:

D+ Â =
(

D+1 + D̄+
1
)

,

D+ B̂ = i
(

D+1 − D̄+
1
)

,

D+ Ĉ =
(

D+2 + D̄+
2
)

,

D+ D̂ = i
(

D+2 − D̄+
2
)

,

(95)

which in turn allows the definition of a real (4, 0) superspace covariant derivative through the equation:

D+I =




D+ Â

D+ B̂

D+ Ĉ

−D+ D̂




=




(
D+1 + D̄+

1)

i
(

D+1 − D̄+
1)

(
D+2 + D̄+

2)

−i
(

D+2 − D̄+
2)




, (96)

where subscript index I takes on the four fixed values Â, . . . D̂. This definition implies that the equation:

[D+I , D+J } = i 2 δI J ∂ , (97)

is satisfied.
Let us also highlight that in (96), there is a notational device introduced. The quartet Majorana

supercovariant derivative operator is denoted by D+I , whereas the complex SU(2)-doublet supercovariant
derivative operator is denoted by the pair (D+i, D̄+

i). Thus, Equation (96) solidifies the definition of the
Majorana supercovariant derivative operator. The next step is also do this for all fields.
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For the bosonic and fermionic fields in each supermultiplet, we define:

Φ(SM-I)
i = 1

2




(
B + B̄

)

+ i
(
A − Ā

)

− i
(
B − B̄

)

(
A + Ā

)




, Ψ(SM-I)
+ k̂

=




( ψ̄−1 + ψ−1 )

i ( ψ̄−1 − ψ−1 )

( ψ̄−2 + ψ−2 )

−i ( ψ̄−2 − ψ−2 )




, (98)

Φ(SM-II)
i =




φ1
1

1
2 [φ1

2 + (φ1
2)∗]

φ

i 1
2 [φ1

2 − (φ1
2)∗]




, Ψ(SM-II)
+ k̂

=




( λ−1 + λ̄−1 )

−i ( λ−1 − λ̄−1 )

( λ−2 + λ̄−2 )

i ( λ−2 − λ̄−2 )




, (99)

Φ(SM-III)
i =




(A1 + Ā1 )

i (A1 − Ā1 )

(A2 + Ā2 )

i (A2 − Ā2 )




, Ψ(SM-III)
+ k̂

= 1
2




(π− + π̄− )

i ( ρ− − ρ̄− )

i (π− − π̄− )

( ρ− + ρ̄− )




, (100)

Φ(SM-IV)
i = 1

2




(B1 + B̄1 )

i (B1 − B̄1 )

(B2 + B̄2 )

i (B2 − B̄2 )




, Ψ(SM-IV)

+ k̂
=




− 2ψ−1
1

[ψ−1
2 + (ψ−1

2)∗]

ψ−

i [ψ−1
2 − (ψ−1

2)∗]




. (101)

Therefore, when all of the bosons and fermions in Equations (89)–(92) are expressed in terms of
real quartets of functions as in (98)–(101) and the Majorana supercovariant derivative in (96) is used,
they universally possess SUSY transformation laws in the form:

D+I Φ
(R)
i = i

(
L(R)

I

)
i k̂ Ψ(R)

+ k̂
, D+I Ψ

(R)
+ k̂

=
(

R(R)
I

)
k̂ i ∂ Φ(R)

i . (102)

In the expression (102), Φ(R)
i denotes the ith boson associated with the (R)-th (4, 0) supermultiplet

and Ψ(R)
+ k̂

denotes the k̂-th fermion associated with the (R)-th supermultiplet, and the explicit forms of

the matrices LI
(R) and RI

(R) depend on the value of (R). For all representations, they satisfy:

R(R)
I = (L(R)

I )−1 = (L(R)
I )T . (103)
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L(SM-I)
1 =




1 0 0 0

0 0 0 −1

0 1 0 0

0 0 −1 0




, L(SM-I)
2 =




0 1 0 0

0 0 1 0

−1 0 0 0

0 0 0 −1




,

L(SM-I)
3 =




0 0 1 0

0 −1 0 0

0 0 0 −1

1 0 0 0




, L(SM-I)
4 =




0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0




.

(104)

L(SM-II)
1 =




0 1 0 0

0 0 0 −1

1 0 0 0

0 0 −1 0




, L(SM-II)
2 =




1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 −1




,

L(SM-II)
3 =




0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0




, L(SM-II)
4 =




0 0 1 0

−1 0 0 0

0 0 0 −1

0 1 0 0




.

(105)

L(SM-III)
1 =




0 −1 0 0

0 0 0 1

−1 0 0 0

0 0 −1 0




, L(SM-III)
2 =




0 0 0 −1

0 −1 0 0

0 0 −1 0

1 0 0 0




,

L(SM-III)
3 =




1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1




, L(SM-III)
4 =




0 0 −1 0

1 0 0 0

0 0 0 1

0 1 0 0




.

(106)
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L(SM-IV)
1 =




−1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1




, L(SM-IV)
2 =




0 0 −1 0

−1 0 0 0

0 0 0 1

0 1 0 0




,

L(SM-IV)
3 =




0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0




, L(SM-IV)
4 =




0 0 0 1

0 −1 0 0

0 0 1 0

−1 0 0 0




.

(107)

We have for χ0 values:

χ
(SM-I)
0 =χ

(SM-IV)
0 = +1 (108)

χ
(SM-II)
0 =χ

(SM-III)
0 = −1. (109)

Thus, by choosing to work in a real basis, the disparate forms of the field content and
transformation laws seen in (89)–(92) have been subjected to a “uniformization.”

5.5. 2D, N = (4, 0) Adinkra-Related Matrices and Gadget Values

With the results of the last subsection in hand, we can build on these and are in a position to
calculate the fermionic holoraumy matrices defined by:

[D+I , D+J ]Ψ(R)
+ k̂

= 2
[

Ṽ(R)
I J

]
k̂ ˆ̀ ∂ Ψ(R)

+ ˆ̀ , (110)

where: [
Ṽ(R)

IJ

]
ı̂

k̂ = − i 1
2

[
(RI

(R) )ı̂
j (LJ

(R) )j
k̂ − (RJ

(R) )ı̂
j (LI

(R) )j
k̂
]

. (111)

associated with each supermultiplet SM-I, SM-II, SM-III, and SM-IV. It can be seen that if one deletes
the helicity label (i.e., the + signs) from these and makes the replacement ∂ → ∂τ , then (97)–(111)
take the exact form as the equations given for adinkras and 1D, N = 4 supersymmetry [15,16]. We can
decompose the ṼIJ

(R) in terms of `â
IJ and ˜̀ â(R)

IJ as in Equation (35). In doing so, we find:

i`â(SM-I)
IJ = −αâ

IJ, i ˜̀ â(SM-I)
IJ = 0, (112)

i`â(SM-II)
IJ = 0, i ˜̀ â(SM-II)

IJ = (−1)â+1βâ
IJ, no â sum, (113)

i`â(SM-III)
IJ = 0, i ˜̀ â(SM-III)

IJ = (β1
IJ,−β3

IJ,−β2
IJ), (114)

i`â(SM-IV)
IJ = 0, i ˜̀ â(SM-IV)

IJ = (−1)â+1αâ
IJ, no â sum. (115)

The matrix quantity ṼIJ
(R) defines the fermionic holoraumy tensor for each supermultiplet, and

once the matrices LI
(R) and RI

(R) are used to calculate it, we have a universal form of the holoraumy
tensor for each supermultiplet. Denoting two of the (4, 0) supermultiplets by (R) and (R′), along
their holoraumy matrices ṼIJ

(R) and ṼIJ
(R′), the “gadget value” between the two representations is

defined by the equation:

G[(R), (R′)] =

[
1

48

]
∑
I, J

Tr
[

ṼIJ
(R) ṼIJ

(R′)
]

. (116)
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It is perhaps of note to observe that the discussion here is the first time that we have extended the
concept of holoraumy into the realm of heterotic supersymmetry. The gadget values between the four
supermultiplets can be represented by a 4 × 4 matrix, and listing the order of the representation labels
as (SM-I), (SM-II), (SM-III), and (SM-IV) for both rows and columns, we find:

G[(R), (R′)] =




1 0 0 0

0 1 1
3 0

0 1
3 1 0

0 0 0 1




(117)

The gadget values shown in the equation above explicitly show an important lesson about the
reduction process. It can be seen that the value of + 1/3 appears. Recall that for the 2D, N = 2
supermultiplets, this value never occurs. However, in the case of 2D, N = (4, 0) supermultiplets,
this gadget value readily appears.

As both the 2D, N = 2 supermultiplets and the 2D, N = (4, 0) supermultiplets can be reduced
to 1D, N = 4 supermultiplets, this is an explicit demonstration that the model space of any and all
possible 1D, N = 4 non-linear σ-models must be larger than that found by dimensional reduction!

5.6. Reducing to 1D, N = 4 Superspace

The process of going from 2D, N = (4, 0) superspace to 1D, N = 4 superspace simply amounts
to demanding that all fields depend solely on the temporal dimension of the higher dimension.
Additionally, all the helicity indices are simply dropped from spinors, partial derivatives, etc., as there
is no helicity in 1D. However, in 1D, we are still able to maintain the distinction between bosons and
fermions since the equations:

Φ(R)
i (τ1)Φ(R)

j (τ2) = + Φ(R)
j (τ2)Φ(R)

i (τ1),

Ψ(R)
k̂

(τ1)Ψ(R)
l̂

(τ2) = − Ψ(R)
l̂

(τ2)Ψ(R)
k̂

(τ1).
(118)

must be valid in order to have well-defined component actions.
The main goal of this section was to provide a convincing argument that knowing the

standard supermultiplets associated with the reduction to two-dimensions of the chiral and vector
supermultiplet totally misses the appearance of two new supermultiplets that can be constructed on
the basis of the use of the Klein transformation. All of these supermultiplets are compactly described
by quartets of bosons and fermions that are expressed uniformly in the equation of (102).

However, from our study of adinkras with four colors, we know that these four supermultiplets
are only four among a total of 36,864 such supermultiplets. This raises questions.

How does one distinguish among the 36,864 such supermultiplets?
How does one describe a sigma-model built, not only on the basis of the four supermultiplets

(SM-I), (SM-II), (SM-III), and (SM-IV), but one constructed from any or all of these supermultiplets
found by the study of adinkras?

The first of the questions is the one of classification, and the previous sections deal with this
issue and provide methods for classifying these 1D, N = 4 valise supermultiplets. This was a primary
motivation for the arguments developed.

The second question is equivalent to the question of providing a universal formulation of all
possible such sigma-models. A solution to this will be presented in a subsequent section. This is very
much a question of physics as descriptions of dynamical systems follow from such actions.
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6. The Universal 1D, N = 4 Minimal Valise BC4 Sigma-Model

The enumeration of the 36,864 BC4 adinkras implies that this constitutes a starting point
where every possible linear minimal valise representation of 1D, N = 4 supersymmetry has been made
explicitly “visible.” Thus, if there is a way to concatenate the standard 1D, N = 4 superspace formalism
together with the BC4-enumerated adinkra-based formalism, we are guaranteed to have complete
control of the model space 1D, N = 4 supersymmetric σ-models.

The work in [22] ensures the concatenation is possible. The key observations are:

(a) The links in the adinkra use the DI symbol as their representation, and in a traditional superfield,
these can be interpreted at the superspace super- covariant derivative.

(b) Every bosonic and fermionic node of an adinkra may be regarded as the lowest component of a
corresponding superfield.

These observations imply that one need only re-interpret the symbols used for adinkra-based
supermultiplets to obtain traditional superfield equations.

In particular, this implies that a σ-model action formula involving superfields obtained from BC4

adinkras via the prescription above must take the form:

S(BC4)
σ = 1

4!

∫
dτ εI1 I2 I3 I4DI1

DI2
DI3

DI4
K(Φ(R)

i )
∣∣∣ (119)

where Φ(R1)
i1

is a choice of the scalar superfields associated with any representation (R) among the
36,864 BC4-based valise adinkras, and the notation | as usual means first perform all the indicated
differentiations followed by taking the limit as all superspace Grassmann coordinates are set to zero.
Now, on these superfields, we have the following equations.

DI1
Φ(R1)

i1
= i

(
L(R1)

I1

)
i1 k̂1

Ψ(R1)

k̂1
,

DI3
DI4

Φ(R1)
i1

= i
(

L(R1)
I4

R(R1)
I3

)
i1 `1 ∂τ Φ(R1)

`1
,

DI2
DI3

DI4
Φ(R1)

i1
= −

(
L(R1)

I4
R(R1)

I3
L(R1)

I2

)
i1 ˆ̀1

∂τ Ψ(R1)
ˆ̀1

,

DI1
DI2

DI3
DI4

Φ(R1)
i1

= −
(

L(R1)
I4

R(R1)
I3

L(R1)
I2

R(R1)
I1

)
i1 `1 ∂2

τ Φ(R1)
`1

,

(120)

and after performing all the differentiations shown in the action formula, this yields the form of the
final action. This can be simplified if we express it in terms of four coefficients denoted by:

(a) Bj1 j2 [(R1) : (R2)], a metric for the bosonic kinetic energy terms,
(b) Fk̂1 k̂2

[(R1) : (R2)], a metric for the fermionic kinetic energy terms,
(c) fk̂1 k̂2 j3

[(R1) : (R2) : (R3)], a coupling of bosons and quadratic in fermions, and
(d) fk̂1 k̂2 k̂3 k̂4

[(R1) : (R2) : (R3) : (R4)], a coupling of bosons and quartic in fermions.

These allow the action to be expressed as:

S(BC4)
σ ≡

∫
dτ
[

1
2 Bj1 j2 [(R1) : (R2)] [∂τΦj1(R1) ] [ ∂τΦj2(R2) ]

+ i 1
2 Fk̂1 k̂2

[(R1) : (R2)]Ψ(R1)

k̂1
∂τΨ(R2)

k̂2

+ fk̂1 k̂2 j3
[(R1) : (R2) : (R3)]Ψ

(R1)

k̂1
Ψ(R2)

k̂2
[∂τΦj3(R3) ]

+ fk̂1 k̂2 k̂3 k̂4
[(R1) : (R2) : (R3) : (R4)]Ψ

(R1)

k̂1
Ψ(R2)

k̂2
Ψ(R3)

k̂3
Ψ(R4)

k̂4

]
.

(121)
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The definitions of these coefficients follow from comparing Equation (121) to Equation (122).

Bj1 j2 = εI1 I2 I3 I4
[ 1

4 K,i1(R1) ,i2(R2)(VI1 I2

(R1))i1 j1 (VI3 I4

(R2))i2 j2

− 1
12 K,i1(R1) ,j2(R2)(VI1 I2

(R1)VI3 I4

(R1))i1 j1
]
,

Fk̂1 k̂2
= i 1

3 εI1 I2 I3 I4 K,i1(R1) ,i2(R2)(L
(R1)
I1

)i1 k̂1
(VI3 I4

(R2)L(R2)
I2

)i2 k̂2
,

fk̂1 k̂2 j3
= − 1

4 εI1 I2 I3 I4 K,i1(R1) ,i2(R2) ,i3(R3)(L
(R1)
I1

)i1 k̂1
(L(R2)

I2
)i2 k̂2

(VI3 I4

(R3))i3 j3 ,

fk̂1 k̂2 k̂3 k̂4
= 1

4! εI1 I2 I3 I4 K,i1(R1) ,i2(R2) ,i3(R3) ,i4(R4) ×

(L(R1)
I1

)i1 k̂1
(L(R2)

I2
)i2 k̂2

(L(R3)
I3

)i3 k̂3
(L(R4)

I4
)i4 k̂4

. (122)

All repeated indices in these equations (including the representation indices) are to be summed over
all possible values that occur in Kähler-like potential. In these expression, we have used the notations

K,i1(R1) =

[
∂K

∂Φi1(R1)

]
(123)

K,i1(R1) i2(R2) =

[
∂2K

∂Φi1(R1) ∂Φi2(R2)

]
(124)

K,i1(R1) i2(R2) i3(R3) =

[
∂3K

∂Φi1(R1) ∂Φi2(R2) ∂Φi2(R2)

]
(125)

K,i1(R1) i2(R2) i3(R3) i4(R4) =

[
∂4K

∂Φi1(R1) ∂Φi2(R2) ∂Φi3(R3) ∂Φi4(R4)

]
(126)

to denote the derivatives of the Kähler-like potential.
To show this yields the usual component level free action for the 36,864 valise adinkras described in the

previous sections, Equation (1), one should take any superfields and choose K to be the quadratic function:

K = 1
16 χ

(R)
0 δi j ∑

(R)
Φi(R) Φj(R) (127)

(whereR can be any of the shown adinkras) of the bosonic nodal fields for each of the adinkras. For this
choice of the Kähler-like potential, the geometry of the σ-model is flat. If additional terms higher order
in the fields, including even powers of fermion superfields, are included, then the geometry associated
with the Kähler-like potential becomes non-trivial.

The coefficient functions denoted as Bj1 j2 [(R1) : (R2)] and Fk̂1 k̂2
[(R1) : (R2)] define the metrics

respectively on the spaces of component bosons and fermions of the supermultiplets. In a similar
manner comparing fk̂1 k̂2 j3

[(R1) : (R2) : (R3)] to familiar such terms of supersymmetric σ-models,
the obvious interpretation of this term is that it defines an affine connection on the space of fermions.
Finally, making a similar comparison leads to the conclusion that fk̂1 k̂2 k̂3 k̂4

[(R1) : (R2) : (R3) : (R4)]

should describe the curvature tensor of the σ-models. For the choice where K(Φ(R)
i ) is restricted to

solely quadratic terms, fk̂1 k̂2 j3
[(R1) : (R2) : (R3)] and fk̂1 k̂2 k̂3 k̂4

[(R1) : (R2) : (R3) : (R4)] vanish.
The most important points to take away from this discussion is the forms of the action and the

related equations of motion depend on two distinct types of data. One of these is the form of the
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Kähler-like potential K. The other is the representation of the valises that are chosen to appear in the
σ-model. In the action formula, these representation data are contained in the V-matrices and L-matrices.

7. Conclusions

Adinkras are useful and interesting tools with which to study supersymmetry. Perhaps the most
useful aspect is the ability to encode information about higher dimensional supersymmetry. To refine
holographic procedures, a clear description of equivalent adinkras is necessary. This paper used the
gadget to provide a descriptions of 96 such equivalence classes: the Ṽ-equivalence classes of four-color,
four-boson, and four-fermion adinkras. These are equivalence classes of 48 BC3 color transformations
(signed three-permutations) of two Ṽ-inequivalent quaternion adinkras. Each equivalence class
was shown to contain 384 adinkras; hence, the 96 equivalence classes contain all 36,864 = 384× 96
four-color, four-boson, and four-node adinkras.

These equivalence classes serve to elucidate some of the mysteries of the gadget seen in [19].
For instance, we showed that the plus one-third gadget only arises between equivalence classes of
different color-parity. We also found correlations between the frequencies of the gadget values and the
color-parities of the equivalence classes. The gadget value of zero occurs most frequently because it is
the only gadget value that occurs between adinkras of different isomer- and isomer-tilde-equivalence
classes. Within each isomer- and isomer-tilde-equivalence class, color-parity seems to control why the
minus-one third gadget appears more frequently than the plus one-third gadget: both appear equally
between adinkras of different color-parity, but only the minus one-third gadget appears between
adinkras of the same color-parity. The gadget value of one is the least frequent, as it can only occur
between adinkras of the same Ṽ-equivalence class.

Another important result of this paper is Equation (75), which compactly encodes all 36,864
four-color, four-boson, and four-fermion valise adinkras. Furthermore, the utility of the gadget in
distinguishing multiplets related by dimensional reduction was demonstrated. Specifically, the
twisted chiral multiplet and the vector multiplet were used as an example. Dimensional reductions of
actions were discussed in terms of Kähler-like potentials; technology we plan to use to advance SUSY
holography. Future work will focus on utilizing equivalence classes to develop holographic techniques
that we plan to extend to adinkras with more supercharges such as 4D,N = 4 super Yang–Mills theory
and 10D and 11D supergravity.

The discussion under (117) is a demonstration of the presence of SUSY holography once more.
This provides a beautiful physics reason for why the gadget value of +1/3 is so distinctive from the
other gadget values of −1/3, 0, 1. The latter occur in the one-dimensional shadows of supermultiplets
all the way up to 4D, N = 1 theories, but the former only occurs in the one-dimensional shadows of
supermultiplets up to 2D, N = (2, 0). The ability of adinkras and their holoraumy to keep track of this
level of subtlety should be convincing to any skeptic who doubts the efficacy of this approach to the
study of supersymmetric representation theory.

“Equality is not in regarding different things similarly, equality is in regarding different
things differently.”—Tom Robbins
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Appendix A. α and β Matrices

The α and β matrices used in this paper are:

α1 =




0 0 0 −i

0 0 −i 0

0 i 0 0

i 0 0 0




, α2 =




0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0




, α3 =




0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0




β1 =




0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0




, β2 =




0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0




, β3 =




0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0




.

In terms of tensor products of Pauli spin matrices σi and the 2× 2 identity matrix I2, this can be written as:

α1 =σ2 ⊗ σ1, α2 = I2 ⊗ σ2, α3 = σ2 ⊗ σ3

β1 =σ1 ⊗ σ2, β2 = σ2 ⊗ I2, β3 = σ3 ⊗ σ2.

These matrices form two mutually-commuting su(2) algebras:

[αâ, αb̂] =2iεâb̂ĉαĉ, [βâ, βb̂] = 2iεâb̂ĉβĉ, [αâ, βb̂] = 0.

Owing to the algebra above, the α and β matrices satisfy the trace orthogonality relationship:

Tr(αâβb̂) =0

Tr(αâαb̂) =Tr(βâβb̂) = 4δâb̂ .
(A1)

Appendix B. Explicit Matrix Forms for Flips and Flops

Since flip matrices with Boolean codes greater than seven are simply the negative of a corresponding
matrix with codes less than seven, it is only necessary to list Boolean matrices less than eight:

() =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, (12) =




−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1




, (A2)
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(13) =




−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1




, (23) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




, (A3)

(1) =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, (2) =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1




, (A4)

(3) =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1




, (123) =




−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




. (A5)

Flop matrices with their corresponding S4 code (matrix row and column indices suppressed) are
given by:

() =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, (12)(34) =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




,

(13)(24) =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




, (14)(23) =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




,

(A6)

(12) =




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1




, (34) =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




,

(1324) =




0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0




, (1423) =




0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0




,

(A7)



Symmetry 2019, 11, 120 38 of 42

(13) =




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1




, (1234) =




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0




,

(24) =




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0




, (1432) =




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0




,

(A8)

(23) =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




, (1342) =




0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0




,

(1243) =




0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0




, (14) =




0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0




,

(A9)

(123) =




0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1




, (134) =




0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0




,

(243) =




1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0




, (142) =




0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0




,

(A10)
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(132) =




0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1




, (234) =




1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0




,

(124) =




0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0




, (143) =




0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0




.

(A11)

Appendix C. Fermionic Holoraumy and 2D,N = (4,0) Minimal Scalar Valise Supermultiplets

In the text of this work, we calculated the holoraumy associated with the 2D, N = (4, 0)
supermultiplets by going to a real basis. Of course, this can also be done in the initial su(2) basis used
to describe the SM-I, . . . , SM-IV representations. In other words, it is necessary to calculate the effects
of the three operators:

O1 ≡
[

D+i , D+j
]

, O2 ≡
[

D+i , D̄+
j
]

, O3 ≡
[

D̄+
i , D̄+

j
]

, (A12)

on all of the fermions in each supermultiplet. Upon completion of these calculations, we find the
results shown in the equations of (A13)–(A16).

2D, N = (4, 0) SM-I Supermultiplet Holoraumy

[
D+i, D+j

]
ψ−k = 0,

[
D+i, D̄+

j
]

ψ−k = − i (~σ)i
j · (~σ)l

k ∂ ψ− l ,
[

D̄+
i, D̄+

j
]

ψ−k = 0,

(A13)

2D, N = (4, 0) SM-II Supermultiplet Holoraumy

[
D+i, D+j

]
λ−k = 0,

[
D+i, D̄+

j
]

λ−k = i δi
j ∂ λ−k,

[
D̄+

i, D̄+
j
]

λ−k = − i 2 Cij Ckl ∂ λ̄− l ,

(A14)
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2D, N = (4, 0) SM-III Supermultiplet Holoraumy

[
D+i, D+j

]
π− = 0 ,

[
D+i, D̄+

j
]

π− = i δi
j∂ π−,

[
D̄+

i, D̄+
j
]

π− = − i 2 Cij ∂ ρ−,
[

D+i, D+j
]

ρ− = i2 Cij , ∂ π−,
[

D+i, D̄+
j
]

ρ− = − i δi
j ∂ ρ−,

[
D̄+

i, D̄+
j
]

ρ− = 0,

(A15)

2D, N = (4, 0) SM-IV Supermultiplet Holoraumy

[
D+i, D+j

]
ψ− = 0,

[
D+i, D̄+

j
]

ψ− = 2 (∂ ψ−i
j),

[
D̄+

i, D̄+
j
]

ψ− = 0,
[

D+i, D+j
]

ψ−k
l = 0,

[
D+i, D̄+

j
]

ψ−k
l = i 1

2 (~σ)i
j ·
[
(~σ)k

p(∂ ψ−p
l) − (∂ ψ−k

p)(~σ)p
l + i (~σ)k

l ∂ ψ−
]

,
[

D̄+
i, D̄+

j
]

ψ−k
l = 0.

(A16)
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