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1. Introduction

Marius Sophus Lie proposed a symmetry-based method for the analytical solution of differential
equations using groups of continuous transformations known as Lie groups [1-4]. Amalie Emmy
Noether later presented her remarkable theorem that relates variational symmetries with conservation
laws or first integrals in Reference [5]. In the literature, different methods are available to calculate
first integrals of ordinary differential equations (ODEs), including the direct method, the characteristic
or multiplier method, the Noether approach, and the partial Noether approach [6-9]. In this paper,
we used the classical Noether approach to calculate the first integrals of a harmonic oscillator. We then
applied the complex symmetry method in the restricted domain to find the first integrals of a system
of harmonic oscillators by considering the Lagrangian in the complex variable domain [10-12].

Concerning the numerical solutions of ODEs with quadratic first integrals, it is well known
that symplectic numerical methods are a suitable candidate [13]. These methods are a subclass of
geometric integrators that preserve the geometric properties of the exact flow of ODEs. One class of
symplectic methods with optimal order are the Gauss-Legendre Runge-Kutta methods. They are
one-step numerical methods for ODEs and preserve all linear and quadratic first integrals of a dynamic
system [14]. If we intend to preserve cubic or higher-order first integrals, we do not have a general
numerical scheme for such a purpose, but we can design a numerical method that has this as
its specific goal, for example, with the splitting and discrete-gradient methods [14]. In this paper,
we present a way of constructing symplectic Runge—-Kutta methods. We then take fourth-order
Gauss-Legendre Runge-Kutta methods for the numerical integration of ODEs and report good
preservation of first integrals by the numerical solution.
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2. Symmetries and First Integrals
Consider a second-order ordinary differential equation,

dy
ar = f(ty,y), 1)

which admits a Lagrangian L satisfying the Euler-Lagrange equation,

d oL oL

E(aT/)_@IO‘ ()

To explain the invariance criteria for variational problems under a group of transformation, we
consider the operator

P) )
X=§(t,y)g+77(t,y)@, 3)

where X is the Noether symmetry generator for the Lagrangian L with gauge function B(t,y), provided
the following condition holds,
XW(L) + Di(§)L — Di(B) =0, 4)

where X(1) is a first-order prolongation of X and D represents total derivative,

d )
Di=—+y —.
According to the Noether theorem, for each Noether symmetry of a Euler-Lagrange equation,

there corresponds a function I

oL
I=¢L+(1=8y)5,; — Blty), ©)
called the first integral or conserved quantity of Equation (1) with respect to symmetry generator X.

Complex Symmetry Analysis

We first discuss some important results related to complex Noether symmetries, complex
Lagrangian, and the Noether theorem in the restricted complex domain. We use them to determine
first integrals of second-order restricted complex ODEs [15]. We then present expressions for
Euler-Lagrange-like equations, conditions for Noether-like operators, and expressions for first integrals
corresponding to these operators. For more details, see Reference [10] and references therein.

Consider a system of two second-order ordinary differential equations of the form

d2
7{ = wl(t/g/f/g//f/)/

42
B —wiltg fg.f).

@)

Suppose we have a transformation y(t) = f +ig and w = w; + iwy, which converts System (7)
to a second-order restricted complex ODE,

y' =w(tyy). 8)
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Assume that Equation (8) admits a complex Lagrangian L(t,f,g, f',¢'), ie, L =Lj+iL,.
Therefore, we have two Lagrangians, L1 and Ly, for System (7) that satisfy Euler-Lagrange-like equations:
oLy  dL, d dL;  9JLy

of Ty Tatap tag) T

oy oLy d oy oLy Y
of 9g dt'of 9y’
The operators
X = 3 + i + i
(10)
U T )
2 =625, Xzaf Xlag-
are called Noether-like operators for Lagrangians L1 and L, such that:
—X{"(L2) + X{V (L) + (Dig1)L = (Dig2)La = Dish, )

Xél)(Ll) + XF)(Lz) + (Dt61)La + (Dig2) L1 = D1 Ay,

where A and Aj are suitable gauge functions. The two first integrals corresponding to Noether-like
operators X; and X can be found as:

I = =Ay+61Li +9pLi(x1 — GaLa — 61f' —628') —9pLa(x2 — Gof —c18'),

(12)
L = Ay +¢1Lly +9pLa(x1 + 62l —61f —628") +9pLi(xa — cof ' — c18")-
3. Runge-Kutta Methods

Runge-Kutta methods [16] are one-step numerical methods for the approximate solution of IVPs:

V() =fy(t),  ylto) =yo,  y(t) eR". (13)

These methods provide approximation y, = y(t,) of the exact solution y(t) at time t, = nh,
wheren = 0,1, -- and h corresponds to the stepsize. The generalized form of an s-stage Runge-Kutta
method is

S
Yk = ]/n—l + Zakihf(yi)l k - 1/ S, (14)
i=1

S
Yn = Yn-1+ ) bihf(Y)),
i=1

with b; representing the weights and c;, the nodes at which stages Yj are evaluated. A Runge-Kutta
method can be represented by a Butcher tableau:

€1 |41 -+
Cn | n1 - OQpn
by --- by

For explicit Runge-Kutta methods, we have a;; = 0 for k < i,; otherwise, they are implicit.



Symmetry 2019, 11, 11 40f 16

3.1. Symplectic Runge—Kutta Methods

If Equation (13) has a quadratic first integral

I(y) = (y, Sy) = y' Sy,

where S is a symmetric square matrix, then we have

(v, fy)) =y"Sfly) = 0.

We want to determine numerical solutions y, such that first integral I(y) is preserved
numerically, i.e.,
(Yn, SYn) = (Yn—1,Syn—1) n=0,1,....

It has been shown in References [17-19] that only symplectic Runge-Kutta methods preserve
quadratic first integrals while numerically integrating System (13). Moreover, in this paper we are
only considering implicit Runge-Kutta methods to check the numerical preservation of first integrals
because explicit methods cannot be symplectic [20]. A Runge-Kutta method is symplectic if its
coefficients satisfy the following condition [18,19,21]:

b,‘aij + b]a]l — blb] =0V j,i =1,...,s, (15)

which can be derived as follows.
Firstly, apply the Runge-Kutta method (14) to solve the IVP (13). The stage values are

Y; = yn_1+ Y_hayf(Y)).
j

Since

(Y, 5f(Yi)) =0,
= (Y1, SF(V0)) + Y hai(f(Y)), Sf(Yi)) = 0. (16)
)

Moreover, for the output values, we have

S
Yn =Yn-1+ Z bihf(Yi)'
i=1

Thus,
<yn/ S]/n> = <]/n—1/ S]/n—l> + hzbi<yn—1/ Sf(Yz)>
i

F YY), Syt + 12 L bybil F(Yi), SF(Y))). 7)
]

ij
Evidently from Systems (16) and (17), we have
<]/m Syn> = <y7’l—1/ Syn—1>/

provided that

bjaji + biai]- — blb] =0. (18)
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3.2. Construction of Symplectic RK Methods

Although there exist several techniques to construct symplectic RK methods in the literature [14,22],
here we constructed symplectic Runge-Kutta methods with the help of a Vandermonde transformation.
This was first discussed in reference [23].

A Vandermonde matrix is given as

1 ¢ ... c?il
-1
V= : = c{
1 ¢y ... 't

Pre- and postmultiply, Vandermonde matrix V with symplectic condition (15) as

Ci-(_l (b]aﬂ + biaij — b]‘bi)C;_l =0, V8Lkji=12...,s. (19)
To construct methods with two stages (s = 2), we consider
Forl, k=1,
L
Forl=1and k =2,
Z(b]c]a], + bl'lli]'C]' - b]C]bl) =0. (21)
L
Forl =2and k =1,
Z(biaijcj + b]‘Cj{Zj,' — blb]c]) =0. (22)
L
Forl, k=2,
Z(biciaijcj + b]'C]'a]'iCi — bicibjC]‘) =0. (23)

i,j

The following order two conditions must be satisfied.

1
Zb] = 1, Zb]c] = E (24)
] ]
Using Equation (24) in Equations (20)—(23), we have
Y bici =3,
i
: 1
Y (biae + bicjaji) = 3,
ij=1
2
Y- (biciaij + bjajici) = 3,
ij=1
2
Z biCial‘]’C]’ = %
ij=1

If we take b;(c; — c1) = bjc; — bjc1) and take summation of i from 1 to 2, we get

byco — bycy =

N —
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Similarly,
C2 - 3
Cr — (1 '

If we take the relation
bi(cj — c1)aij(c; — c1) = biciajjcj — biciajicr — biajjcjer + bajjercy.

Thus, we get

Gy =803 2
ba(ca —c1)?
Similarly, we get
1 _ oo oy 06
g =58_6"3 3
- 7
bi(c1 —c2)?

1 o _a , as
8~ 3 612

b2(C2 *Cl)(Cl *Cz)/
L A
bl(CQ — C1)(Cl — Cz)

Let us consider the shifted Legendre polynomials P;* on the interval [0, 1],

W)=Y ( ! ) ( o ) (~1) -y

a1 =

n=0

For Gauss methods, we choose abscissa c; as zeros of P which have an order 2¢. For Radau
methods, we choose either c; = 0 or ¢; = 1, or both of them and then take for Radau I methods,
the abscissa as the zeros of the polynomial P/ ;(y) + P;(y) of order 2t — 1. Similarly, for Radau
II methods, we take the abscissa as the zeros of the polynomial P;(y) — P; ;(y) of order 2t — 1.
Moreover, for Lobatto III methods, we take the abscissa as the zeros of the polynomial P (y) — P} ,(y)
of order 2t — 2. Thus, we have the following symplectic methods:

Gauss, s = 2:

1_ 33 1 1_ 33
2 6 4 4 6
1, V3 1, V3 1
2t | 1T %6 i
1 1
2 2

Radaul, s =2:

iy

PNESTRE-CTS
w10 | oolwd oo“

ST
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Radau II, s=2:

3
8
7
8
3
4

Similarly, we can construct methods with more stages and a higher order.

4. Construction of First Integrals and Their Numerical Preservation

We construct the first integrals of a system of harmonic oscillators (both coupled and uncoupled)
determined by the second-order ODE:
y' =Ky (25)

We take different values of k and y, as follows:

Case I: (k2 = 1 and y is real)

When k> = 1 and y(t) is real-valued, (25) becomes a one-dimensional harmonic
oscillator equation:
y'=-y, (26)
that possesses the standard Lagrangian
_
L= 5 5 (27)

Taking the Lagrangian and inserting it in System (4) yields the following determining system
of equations:

1 1 1 1
=y + ey + Oy = 580y = 58" — S8y — S8’y — Bi—y'By =0. (28)

Comparing different powers of y’, we have a system of four partial differential equations whose
solution gives rise to:

&(t,y) = c1 + cp sin (2t) + c3 cos (2t),
1n(t,y) =sint cg + (cos (2t)y c; — sin (2t)y c3) + cost cs, (29)
B(t,y) = —(ca sin (2t) + c3 cos (2t))y* + (c4 cost — c5 sint)y.

We thus obtain the following 5-Noether symmetry generators:

0
X1 - &/
X, = sin (2t) 9 + y cos (2t) 9
2= ar Y ay’
X3 = cos (2t) 9 sin (2t) 9
5= ! 5 (30)

X4 = cos (t)

7

X5 = sin (¥)

2o glo
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Using Symmetries (30) and Lagrangian (27) in Noether’s Theorem (6), we obtain the following
first integrals:

L =ysint+y cost,
Iy = —y cost 4y sint, (31)

1 1
Iy = —iy’z cos 2t — yy’ sin2t + 5}/2 cos2t,

1 1
Is = —Ey’z sin 2t + yy’ cos 2t + Eyz sin 2t.

Among these five first integrals, only two are independent [8]. We numerically integrate
system (26) using a fourth-order Gauss s = 2 symplectic Runge-Kutta method that we refer to
from now on as Gauss2. We compare the results of the Gauss2 method with the famous symplectic
Euler method [14], given as:

unJrl = un +hf(Vn)/
Vn+1 =V, - hg(Un+1),

for numerically integrating U’ = f(V) and V' = g(U). We take stepsize h = 0.01, and n = 10,000
number of steps. By employing symplectic integrators, we expect the first integrals of the system to
be preserved by the numerical schemes, and this is what we have achieved. We look at the deviation
of numerically evaluated first integral I(y,) from the actual value of first integral I(1o). We calculate
error by taking the difference of the first integral evaluated at initial value I(yg) with the value of
the first integral evaluated at all subsequent numerically approximated values I(y,) given by the
formula Error = |I(y,) — I(yo)|. Figures 1 and 2 represent the absolute error in integral I, using the
Gauss2 and symplectic Euler method, respectively. Similarly, Figures 3 and 4 represent the absolute
error in integral I3 using the Gauss2 and symplectic Euler method, respectively. It is clear from the
figures that the error is very small and bounded, depicting qualitatively correct numerical results. It is
worth noting that the error of the Gauss2 method is much less compared to the error of the symplectic
Euler method. The reason is that the Gauss2 method is fourth-order and more accurate compared to
symplectic Euler method, which has order 1. Similar error behavior is obtained for other first integrals.

x10"
O T

8

Error
©@

Figure 1. Error in integral I using Gauss2.
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xi0?

3 T T T T T T T T T

|

Ll

t

Error

Figure 2. Error in integral I, using symplectic Euler.

-17
T 10 :

Figure 3. Error in integral I3 using Gauss2.

3
6x10 ‘

i

t

“

Error
P

Figure 4. Error in integral I3 using symplectic Euler.

Case II: (k> = 1 and y is complex)

When k? = 1 and y(t) is a complex function y = f + ig for f and ¢ being real functions of ¢,
we get:

f"=~f g =-g (32)

which admits the following Lagrangians:

= %(—g’g’ +ff = ff+88),
L =g'f' — fg

(33)
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Using Lagrangians (33) in (11), we obtain 9-Noether-like operators

J ., 0 .0 0
X; = 5 Xy = smtﬁ, X3 = smt%, Xy = costﬁ, X5 = cost@,
] 0
Xe = s1n2t— + f cos2t — af + g cos 2t 35’
0
X7 = gcos2t — f — f cos2t @, (34)
Xg = cos 2t a — fsin2t — sin 2t 9
8 = af -8 g’
d
X9 sin2t — sin2t —.
8 f o 9
Invoking Equation (12), we obtain the following invariants:
hy = (f'f' = 8'e' = ff +8g) sin2t —2(ff' — gg') cos 21,
112 =2(f'¢ —fg) sin2t — 2(fg’ + f'g) cos2t,
= (f'f' = 8's' = ff+88) cos2t +2(f'f — g'g) sin2t,
12,2 =2(f'g' — fg)cos2t +2(fg + f'g)sin2t,
Iy; = —2f'cost — 2f sint, 35)

I;» = —2¢' cost — 2gsint,
Iy; = —2f'sint + 2f cost,
Iyp = —2¢ s1nt+2gcost
Iy =f'f' -8~ f+¢
Isp = 2¢'f'+2gf.

associated with Noether-like operators (34). System of Equation (32) is integrated using the Gauss2
method with stepsize 1 = 0.01 and n = 10,000 number of steps. The absolute error in first integrals I 1,
Ip, 141, and Iy 5 is plotted in Figures 5-8, respectively. Similar error behavior is obtained for I 1, I o,
I31, I3p, I5 1, and I5>. We observe that the error does not grow out of bounds, which shows that the
numerical method can mimic the true qualitative feature of the dynamical system.

x10™ ‘

35

Figure 5. Error in integral I ;.
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w10 ‘

25

Error

12 T

Error
=
>

12 T

Figure 8. Error in integral I 5.

Case III: (k and y are complex)

When k and y(t) are both complex, i.e., k = a; +iap and y = f + ig for f, g, a1, and a; being real,
the following coupled system of harmonic oscillators is obtained:

f!'=—(af — a3)f + 2ma2g,

" 2

36
g = —(af —a3)g — 2muf, 0
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which admits a pair of Lagrangians [11]:

1 1 1
Li= 3= 38— 561 =) (f = &) + 2maafg,

(37)
Ly = f'g' —maa(f? = ¢%) — (af — a3)fs.
System (36) admits the following 9 Noether-like operators and first integrals:
)
X] - &/
X = sin(ayt) cosh(aat) . + cos(ast) sinh(at) -
» = sin(ayt) cosh(ay of cos(aqt) si 2t) 307
: d .
X3 = cos(aqt) smh(oczt)ﬁ — sin(aqt) Cosh(zxzt)%,
d . . d
X4 = cos(aqt) Cosh(zxzt)ﬁ — sin(aqf) smh(zxzt)%,
. . ) d
X5 = —sin(aqt) smh(rxzt)ﬁ — cos(a1t) COSh(DCzt)%,
Xe = sin(2a1t) cosh(2zxzt)% + {(a1f — a2g) cos(2a1t) cosh(2ast)
+ {(a1¢ + axf) cos(2a1t) cosh(2apt) — (a1 f — apg) sin(2at) sinh(Zagt)}aE;
+ (19 + anf) sin(2a4t) sinh(2¢x2t)}a€},
X7 = cos(2a4t) sinh(szZt)% + {(x18 + axf) cos(2a1t) cosh(2a5t) (38)
—{(a1f — apg) cos(2ayt) cosh(2ayt) + (a1 g + ap f) sin(2et) Sinh(zwzf)};;
— (a1 f — apg) sin(2ayt) sinh(20¢2t)};f,

Xg = cos(2a1t) cosh(20<2t)% + {(a1f — apg) sin(2a4t) cosh(2ayt)

+ {(a1f — ang) cos(2aqt) sinh(2apt) + (a1g + a2 f) sin(2aqt) cosh(Zoczt)}aag

— (a1g + anf) cos(2a1t) sinh(szzt)}aaf,

X9 = — sin(2aqt) sinh(2tx2t)% + {(a1f — apg) cos(2a1t) sinh(2ayt)

—{(a1 f — apg) sin(2a1t) cosh(2apt) — (a1 g + ap f) cos(2at) sinh(Zazt)}aE;

+ (t1g + aaf) sin(2a1) cosh(mzt)}aaf.
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Iy = (of —a3)(f? = &%) + f? — dmma fg — 87,

hp =2(af —a3)fg + 2 (f? — &%) +2f'¢'

L1 = f'sin(ayt) cosh(azt) — g’ cos(ayt) sinh(ast) — (a1 f — azg) cos(art) cosh(azt)
— (@19 + apf) sin(aqt) sinh(azt),

L, = ¢’'sin(ayt) cosh(azt) + f' cos(ayt) sinh(agt) — (a1¢ + aaf) cos(art) cosh(azt)
+ (a1 f — apg) sin(aqt) sinh(ayt),

Iz; = f'cos(aqt) cosh(ayzt) + ¢’ sin(ayt) sinh(agt) + (a1 f — apg) sin(ayt) cosh(aat)
— (@18 + apf) cos(aqt) sinh(axt),

I3 = ¢ cos(ayt) cosh(azt) — f'sin(ayt) sinh(agt) + (a1¢ + azf) sin(agt) cosh(azt)
+ (a1 f — apg) cos(aqt) sinh(ayt),

lin = S0} — 03—+ ) — dmraagf — (~g + )} sin(2at) cosh (2021
— {2my0p % — 2a1008% + 2(a3 — a3)gf — 29" f'} cos(2a;t) sinh(2at)]
+{aa(f'f —g'8) —a(g'f + f'g)} cos(2a1t) cosh(2ast)
+{g f+a1f'g+aof f— arg’ g} sin(2a;t) sinh(2ayt)

liz = S0} — D) (2 + £2) — dmaagf + (5 — )} cos(2m) sinh (2021
+ {2m1a5(f2 — §°) 4+ 2fg(a? — a3) — 2f'¢"} sin(2a1t) cosh(2ayt)]

+ {1 f'g +a1fg +aa(f'f — g8') } cos(2a1t) cosh(2a5t)]
— {arff' —a1g'g) — a2g'f — a2 f'g)} sin(2aqt) sinh(2ast)]

Isp = %[{("‘% —03)(—§* + f*) — 4z fg — (—g% + f'%)} cos(2at) cosh(2ast)
+ {2a100 2 — {20108 + 2(a? — a3)gf — 2¢'f'} sin(2ayt) sinh(2a,t)]
+{a1fg +argf +ar(ff —gg')} cos(2aqt) sinh(2ast)
—{—mg'g+a1f' f —aafg —aaf'g} sin(2a1t) cosh(2ast)

Isp = %[{—(o&z —a3)(—g* + f?) +4mjanfg — g + f?} sin(2aqt) sinh(2ayt)
+ {2m1a5(f2 — §2) 4+ 2fg(a? — a3) — 2f'¢"} cos(2a1t) cosh(2ayt)]
—{aaf'g+ a1’ f —aof'f + angg’} sin(2aqt) cosh(2ast)]

— {arf'f —18'g — a2’ f — a2 f'g} cos(2ast) sinh(2at)]

The Gauss2 method is again used to integrate Equation (36) with stepsize i = 0.01 and n = 10,000
number of steps. The absolute error in the first integrals is calculated as before. The absolute error
inintegrals I 1, I1 2, I31 and I3, is plotted in Figures 9-12, respectively, which remains bounded for
long time. Similar error behavior is obtained for I 1, I 5, Iy 1, 142, Is 1, and I5 ;. The symplectic Gauss2
method is able to preserve all first integrals obtained by performing complex symmetry analysis.
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Error

Figure 9. Error in integral I; ;.
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£

bis 4

l“ml (oW
0 10 2 3

40 5t0 60 70 8 90 100

Figure 10. Error in integral I 5.

X100
4

‘
35 ]
3 ]
25 ]

Error
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Figure 11. Error in integral I3 ;.
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Figure 12. Error in integral I3 5.

5. Conclusions

The first integrals of dynamical system y”” = —k*y were obtained via the classical Noether
approach and the complex symmetry method. The later approach yields invariant energy
as a particular example that is stored in both oscillators. Since these first integrals are quadratic
in nature, the symplectic Runge-Kutta method, whose construction is also given in this paper,
was successfully applied to the system, and numerical preservation of these first integrals was obtained.
Interestingly, the numerical method presented in this paper could preserve the energy of the single
oscillator as well as the energy stored in the pair of coupled oscillators that arise from the complex
Noether approach. The error in the first integrals remained bounded for a long time, which would not
have been possible if we have employed nonsymplectic integrators.
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