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Abstract: In the paper, we discuss some similarity solutions of the time-fractional Burgers system
(TFBS). Firstly, with the help of the Lie-point symmetry and the corresponding invariant variables,
we transform the TFBS to a fractional ordinary differential system (FODS) under the case where the
time-fractional derivative is the Riemann–Liouville type. The FODS can be approximated by some
integer-order ordinary differential equations; here, we present three such integer-order ordinary
differential equations (called IODE-1, IODE-2, and IODE-3, respectively). For IODE-1, we obtain
its similarity solutions and numerical solutions, which approximate the similarity solutions and the
numerical solutions of the TFBS. Secondly, we apply the numerical analysis method to obtain the
numerical solutions of IODE-2 and IODE-3.

Keywords: similarity solution; time-fractional Burgers system; numerical solution

1. Introduction

We have known that fractional differential equations (FDEs) have many applications in
many branches of physics and engineering, such as statistical mechanics, fluid flow, medicine,
electromagnetics, material science, and optics [1,2]. Some FDEs can be used to describe many
phenomena like control theory, chaos synchronization, wave propagation, and image processing [3–9].
Therefore, researching some properties of FDEs is an important work for us. At present, one usually
tries to transform FDEs to the fractional ordinary differential equations (FODEs) by the use of the Lie
group analysis method [10–14], so that some similarity solutions, symmetries, and infinite conservation
laws are obtained. The work in [15,16] employed the Lie group analysis method to generate the
symmetries and infinite conservation laws of a few of FDEs. The papers [17,18] applied scalar
Lie transformations to deduce some similarity solutions of some FDEs. Besides, after obtaining
FODEs, one develops some approximated computation formulas and utilizes the numerical analysis
method to search for approximated solutions of FDEs. For example, the papers [19,20] presented
the numerical procedures for solving FDEs and then made use of modified expansion formulas to
generate approximated solutions of FDEs based on the work [21]. In addition, V. Lakshmikantham
and A. S. Vatsala [22] developed a general theory of fractional differential inequalities involving
Riemann–Liouville operators for which the existence of extremal solutions and global existence were
discussed. Furthermore, the qualitative behavior of solutions to fractional differential equations were
also studied by a comparison principle. Recently, Tavares, Almeida, and Torres [23] introduced two
types of Riemann–Liouville fractional derivatives of order α(t). For each one of them, the explicit
approximation formula was obtained. The estimations for the error of the approximations were also
given. Povstenko [24] systematically presented solutions to the linear time-fractional diffusion-wave
equation and the integral transform technique, and the properties of the Mittag–Leffler, Wright, and so
on, were introduced, which appeared in the solutions. In the paper, we shall discuss some similarity
solutions and numerical solutions of the time-fractional Burgers system (TFBS) under the case where
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the time-fractional derivatives are the Riemann–Liouville type. We first transform the TFBS into a
fractional ordinary differential system (FODS) under the case where the time-fractional derivative is
the Riemann–Liouville type with the help of a Lie-point symmetry of the TFBS. It follows that the
FODS are approximated by three integer-order ordinary differential equations (IODE-1, IODE-2, and
IODE-3). By applying IODE-1, we obtain the approximated similarity solutions and the numerical
solutions of the TFBS. Finally, we turn IODE-2 and IODE-3 into two discrete systems whose numerical
solutions are generated by using the general numerical method.

2. Similarity Soliton and FODS of TFBS

The so-called TFBS means the following coupled equations:
∂α

t u = uxx + 2uux − (uv)x,

∂α
t v = vxx + 2vvx − (uv)x, x ∈ (0, ∞), t > 0,

u(x, t0) = v(x, t0) = 0, x ∈ (0, ∞),

(1)

where t0 > 0 is some fixed time and ∂α
t f stands for the Riemann–Liouville derivative of order

α(0 < α < 1) for function f (t):

∂α
t f =

1
Γ(1− α)

∂

∂t

∫ t

0
(t− τ)−α f (τ)dτ =

1
Γ(1− α)

[
f (0)
tα

+
∫ t

0

f ′(τ)
(t− τ)α

dτ

]
.

In [15,16], the symmetries and infinite conservation laws of (1) were obtained by the use of the
Lie group analysis method, which have the infinitesimal symmetry as follows:

V = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t + η(x, t, u, v)∂u + φ(x, t, u, v)∂v, (2)

where ξ = c1x
2 + c2, τ = c1t

α , η = uc1
2 , φ = vc1

2 .
A corresponding Lie algebra presents that:

V1 =
x
2

∂x +
t
α

∂t −
u
2

∂u −
v
2

∂v,

V2 = ∂x, with the commutative relation,

[V1, V2] = −
1
2

V2.

A kind of similarity invariance corresponding to the vector field V1 was given by [15]:

z = xt−
α
2 , u(x, t) = t−

α
2 f (z), v(x, t) = t−

α
2 g(z),

from which System (1) reduces to a nonlinear FODS:
(

P1− 3
α ,α f

)
(z) = f ′′(z) + 2 f (z) f ′(z)− (g(z) f ′(z) + f (z)g′(z)),(

P1− 3
α ,αg

)
(z) = g′′(z) + 2g(z)g′(z)− (g(z) f ′(z) + f (z)g′(z)).

(3)

where Pξ,α
δ is the Erdelyi–Kober fractional differential operator defined by the following form:

(
Pξ,α

δ h
)
(z) =

m−1

∏
j=0

(
ξ + j− 1

δ
z

d
dz

)(
Kξ+α,m−α

δ h
)
(z),

α > 0, δ > 0, m =

{
[α] + 1, if α /∈ N,

α, if α ∈ N,



Symmetry 2019, 11, 112 3 of 12

here:

(
Kξ,α

δ h
)
(z) =


1

Γ(α)

∫ ∞

1
(p− 1)α−1 p−(ξ+α)h(zp

1
δ )dp, α > 0

h(z) , α = 0.

If the solutions of (3) were obtained, the exact similarity solutions of TFBS (1) could be generated;
however, the authors did not further discuss the exact solutions of (3). However, when choosing a new
similarity variable, we can obtain the approximated similarity solutions of (1). In fact, starting from
the characteristic equation corresponding to the vector field V1:

2dx
x

=
αdt

t
= −2du

u
= −2dv

v
,

we can choose:
ξ = x−

2
α t, u = x−1F(ξ), v = x−1G(ξ), (4)

where F(ξ), G(ξ) are arbitrary smooth functions with respect to the new variable ξ. It is easy to find
that:

∂α
t u =

1
Γ(1− α)

∂

∂t

∫ t

0

u(x, τ)

(t− τ)α
dτ

=
1

Γ(1− α)

∂

∂t

∫ t

0

x−1F(x−
2
α τ)

(t− τ)α
dτ

=
1

Γ(1− α)
x−

2
α

∂

∂ξ

∫ ξ

0

x−1F(y)
x2(ξ − y)α

x
2
α dy

=
x−3

Γ(1− α)

∂

∂ξ

∫ ξ

0

F(y)
(ξ − y)α

dτ

= x−3 dαF(ξ)
dξα

,

∂α
t v = x−3 dαG(ξ)

dξα
,

ux = −x−2
(

F(ξ) +
2
α

ξF′(ξ)
)

,

vx = −x−2
(

G(ξ) +
2
α

ξG′(ξ)
)

,

uxx = x−3
[

2F(ξ) +
6
α

ξF′(ξ) +
4
α2 ξF′(ξ) +

4
α2 ξ2F′′(ξ)

]
,

vxx = x−3
[

2G(ξ) +
6
α

ξG′(ξ) +
4
α2 ξG′(ξ) +

4
α2 ξ2G′′(ξ)

]
,

(uv)x = x−3
[
−2F(ξ)G(ξ)− 2

α
ξF′(ξ)G(ξ) +

2
α

ξF(ξ)G′(ξ)
]

.

Substituting the above consequences into (1) reads as:

dαF(ξ)
dξα

= 2F(ξ) +
(

6
α
+

4
α2

)
ξF′(ξ) +

4
α2 ξ2F′′(ξ)− 2F2(ξ)− 4

α
ξ

×F(ξ)F′(ξ)− 2F(ξ)G(ξ)− 2
α

ξF′(ξ)G(ξ)− 2
α

ξF(ξ)G′(ξ) =: P(ξ),

dαG(ξ)

dξα
= 2G(ξ) +

(
6
α
+

4
α2

)
ξG′(ξ) +

4
α2 ξ2G′′(ξ)− 2G2(ξ)− 4

α
ξ

×G(ξ)G′(ξ)− 2F(ξ)G(ξ)− 2
α

ξF′(ξ)G(ξ)− 2
α

ξF(ξ)G′(ξ) =: Q(ξ).

(5)
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We can transform the FODS (5) into integer-order ODEs by using the known approximation formulas.
For example, in [20], an expansion formula for the Riemann–Liouville derivative was given by:

(∂α
t y) (t) =

y(t)
tα

A(N, α)−
N

∑
p=1

Cp−1(α)
Vp−1(y)(t)

tp+α + QN+1(y)(t),

t ∈ [0, T], y(t) ∈ C1([0, T]), 0 < α < 1,

(6)

where:

A(N, α) =
1

Γ(1− α)
+

N

∑
p=1

Γ(p + α)

Γ(1− α)Γ(α)p!
=

Γ(N + 1 + α)

αΓ(1− α)Γ(α)N!
,

Cp−1(α) =
Γ(p + α)

Γ(1− α)Γ(α)(p− 1)!
,

Vp(y)(t) =
∫ t

0
τpy(τ)dτ, p ∈ N,

|QN+1(y)(t)| ≤
CMt

Γ(1− α)Γ(α)
t1−α

Nα1
, 0 < α1 < 1− α,

Mt = max
0≤τ≤t

∣∣∣y(1)(τ)∣∣∣ , C > 0.

When N = 0, FODS (5) reduces to the following integer ODE by using Equation (6):
F(ξ)

Γ(1− α)ξα
= P(ξ),

G(ξ)

Γ(1− α)ξα
= Q(ξ),

(7)

which is called the IODE-1.
When N = 2, FODS (5) becomes:

Γ(3 + α)

2αΓ(1− α)Γ(α)
F(ξ)
ξα
− α

Γ(1− α)

(V0F)(ξ)
ξ1+α

− Γ(2 + α)

Γ(1− α)Γ(α)
(V1F)(ξ)

ξ2+α
= P(ξ),

Γ(3 + α)

2αΓ(1− α)Γ(α)
G(ξ)

ξα
− α

Γ(1− α)

(V0G)(ξ)

ξ1+α
− Γ(2 + α)

Γ(1− α)Γ(α)
(V1G)(ξ)

ξ2+α
= Q(ξ),

(8)

which is called IODE-2, where:

(V0F)(ξ) =
∫ ξ

0
F(τ)dτ, (V1F)(ξ) =

∫ ξ

0
τF(τ)dτ,

(V0G)(ξ) =
∫ ξ

0
G(τ)dτ, (V1G)(ξ) =

∫ ξ

0
τG(τ)dτ.

In what follows, we consider solutions of System (7), which can be written as:

F′′(ξ) =
α2

4
1
ξ2

[
1

Γ(1− α)

1
ξα

F(ξ)− 2F(ξ)−
(

6
α
+

4
α2

)
ξF′(ξ) + 2F2(ξ)

+
4
α

ξF(ξ)F′(ξ) + 2F(ξ)G(ξ) +
2
α

ξF′(ξ)G(ξ) +
2
α

ξF(ξ)G′(ξ)
]

,

G′′(ξ) =
α2

4
1
ξ2

[
1

Γ(1− α)

1
ξα

G(ξ)− 2G(ξ)−
(

6
α
+

4
α2

)
ξG′(ξ) + 2G2(ξ)

+
4
α

ξG(ξ)G′(ξ) + 2F(ξ)G(ξ) +
2
α

ξF′(ξ)G(ξ) +
2
α

ξF(ξ)G′(ξ)
]

,

(9)
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Suppose:
F(ξ) = M1ξγ, G(ξ) = M2ξσ (10)

is a set of solutions to Equation (9), then we have:

M1γ(γ− 1)ξγ−2 =
α2

4
1

Γ(1− α)
M1ξγ−2−α − α2

2
M1ξγ−2

− α2

4
M1γ

(
6
α
+

4
α2

)
ξγ−2 +

α2

2
M2

1ξ2γ−2

+ αM2
1γξ2γ−2 +

α2

2
M1M2ξγ+σ−2

+
α

2
M1M2γξγ−2+σ +

α

2
M1M2σξγ+σ−2,

M2σ(σ− 1)ξσ−2 =
α2

4
1

Γ(1− α)
M2ξσ−2−α − α2

2
M2ξσ−2

− α2

4
M2σ

(
6
α
+

4
α2

)
ξσ−2 +

α2

2
M2

2ξ2σ−2

+ αM2
2σξ2σ−2 +

α2

2
M1M2ξγ+σ−2

+
α

2
M1M2γξγ−2+σ +

α

2
M1M2σξγ+σ−2.

(11)

In order to solve (11), we consider the case where:
− α− 2 + γ = 2γ− 2 = γ + σ− 2 =⇒ γ = σ = −α,

M1γ(γ− 1) +
α2

2
M1 +

α2

4

(
6
α
+

4
α2

)
M1γ = 0.

(12)


− α− 2 + σ = 2σ− 2 = γ + σ− 2 =⇒ γ = σ = −α,

M2σ(σ− 1) +
α2

2
M2 +

α2

4

(
6
α
+

4
α2

)
M2σ = 0.

(13)

Substituting (12) and (13) into (11) produces:
α2

4
1

Γ(1− α)
M1 +

α2

2
M2

1 + αM2
1γ +

α2

2
M1M2 +

α

2
M1M2γ +

α

2
M1M2σ = 0,

α2

4
1

Γ(1− α)
M2 +

α2

2
M2

2 + αM2
2γ +

α2

2
M1M2 +

α

2
M1M2γ +

α

2
M1M2σ = 0,

which gives rise to:

M1 + M2 =
1

2Γ(1− α)
.

If taking M2 = m (arbitrary constant), then we have that:

M1 =
1

2Γ(1− α)
−m.

Hence, a set of solutions to Equation (9) is obtained as follows:

F(ξ) =
(

1
2Γ(1− α)

−m
)

ξ−α, G(ξ) = mξ−α.
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A special similarity solution of the system (9) is given by:

F(ξ) = G(ξ) =
1

4Γ(1− α)
ξ−α.

Therefore, an approximated similarity solution to System (1) is given by:u(x, t) =
(

1
2Γ(1− α)

−m
)

xt−α,

v(x, t) = mxt−α,
(14)

which is plotted at time t = 1, 0.6, 0.3 with α = 1
2 , m = 1 in Figure 1.

(a) u(x, t) (b) v(x, t)

Figure 1. The approximated similarity solution to time-fractional Burgers system (TFBS) at time
t = 1, 0.6, 0.3 with α = 1

2 , m = 1.

A special approximated similarity solution presents that:

u(x, t) = v(x, t) =
1

4Γ(1− α)
xt−α.

Remark 1. Similarity solutions of TFBS (1) cannot be obtained by using the similarity variable obtained in [15].
This is the essential difference between the work and that in [15].

For System (9), we can also apply the numerical method to discuss its discrete form and
approximated solutions. Assume ξ ∈ [1, T + 1]; the grid points are ξ j = 1 + jh, h = T

N . By employing
the Taylor formula, we see that:

f (ξ j + h) = f (ξ j) + f ′(ξ j)h +
1
2

f ′′(ξ j)h2 + o(h2),

f (ξ j − h) = f (ξ j)− f ′(ξ j)h +
1
2

f ′′(ξ j)h2 + o(h2),

from which one gets:

f ′(ξ j) =
f (ξ j + h)− f (ξ j − h)

2h
=

f j+1 − f j−1

2h
,

f ′′(ξ j) =
f (ξ j + h)− 2 f (ξ j) + f (ξ j − h)

h2 =
f j+1 − 2 f j + f j−1

h2 .
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Thus, System (9) can be discretized at point ξ j:

Fj+1 − 2Fj + Fj−1

h2 =
α2

4ξ2
j

[
1

Γ(1− α)

Fj

ξα
j
− 2Fj −

(
6
α
+

4
α2

)
ξ j

Fj+1 − Fj−1

2h
+ 2F2

j +
2

αh
ξ jFj(Fj+1 − Fj−1) + 2FjGj

+
1

αh
ξ j(Fj+1 − Fj−1)Gj +

1
αh

ξ jFj(Gj+1 − Gj−1)

]
,

Gj+1 − 2Gj + Gj−1

h2 =
α2

4ξ2
j

[
1

Γ(1− α)

Gj

ξα
j
− 2Gj −

(
6
α
+

4
α2

)
ξ j

Gj+1 − Gj−1

2h
+ 2G2

j +
2

αh
ξ jGj(Gj+1 − Gj−1) + 2FjGj

+
1

αh
ξ j(Fj+1 − Fj−1)Gj +

1
αh

ξ jFj(Gj+1 − Gj−1)

]
.

(15)

Choosing F−1 = ( 1
2Γ(1−α)

− 1)/
√

0.9, F0 = 1
2Γ(1−α)

− 1, G−1 = 1/
√

0.9, G0 = 1 as initial values of
system (15), then we can solve (15) by the recurrence procedure, as shown in Table 1. The error is
obviously O(h2).

Table 1. Solutions of Integer-order ordinary differential equation 1 (IODE-1) with α = 0.5.

ξ F(ξ) * F(ξ) ** G(ξ) * G(ξ) **

1.1000 −0.6845 −0.6845 0.9535 0.9535
1.2000 −0.6553 −0.6554 0.9129 0.9129
1.3000 −0.6296 −0.6296 0.8770 0.8771
1.4000 −0.6067 −0.6067 0.8451 0.8452
1.5000 −0.5861 −0.5862 0.8165 0.8165
1.6000 −0.5675 −0.5676 0.7905 0.7906
1.7000 −0.5506 −0.5506 0.7669 0.7670
1.8000 −0.5351 −0.5351 0.7453 0.7454
1.9000 −0.5208 −0.5208 0.7254 0.7255
2.0000 −0.5076 −0.5076 0.7070 0.7071

∗ The numerical solutions of IODE-1 with T = 1, h = 0.1; ∗∗ The approximated similarity solutions of
Fractional Ordinary Differential System (FODS) (5).

3. Numerical Solutions

In this section, we first investigate the numerical solutions of (1) by making use of the
approximated system (8).

According to the method presented in [17,19], we could discuss the numerical solutions of (16)
with given initial values. However, we would like to adopt the approach in [25] to introduce discrete
equations corresponding to System (8) just like Equation (15), so that we could obtain numerical
solutions of System (8). System (8) can be written as follows:
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F′′(ξ) =
α2

4ξ2

[
−2F(ξ)− 6α + 4

α2 ξF′(ξ) + 2F2(ξ) +
4
α

ξF(ξ)F′(ξ)

+ 2F(ξ)G(ξ) +
2
α

ξF′(ξ)G(ξ) +
2
α

ξF(ξ)G′(ξ)

+
Γ(3 + α)

2αΓ(1− α)Γ(α)
F(ξ)
ξα
− α

Γ(1− α)

(V0F)(ξ)
ξ1+α

− Γ(2 + α)

Γ(α)Γ(1− α)(α)

(V1F)(ξ)
ξ2+α

]
,

G′′(ξ) =
α2

4ξ2

[
−2G(ξ)− 6α + 4

α2 ξG′(ξ) + 2G2(ξ) +
4
α

ξG(ξ)G′(ξ)

+ 2F(ξ)G(ξ) +
2
α

ξF(ξ)G′(ξ) +
2
α

ξF′(ξ)G(ξ)

+
Γ(3 + α)

2αΓ(1− α)Γ(α)
G(ξ)

ξα
− α

Γ(1− α)

(V0G)(ξ)

ξ1+α

− Γ(2 + α)

Γ(α)Γ(1− α)(α)

(V1G)(ξ)

ξ2+α

]
.

(16)

Through the medium-value theorem, the moments (V0F)(ξ), (V0G)(ξ), (V1F)(ξ), and (V1G)(ξ)

can be expressed approximately as:

(V0F)(ξ) ≈ ξF(ξ), (V0G)(ξ) ≈ ξG(ξ), (V1F)(ξ) ≈ ξ2F(ξ), (V1G)(ξ) ≈ ξ2G(ξ).

Substituting these results into (16) gives rise to:

F′′(ξ) =
α2

4ξ2

{
−2F(ξ)− 6α + 4

α2 ξF′(ξ) + 2F2(ξ) +
4
α

ξF(ξ)F′(ξ)

+ 2F(ξ)G(ξ) +
2
α

ξF′(ξ)G(ξ) +
2
α

ξF(ξ)G′(ξ)

+

[
Γ(3 + α)

2αΓ(1− α)Γ(α)
− α

Γ(1− α)
− Γ(2 + α)

Γ(α)Γ(1− α)(α)

]
F(ξ)
ξα

}
,

G′′(ξ) =
α2

4ξ2

{
−2G(ξ)− 6α + 4

α2 ξG′(ξ) + 2G2(ξ) +
4
α

ξG(ξ)G′(ξ)

+ 2F(ξ)G(ξ) +
2
α

ξF(ξ)G′(ξ) +
2
α

ξF′(ξ)G(ξ)

+

[
Γ(3 + α)

2αΓ(1− α)Γ(α)
− α

Γ(1− α)
− Γ(2 + α)

Γ(α)Γ(1− α)(α)

]
G(ξ)

ξα

}
.

(17)

Similar to the discussion on Equation (9), we suppose ξ ∈ [1, 1 + T]; the mean node points are
ξ j = 1 + jh, h = T

N , j = 0, 1, 2, · · · . The derivatives of F(ξ), G(ξ) can be written as:

F′(ξ j) =
Fj+1 − Fj−1

2h
, F′′(ξ j) =

Fj+1 − 2Fj + Fj−1

h2 ,

G′(ξ j) =
Gj+1 − Gj−1

2h
, G′′(ξ j) =

Gj+1 − 2Gj + Gj−1

h2 .
(18)
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Using Equation (17) on the points ξ j, and inserting (18) into (17), one infers the following
discrete equations:

Fj+1 − 2Fj + Fj−1

h2 =
α2

4ξ2
j

{
−2Fj −

6α + 4
α2 ξ j

Fj+1 − Fj−1

2h
+ 2F2

j

+
4
α

ξ jFj
Fj+1 − Fj−1

2h
+ 2FjGj +

2
α

ξ jGj
Fj+1 − Fj−1

2h

+

[
Γ(3 + α)

2αΓ(1− α)Γ(α)
− α

Γ(1− α)
− Γ(2 + α)

Γ(α)Γ(1− α)

] Fj

ξα
j

}
,

Gj+1 − 2Gj + Gj−1

h2 =
α2

4ξ2
j

{
−2Gj −

6α + 4
α2 ξ j

Gj+1 − Gj−1

2h
+ 2G2

j

+
4
α

ξ jFj
Gj+1 − Gj−1

2h
+ 2FjGj +

2
α

ξ jFj
Gj+1 − Gj−1

2h

+

[
Γ(3 + α)

αΓ(1− α)Γ(α)
− α

Γ(1− α)
− Γ(2 + α)

Γ(α)Γ(1− α)

] Gj

ξα
j

}
.

(19)

Choosing F−1 = ( 1
2Γ(1−α)

− 1)/
√

0.9, F0 = 1
2Γ(1−α)

− 1, G−1 = 1/
√

0.9, G0 = 1 as the initial values
of System (19), we can obtain some numerical solutions of (19), which are approximated solutions of
Equation (5) when N = 2 (Table 2).

Table 2. Solutions of IODE-2 with α = 0.5.

ξ F(ξ) * F(ξ) ** G(ξ) * G(ξ) **

1.1000 −0.6844 −0.6845 0.9533 0.9535
1.2000 −0.6551 −0.6554 0.9125 0.9129
1.3000 −0.6292 −0.6296 0.8765 0.8771
1.4000 −0.6061 −0.6067 0.8443 0.8452
1.5000 −0.5853 −0.5862 0.8153 0.8165
1.6000 −0.5665 −0.5676 0.7891 0.7906
1.7000 −0.5493 −0.5506 0.7652 0.7670
1.8000 −0.5336 −0.5351 0.7433 0.7454
1.9000 −0.5191 −0.5208 0.7231 0.7255
2.0000 −0.5057 −0.5076 0.7045 0.7071

* The numerical solution of IODE-2 with T = 1, h = 0.1; ** the approximated similarity solution of FODS (5).

In order to discuss the numerical solutions to System (1), we add another example when N = 3 in
(6) to illustrate the numerical solutions of the FODS (5). When N = 3, FODS (5) becomes, by using
Formula (6), 

Γ(4 + α)

6αΓ(1− α)Γ(α)
F(ξ)
ξα
− Γ(1 + α)

Γ(1− α)Γ(α)
(V0F)(ξ)

ξ1+α

− Γ(2 + α)

Γ(1− α)Γ(α)
(V1F)(ξ)

ξ2+α
− Γ(3 + α)

2Γ(1− α)Γ(α)
(V2F)(ξ)

ξ3+α
= P(ξ),

Γ(4 + α)

6αΓ(1− α)Γ(α)
G(ξ)

ξα
− Γ(1 + α)

Γ(1− α)Γ(α)
(V0G)(ξ)

ξ1+α

− Γ(2 + α)

Γ(1− α)Γ(α)
(V1G)(ξ)

ξ2+α
− Γ(3 + α)

2Γ(1− α)Γ(α)
(V2G)(ξ)

ξ3+α
= Q(ξ),

(20)

where (V0F)(ξ), (V0G)(ξ), (V1F)(ξ), and (V1G)(ξ) are the same as those in System (16). We take:

(V2F)(ξ) =
∫ ξ

0
τ2F(τ)dτ ≈ ξ3F(ξ), (V2G)(ξ) =

∫ ξ

0
τ2G(τ)dτ ≈ ξ3G(ξ).
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Substituting all of results in System (20) yields the following integer-order system of
differential equations:

F′′(ξ) =
α2

4ξ2

{
−2F(ξ)− 6α + 4

α2 ξF′(ξ) + 2F2(ξ) +
4
α

ξF(ξ)F′(ξ) + 2F(ξ)G(ξ)

+
2
α

ξF′(ξ)G(ξ) +
2
α

ξF(ξ)G′(ξ) +
[

Γ(4 + α)

6αΓ(1− α)Γ(α)

− Γ(1 + α)

Γ(1− α)Γ(α)
− Γ(2 + α)

Γ(1− α)Γ(α)
− Γ(3 + α)

2Γ(1− α)Γ(α)

]
F(ξ)
ξα

+ 2F(ξ)G(ξ)

}
,

G′′(ξ) =
α2

4ξ2

{
−2G(ξ)− 6α + 4

α2 ξG′(ξ) + 2G2(ξ) +
4
α

ξG(ξ)G′(ξ)

+
2
α

ξF(ξ)G′(ξ) +
2
α

ξF(ξ)G′(ξ) +
[

Γ(4 + α)

6αΓ(1− α)Γ(α)

− Γ(1 + α)

Γ(1− α)Γ(α)
− Γ(2 + α)

Γ(1− α)Γ(α)
− Γ(3 + α)

2Γ(1− α)Γ(α)

]
G(ξ)

ξα

}
,

(21)

which is called IODE-3.
Substituting (18) into (21), we obtain a discrete system:

Fj+1 − 2Fj + Fj−1

h2 =
α2

4ξ2
j

{
−2Fj −

6α + 4
α2 ξ j

Fj+1 − Fj−1

2h
+ 2F2

j +
4
α

ξ jFj
Fj+1 − Fj−1

2h

+ 2FjGj +
2
α

ξ jGj
Fj+1 − Fj−1

2h
+

[
Γ(4 + α)

6αΓ(1− α)Γ(α)

− Γ(1 + α)

Γ(1− α)Γ(α)
− Γ(2 + α)

Γ(1− α)Γ(α)
− Γ(3 + α)

2Γ(1− α)Γ(α)

] Fj

ξα
j

}
,

Gj+1 − 2Gj + Gj−1

h2 =
α2

4ξ2
j

{
−2Gj −

6α + 4
α2 ξ j

Gj+1 − Gj−1

2h
+ 2G2

j +
4
α

ξ jFj
Fj+1 − Fj−1

2h

+ 2FjGj +
2
α

ξ jGj
Fj+1 − Fj−1

2h
+

[
Γ(4 + α)

6αΓ(1− α)Γ(α)

− Γ(1 + α)

Γ(1− α)Γ(α)
− Γ(2 + α)

Γ(1− α)Γ(α)
− Γ(3 + α)

2Γ(1− α)Γ(α)

] Gj

ξα
j

}

(22)

Choosing F−1 = ( 1
2Γ(1−α)

− 1)/
√

0.9, F0 = 1
2Γ(1−α)

− 1, G−1 = 1/
√

0.9, G0 = 1 as initial values of
System (22), we can obtain some numerical solutions of (22), which are approximated solutions of
FODS (5) when N = 3 (Table 3).

Table 3. Solutions of IODE-3 with α = 0.5.

ξ F(ξ) * F(ξ) ** G(ξ) * G(ξ) **

1.1000 −0.6843 −0.6845 0.9531 0.9535
1.2000 −0.6547 −0.6554 0.9120 0.9129
1.3000 −0.6286 −0.6296 0.8755 0.8771
1.4000 −0.6051 −0.6067 0.8429 0.8452
1.5000 −0.5840 −0.5862 0.8135 0.8165
1.6000 −0.5648 −0.5676 0.7868 0.7906
1.7000 −0.5473 −0.5506 0.7624 0.7670
1.8000 −0.5312 −0.5351 0.7400 0.7454
1.9000 −0.5164 −0.5208 0.7193 0.7255
2.0000 −0.5027 −0.5076 0.7002 0.7071

∗ The numerical solution of IODE-3 with T = 1, h = 0.1; ∗∗ the approximated similarity solution of FODS (5).
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4. Conclusions

In the paper, we discussed some similarity solutions and some numerical solutions of the TFBS
(1) under the case where the time-fractional derivatives are the Riemann–Liouville type. In order to
generate similarity solutions, we adopted two approaches, which comprise the Lie-point symmetry
method. Thus, two different similarity solutions to the TFBS were obtained. Finally, we investigated
some numerical solutions of the TFBS so that we verified the similarity solutions obtained as above with
the numerical solutions. The method presented in the paper can be used to study other time-fractional
differential systems of equations. Therefore, it has extensive applications. In addition, we could discuss
some new symmetries of the TFBS by the developed Lie-group method [14], as well as discuss some
conservation laws of the TFBS by using the method presented in [26–28]. We would like to further
discuss these questions in the forthcoming days.
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USA, 2015.

25. Zhang, Y.F.; Wu, L.X.; Rui, W.J. A corresponding Lie algebra of a reductive homogeneous group and its
applications. Commun. Theor. Phys. 2015, 63, 535–548. [CrossRef]

26. Lukashchuk, S.Y. Conservation laws for time-fractional subdiffusion and diffusion-wave equations.
Nonlinear Dynam. 2014, 80, 1–12. [CrossRef]

27. Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [CrossRef]
28. Ibragimov, N.H. Nonlinear self-adjointness and conservation laws. J. Phys. A Math. Theor. 2011, 44, 432002–432010.

[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.amc.2018.05.030
http://dx.doi.org/10.1016/j.mechrescom.2008.05.003
http://dx.doi.org/10.1016/j.jmaa.2013.07.071
http://dx.doi.org/10.1016/j.cnsns.2015.10.027
http://dx.doi.org/10.1088/0253-6102/63/5/535
http://dx.doi.org/10.1007/s11071-015-1906-7
http://dx.doi.org/10.1016/j.jmaa.2006.10.078
http://dx.doi.org/10.1088/1751-8113/44/43/432002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Similarity Soliton and FODS of TFBS
	Numerical Solutions
	Conclusions
	References

