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Abstract: Developable surfaces, which are important objects of study, have attracted a lot of attention
from many mathematicians. In this paper, we study the geometric properties of one-parameter
developable surfaces associated with regular curves. According to singularity theory, the generic
singularities of these developable surfaces are classified—they are swallowtails and cuspidal
edges. In addition, we give some examples of developable surfaces which have symmetric
singularity models.
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1. Introduction

The study of developable surfaces has many practical applications. There is much literature about
developable surfaces, (see, e.g., [1-5]). Many cartographic projections involve projecting the Earth onto
a developable surface and then “unrolling” the surface into a region on the plane. Since developable
surfaces may be constructed by bending flat sheets, they are also important in manufacturing objects
from cardboard, plywood, and sheet metal. In mathematics, developable surfaces are typically defined
as surfaces which can be developed into planes without distorting the surface metric. There is some
literature about developable surfaces of space curves from the viewpoint of singularity theory [1,2].
The tangent developable surface of a space curve is a ruled surface, which is formed by the space
curve’s tangent lines. In algebraic geometry, tangent developable surfaces play an important role
in the duality theory [6]. In [1], the author investigated the relationship between the singularities
of tangent developable surfaces and some types of space curves. He also gave a classification of
tangent developable surfaces by using the local topological property. On the other hand, S. Izumiya et
al. introduced the rectifying developable surfaces of space curves in [2], where they showed that a
regular curve is a geodesic of its rectifying developable surface and revealed the relationship between
singularities of the rectifying developable surface and geometric invariants. The geometric invariants
can also characterize the contact between a space curve and a helix. In this sense, the study of the
singularities of developable surfaces is an interesting subject.

In the present paper, we investigate one-parameter developable surfaces, which are related to
the space curves, as a fundamental case for the research of the highest dimensional manifolds in
Euclidean 3-space. We investigated the singularities of hypersurfaces in semi-Euclidean space [7-10].
However, at least to the best of our knowledge, there exists little literature concerning the singularities
of one-parameter developable surfaces related to regular space curves in Euclidean space. Therefore,
we study this problem in the present paper. In the frame of space curves, we define one-parameter
developable surfaces. When the parameter is fixed, the sections of one-parameter developable surfaces
are developable surfaces. Moreover, the tangent developable surfaces and the rectifying developable
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surfaces are sections of one-parameter developable surfaces. We also define the one-parameter
support functions on regular space curves, which can be used to study the geometric properties of
one-parameter developable surfaces. In fact, one-parameter developable surfaces are the discriminant
sets of these functions. The main result, Theorem 2, shows that the singularities of developable surfaces
are Ag-singularities (k = 2,3) of these functions.

The organization of this paper is as follows: We review the concepts of ruled surfaces in Euclidean
space in Section 2. In Section 3, the one-parameter developable surfaces of a space curve are defined,
and we obtain two geometric invariants of the curve. We also get singularities of one-parameter
developable surfaces (Theorem 1), and Theorem 2 gives the classification of these singularities in this
section. The preparations for the proof of Theorem 2 are in Sections 4 and 5. In the last section, we give
some examples to illustrate the main results in this paper.

2. Basic Notation

Let R3 be 3-dimensional Euclidean space and x = (x1, %2, x3),¥ = (y1,¥2,v3) € R3. We denote
their standard inner product by x - y, and the norm of x is denoted by |x||. Let y : I — R3 be a
curve and the tangent vector respect to t is §(t) = dvy/dt(t). The arc-length is s(t) = ft; l7(t)||dt
and ||9/(s)|| = ||dy/ds|| = 1. We define three unit vectors t(s) = v/'(s), n(s) = 4"(s)/||v"(s)|,
and b(s) = t(s) x n(s). Then, the Frenet-Serret formula is as follows:

n'(s) = —x(s)t(s) + t(s)b(s)
b'(s) = —1(s)n(s),

where «(s) is the curvature function and 7(s) is the torsion function.
We now introduce developable surfaces and ruled surfaces. Suppose that  : I — R? be a curve
and & : [ — R?\ {0} be a C*-mapping. A surface F, s : I x R — R is defined by

Froe)(s,u) = ¥(s) +ug(s),

then F, #) is a ruled surface, and vy and ¢ are called the base curve and director curve, respectively. For a
fixed s € I, y(s) + ug(s) is the ruling. A developable surface is a ruled surface with vanishing Gaussian
curvature. It’s well known that F, +) is a developable surface if and only if det(v/(s), §(s), &' (s)) = 0.

F,
(16 .
s)/||&(s)]|, then F is a cylinder if and only if & (s) = 0. If a ruled surface F, is not a cylinder,
(7.8) y y (1.8) Y

a striction curve of F. #) is defined by

16
) is called a cylinder if the director curve ¢ has a fixed direction. We denote that ¢(s) =

It is known that the singularities of ruled surface F, ) (not a cylinder) are located on its striction
curve [11]. We say F(%g) is a cone if and only if the striction curve c is constant.

3. One-Parameter Developable Surfaces

We consider the one-parameter developable surfaces of space curves in this section. Let iy be a
space curve. We consider a spherical vector L : [0, Z] x I — S?, which is defined by

7(s)t(s) — x(s) sin 6 cos On(s) + x(s) cos® Ob(s)

L(s6) = V/12(s) + x2(s) cos? 6

7

where T2(s) + x2(s) cos? 8 # 0. We assume, throughout the whole paper, that T(s) + x%(s) cos? 0 # 0
for any (s,6) € I x [0, F]. We write L(s,0) = Ly(s), and define a map Dy : I x R — R3 by
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7(s)t(s) — x(s) sin 0 cos On(s) + x(s) cos® Ob(s)
V/T2(s) + x2(s) cos? 0 '

Dy(s,u) = ¥(s) + uLg(s) = v(s) +u

We call Dy a one-parameter developable surface of y. We can easily check that D (s,u) is the tangent
developable surface of v and Dy (s, u) is the rectifying developable surface of +.
For any 6 € [0, 5], we have

(kT2 sin By + &3 sin By cos? B + kT’ cos By — «'T cos B ) (k cos Oyt + T sin Bgn — T cos Byb)

(T2 + K2 cos? 6) 2

Ly (s) =
So, we have

det(7'(s), Lg, (s), Ly, (s))

Tt — k sin 6 cos Bgn + « cos® Bpb
=(x7?sin 6 + x> sin O cos® g + kT’ cos Oy — T cos Oy ) det (t, 0 on + 0

7
/T2 + %2 cos? By

k cos Opt + T sinfpn — T cos GOb)
(T2 4 12 cos? ) 2
=0

for all s € I. This means Dy, is a developable surface. For this reason, we call Dy the one-parameter
developable surfaces of . Moreover, we introduce two invariants as follows:

x(s) sin 6y (t2(s) + k2(s) cos? 6y) + cos O (x(s)T'(s) — k' (s)7(s))

5 =
(s) T2(s) + x2(s) cos? 6 ’
T(s d x(s) cos 90
o(s) = > (2) = — ( > ( ) T > ), (when 4(s) # 0).
V/T2(s) + x2(s) cos? 6 )/ T2(s) + x2(s) cos? Oy
Since
L (s) = (kT2 sin By + x> sin B cos? Oy + kT’ cos By — «'T cos 90)(K cos Oyt + T sin Hyn — T cos Hyb) (s)
® (T2 + K2 cos? ) 2
—5(s) K cos Ogt + T sin Oyn — T cos Oyb (s)
/12 + 12 cos? O ’
so that §(s) = 0 if and only if Lgo (s) = 0. We can also calculate that
oDy, 0Dy, ( x(s) cos b > .
—2(s,u) X —2(s,u) = — 4+ ud(s) ) (sinfpb(s) + cosOyn(s)).
o) x s, = (s EIER - us(s) ) sinob () + cosyn(s)
Thus, that (sp, ug) € I x Ris a singular point of Dy, is equivalent to
K(So) cos B y k(o) sin 6o (T2 (s) + x2(s0) cos? 0y ) + cos O (x(so) T (50) — ¥ (s0)T(50)) 0
0 — .

VT2 (50) + K2(s0) cos? 6y T2(s9) + x2(sg) cos? 6

If 6y # % and (s, up) is a singular point of Dy, then we have uy # 0; that is, Dy, has no singular
points on the base curve 7 (s). We have the following result for (s) and o (s):

Theorem 1. Let i : I — R3 be a unit speed curve. Then the following holds:
(A) For any 0y € [0, 7], the following statements are equivalent:

(1) Dy, is a cylinder,

(2)6(s) =0foralls € I.
(B)If 6(s) # O for all s € I, then the following statements are equivalent:
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(3) Dy, isa conical surface,
(4)o(s) =0foralls € I.
(C) The singularities of one-parameter developable surfaces Dy are 7(s), Dy and

{Dy(s,u)|x(s) cos 9\/12(5) +x2(s) cos2 0 + ux(s) sin O(t%(s) + k2(s) cos® ) + cos O(x(s) 7' (s) — x'(s)7(s))] = 0}.

Proof. (A) By definition, the developable surface is a cylinder if and only if the director vector is a
constant vector and Ly, (s) is the director vector of Dg,. Since

K cos Oyt + T sinOypn — T cos 6yb

L) (s) =6(s s),
o) = e,
then Dy, is a cylinder if and only if §(s) = 0 for all s € I.
(B) We consider the striction curve ¢(s) which is defined by
v(s) - Lfao (s) K(s) cos by

c(s) = 7(s)

Lgo (S)

Loy (s) = 7(s)

- W B 5(s)\/72(s) + x2(s) cos? Oy

Then (B)-(3) is equivalent to ¢’(s) = 0, for all s € I. We can calculate that

d  cos 0 K cos O
/: /T L _ L/
< d5(5 ) s

0,
/12 + 2 cos? By VT2 +x2cos26y

o K cos O 8(x cos Opt + Tsinfgn — T cos Opb) B d( x cos O )
T2 + K2 cos? By T2 + 12 cos? 6 T2 + 12 cos? 6
T(Tt — Kk cos Oy sin fyn + k cos? Opb)  d K cos 0
- 2 1 2 cos2 T Ly,
T2 + k2 cos? 6 ds \ 5+/12 + k2 cos? 6,
:O'(S)LQO.

It follows that (B)-(3) and (B)-(4) are equivalent.
(C) By straightforward calculation, we have

oDy [k sin O(T? + k2 cos? §) + cos O(kT' — xT)](T sinOn + x cos Ot — T cos Ob)
—— =t+u 3 ,
ds (T2 + k% cos? )2
oDy Tt —Ksinf cosOn + K cos? 0b
Ju V1% + K% cos? 6 ’
0Dy x*7cosfsin Ot + (kT2 sin? 0 — x> cos* @ — k1% cos? 0)n — (k3 sin 6 cos® O + 2x T2 cos O sin O)b
— =u - .
06 (T2 4+ k% cos? )2

We can obtain the singularities of Dy if the above three vectors are linearly dependent, which is
equivalent to

ux cos O[u(x sin (1% + x% cos? 0) + cos 0 (kT — k'T)) + K cos /T2 + k2 cos? 0]

i ~0.
(T2 4+ x2cos?0)?

This means that # = 0 or cosf = 0 or

x(s) cos 9\/1’2(5) + 2 (s) cos? 0 + u[sin Ox(s) (T2 (s) + x%(s) cos? 0) — cos (' (s)T(s) — x(s)7'(s))] = 0.
Therefore, (C) holds. [

We give relationships between the singularities of one-parameter developable surfaces of unit
speed curves and the above two invariants, as follows:
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Theorem 2. Let 7y : [ — R3 be a space curve. Then, we have the following:
(1) (so, uo) is a regular point of Dy, if and only if

K(so) cos
\/ T2(s0) + k2 (s0) cos? By

uocS So

(2) Suppose (so, ug) is a singular point of Dg,, then Dy, is locally diffeomorphic to the cuspidal edge at (so, uo) if
(i) 6(so) # 0, o(so) # 0and

x(sp) cos B
8(s0)/72(s0) + K2(s0) cos? 6y

uyg = —

or
(ii) 8(sp) = cos By = 0 and

x(s0)T(s0)
x(s0)T'(s0) +x’(s0)T(s0)"

ug #

(3) Suppose (so, ug) is a singular point of Dy, then Dy, is locally diffeomorphic to the swallowtail at (s, ug) if
8(so) # 0, 0(so) = 0,0 (sg) # 0and

x(sp) cos b
5(30) \/TZ(S()) + KZ(S()) cos? 90 ’

Ug = —

Here SW = {(x1,x0,x3)|x1 = 3u* + u?v,x; = 4ud +2uv,x3 = v} is the swallowtail, C =
{(x1, %2, x3)|x} = x5} is the cusp and C x R is the cuspidal edge (see Figures 1-3).

0.251

0.20

0.157

0.107

0.057

-0.10 -0.05 0 0.05 0.10

Figure 1. Cusp.
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Figure 2. Cuspidal edge.

Figure 3. Swallowtail.
4. One-Parameter Support Functions

For a space curve v : [ — R3, we introduce a function

G:Ix[0,Z]xR¥=R

N3

by G(s,0,x) = (cosbn(s) +sinbb(s)) - (x — y(s)). G is called the one-parameter support function of -,
with respect to the unit normal vector cos 6n(s) + sin 6b(s). We denote gg, »,(s) = G(s, 09, xo) for any
(60,x0) € [0, Z] x R3. Then, we have the following proposition:

Proposition 3. Let y : I — R3 bea unit speed curve and gy, x,(s) = (x0 —(s)) - (cos pn(s) + sin 6pb(s))
the one-parameter support function. Then, the following statements hold:
(1) 86,,x,(50) = 0 if and only if there exist v,u € R such that

x0 — 7y(so) = ut(so) +v(sinBon(sp) — cosbyb(sy)).

(2) 80y,x,(50) = 8f, x,(50) = 0 if and only if there exists u € R, such that

T(s0)t(sg) — x(s0) sin By cos Byn(sg) + x(s0) cos? Bb(sg)
V/T2(s0) + x2(s0) cos? 6y

x0 — (s0) = u

(A) Suppose 5(sg) # 0. Then, we have the following:
(3) 80y,x0(50) = 8f, x,(50) = &g, x,(50) = 0 if and only if

—x(sp) cos t(s0)T(s0) — x(s0) sin By cos Byn(sg) + x(s0) cos? Bb(sg)
6(s0)v/T2(s0) + k2(s0) cos? B V/K2(s0) cos? 0 + T2(s0)

x0 — y(s0) =
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(4) 805,x0(50) = 8p, x,(50) = &g, x,(50) = géi,)xo (so) = 0if and only if 0(sp) = 0 and

x(sg) cos By T(s0)t(so) — x(s0) sin B cos Byn(sg) + x(s0) cos? Bpb(so)
5(s0) /T2 (s0) + x2(s0) cos? By V/x2(s0) cos? 0 + 12(s)

xp —¥(s0) = —

3 4 . .
(5) 860,50 (50) = 8y x, (50) = Sit 10 (50) = 8y, (50) = S, (50) = 0 if and only if 7(s9) = o’ (s9) = 0 and

#(so) cos By T(s0)t(sg) — x(s0) sin B cos Bon(sg) + x(s0) cos? Bb(sg)
8(s0)\/k2(s0) cos? 6y + T2(s0) V/12(s0) + x2(s0) cos? By

xp —y(s0) = —

(B) Suppose §(sg) = 0. Then, the following statements hold:
(6) 805,x0(50) = 8, x,(50) = g x,(S0) = Oif and only if cosby = 0 (g = 7) and there exists u € R,
such that

xo — y(s0) = ut(so)-

3 . .
(7) 860,x,(50) = géO’xO(so) = g’e’O,xO (s9) = g((?o,)xo (s0) = Oifand only if cosfy = 0 (6p = 7 ) and

K(SO)T(SO) )t(So).

%o = 7(%0) = T Ts0) + ¢ (s0)T (50

Proof. Since g, x,(s) = (x0 — (s)) - (cosfon(s) + sin6yb(s)), we have the following:

(1) 86y =(%0 —¥) - (=K cOs Bpt + T cos pb — Tsin fon),
(i) 84, x, =K 0860 + (x0 — ) - [(xkTsin by — ' cos )t — (T2 cos 0 + x% cos By + T’ sin 6p)n
— (1?sin 6y — T’ cos 6)b],
(iii) g’e’o’,xO =2k’ cos By — kTsin by + (xg — y) - [(K'Tsin By — k”’ cos By + xT' sin By + kT cos Oy + x> cos b )t
+ (K37 sin by — 377’ cos by — 3xk’ cos by — T sin By + T° sin fy)n

2

+ (1" cos g — k>T cos By — 37T sinfy — T° cos fy)b],

(4 . .
(iv) g(g()’)xO =3k" cos 0y — 2«'Tsin Oy — k> cos Oy — 2kT’ sin By — k7> cos Oy

+ (x0 — ) - [(x"" T sin 6y — """ cos By + 2’7’ sin By + k' 7> cos B + 2kT" sin By + 6x*k’ cos By
— x*Tsinfy — kT3 sin 6y + 5kTT’ cos by )t

+ (k1T sin 0y — 4xx” cos O + kT’ sin O + x* cos Oy + 26272 cos Oy 4 31« T sin O

+ 137" sin By — 477" cos By — 3(k’)? cos g — 3(7')? cos Oy + T* cos Oy + 6727 sinfy)n

2

+ (1" cos By — 3(7')? sin By — 417" sin By — 5kx’T cos By — x>’ cos by

+ 7t sin 6y — 67°7’ cos Bk T2 sin 6y ) b].

By definition, gg, x, (s0) = 0if and only if xg — y(sg) = ut(sg) +an(sy) +bb(sg) and a cos 6y + bsinfy =
0, where u,a,b € R. We write a = vsinfy and b = v cos 0y, where v is a real number. Then, we have

x0 — 7y(so) = ut(so) +v(sinfon(sp) — cosbyb(sy)).

Therefore, (1) holds.
By (i), 86,x (50) = &6, v, (S0) = 0 if and only if

xo — ¥(so) = ut(sp) + v(sinOpn(sy) — cos ob(so))
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and ux cos 0y + o1 = 0. Since k # 0 and x2 cos 9% + 12 # 0, then there exists u € R such that

T(s9)t(sg) — x(s0) sin B cos Byn(sg) + cos? Box (s0)b(so)
V/T2(s0) + 2 (s0) cos? By

xo — y(s0) = u

Therefore, (2) holds.
By (ii), 86y,x, (50) = 86, x, (50) = &4, x,(50) = 0if and only if there exists u € R, such that

T(s0)t(sg) — x(s0) sin B cos Bgn(sg) + x(s0) cos? Bb(sg)
V/12(s0) + x2(s0) cos? By

x0 —y(s0) = u

and
K (s0) cos B + uK(SO) sin 0o (*(so) + 1> (s) cos” Bp) — cos b (k' (s0) T(s0) — x(s0) 7' (50)) _ 0
V/x2(s0) cos? B + T2(s0)
It follows
#(so) cos By + ud(sp) \/KZ(S()) cos? 6y + t2(sg) = 0.
Thus,
5(so) = K (s0) sin B (* (so) cos® By + 7> (s0)) — cos By (k' (s0) T(s0) — x(s) 7' (s0)) £0
0 x2(s0) cos? 0y + T2(s0)
and
_ x(sp) cos B
8(s0)v/T*(s0) + K2(s0) cos? 6
oré(sp) = 0 and cos 6y = 0. This completes the proof of (A)-(3) and (B)-(6).
Suppose d(sp) # 0. By (iii), we have
800,x0 (SO) = gé)o,x(] (SO) = g(/)/g,xo (50) = ggo/,xo (50) =0
if and only if
%0 — 7(50) = — K(sp) cos by t(s0)7(s0) — x(s0) sin B cos Byn(sg) + x(s0) cos® Byb(sg)
0o 5(s0)1/%2(s0) cos? 0 + T2(s0) V/12(s0) + x2(s0) cos? By
and
K cos By

[2K' cos 6y — kT sinby — (k' 1% sin By + 2xTT’ sin O + 3>’ sin 6y cos? By — T« cos B

3(7? + k2 cos? fp)
+ 11" cos )] (so) = 0.

We rewrite o (s) as following:

. K cos 6 .
0(s) = — /12 + x2 cos? 0y [ 2’ cos 0y — kT sin by — 0 (k' T2 sin 6y

5(12 + k2 cos? bp)

+ 312k’ sin 0 cos? O + 2xTT’ sin 6y — T« cos By + kT cos 00)] (s).

Therefore, we have (A)-(4). By similar arguments as above, we have (A)-(5).
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"

Suppose d(sp) = 0. By (iii), goy,xo(S0) = &g, 1, (50) = &hyx,(50) = &gy 1, (S0) = 0 if and only if
cos by = 0 and

—K(s0)T(s0) +u(x(s0)T'(s0) + ' (s0)T(s0)) =0,

where u € R. Since T2(sg) + x%(s0) cos?> 6y # 0 and cosfy = 0, we have u = K’(sO)T}éZ(;)JrTIEzgg)T’(sO)'

Therefore, we obtain (B)-(7). O

5. Unfoldings of One-Parameter Support Functions

In this section, by using the unfolding theory of functions, we give a classification for singularities
of the one-parameter developable surface of -.

Suppose that F : (R x R", (sp,xp)) — R be a function germ, and write f(s) = Fx,(s,xg). F is
called an r-parameter unfolding of f. We say that f has an Aj-singularity at s if FP)(sg) = 0, for
all1 < p < kand f*t(sg) # 0. If f(P)(sy) = 0, for all 1 < p < k, we also say that f has an
Asj-singularity at sp. Suppose f has an Aj-singularity (k > 1) at sy and F be an r-parameter unfolding
of f; then, we write the (k — 1)-jet of 0F /dx; at s as

k+1

.(k—1) OF
](k 1)87 S, xo Za]l S_SO 1 7’).

We call F an R-versal unfolding of f if the rank of k x r matrix (ag;,&j;) is k (k < r), where

Koj = gf (50, x0). The discriminant set of F is defined to be

Dr = {x € R" | 35 € R F(s,x) = g—f(s,x) — 0}
A well-known classification [12-15] follows.

Theorem 4. Let f(s) have Ay-singularity at sy and F : (R x R", (so, x0)) — R be an r-parameter unfolding
of f(s). If F is an R-versal unfolding of f, then we have the following statements:

(1) Ifk = 2, then Dr is locally diffeomorphic to C x R"~2.

(2) Ifk = 3, then D is locally diffeomorphic to SW x R"~3.

By Proposition 3, we get the discriminant set of the one-parameter support function G(s, 6, x),
as follows:
t(s)t(s) — x(s) sin9cos On(s) + x(s) cos® 0b(s)
V/T2(s) + x2(s) cos? 0

Dg = {’y(s)—l—u Is,u e R0 € [O,;T]}

We have the following proposition:

Proposition 5. Let 7y : I — R3 be a space curve. If gy, x, has the Ay-singularity (k = 2,3) at (sg) and
d(s0) # 0 for k = 3, then G(s, 09, x0) is an R-versal unfolding of gg, x,-

Proof. Let v(s) = (71(s),72(s),713(s)), x = (x1,x2,x3) and cosbyn(s) + sinfpb(s) =
(l1(s),12(s),13(s)). Then, we have

G(s,00,x) = I1(s) (x1 — 11(5)) + I2(s) (x2 — 72(s)) +13(s) (x3 — 13(s)),
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and

oG .
a—xi(s,x) =1i(s), (i=1,23).

Therefore, the 2-jet is as follows:

»0G 1
]2g(so,xo) =1;(so) + I/ (s0) (s — s0) + Ellf’(so)(s —50)%

We consider the following 3 x 3 matrix:

I (SO) I (So) I3 (So) Ccos 9011(50) + sin Qob(SO)
A= li (So) lé(SO) lé(SO) = COos 901’1/(80) + sin Qob/(SO)
I/ (s0) 1(so) I§(s0) cos Bgn” (sg) + sin6pb” (sp)

By the Frenet-Serret formula, we have

cos Oon’ (sg) + sin b’ (sg) = — x(sg) cos Opt(s0) + T(sp) cos Opb(sg) — T(sp) sin o (sp),
cos fon” (sp) + sin Bob” (so) =(T(s0)x(s0) sin B — ' (sp) cos O ) t(so) — [(k*(s0) + T(s0)) cos by
+7/(s0) sin ] n(s0) + (7' (s0) cos By — T2(s0) sin 6y ) b(sp).
Since the orthonormal frame {(sg), b(so), n(so)} is a basis of R?, then the rank of

cos Bpn(sg) + sinfpb(sp)
A= | cosbyn'(sg) + sin6yb’(sp)
cos Byn” (sg) + sin 6pb” (sp)

is equal to the rank of

0 cos By sin 6y
—x(sg) cos By —sinfy(sg) T(sg) cos By .
(s0)x(s0) sin B — cos Opx’ (s9)  —(x2(sp) + T2(s0)) cos By — T'(s0) sinfy T/ (s0) cos By — T2(s0) sin Oy

This means rankA = 3, if and only if

x(sg) sin By (T2 (so) + k(sg) cos? 6g) — cos By (k' (s0)T(s0) — K (50) T (50)) # O.
The above inequality is equivalent to d(sg) # 0. Moreover, the rank of

< cos Bpn(sp) + sinbpb(sp) ) _ < cos Bpn(sg) + sinBpb(so) )

cos Bpn’ (sg) + sin 6pb’ (s) —x(Sp) cos Opt(sg) — T(s0) sinBpn(sg) + T(sp) cos Bpb(sp)

is always two, under the condition x?(sq) cos® 6 + T2(s9) # 0.
Therefore, G is an R-versal unfolding of gg, x, if gg,,x, has Ag-singularity (k = 2,3) atsg. [

Proof of Theorem 2. By direct calculation, we have

9Dy, 9Dy, ( K(s) cos b
s, 1) X s,u) =
ds (&) ou (&) V/T2(s) + x2(s) cos? 0y

+ u5(5)> (sinBpb(s) + cos Opn(s)).

Then, that (s, 1) is a regular point of Dy, is equivalent to

x(sp) cos B

+ ugpd(s 0.
V/T2(s0) + x2(s0) cos? By 08(50) #

Thus, statement (1) holds.
By Proposition 3-(2), D¢ is the image of the one-parameter developable surfaces of -.
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Suppose 4(sg) # 0. By Proposition 3-(A)-(3), (4), and (5), gg,x, has an Ap-type singularity
(respectively, an Az-type singularity) at s = sy if and only if
(sp) cos By

0 e ) ot Ty

and o (sg) # 0 (respectively, (), o(so) = 0 and ¢/(sp) # 0). By Theorem 4 and Proposition 5, we have
(2)-(i) and (3).
Suppose d(sp) = 0. By Proposition 3-(B)-(6) and (7), gg, x, has an Aj-type singularity if and only if
cos by = 0 and
K(s0)(s0)

x(s0)T'(s0) +x’(s0)T(s0) "

Following from Theorem 4 and Proposition 5, we obtain (2)-(ii). This completes the proof. [

o 7#

6. Examples

In this section, we construct the one-parameter developable surfaces associated with a space
curve and two sections of the one-parameter developable surfaces. The two sections are the tangent
developable surface and the rectifying developable surface of the curve. They are also the wavefronts
of the curve.

Example 1. Let y(s) = (— @ sins, —4 Coss, %s), where s is the arc-length parameter. Then

f V2 . V2 V2 V2 . V2

t(s) = (— -5 coss, /=5 sins, 7), n(s) = (sins,coss,0), b(s) = (— - Coss, —-sins, —7).
We can calculate that k(s) = @ and T(s) = — @ Therefore, the one-parameter developable surfaces of v is
as follows:

—t(s) — sin @ cos On(s) + cos? Ob(s)
V1+ cos? 6 '

Dy(s,u) = y(s) +u
The tangent developable surface of -y is as follows:

V2 . V2 V2 V2 V2 V2

(S,T/l) = (—7 S—TUC SS, TMSIHS—T SS, 75"‘7”)

In this case, 5(s) = ‘2[ and o(s) = —1. By Theorem 2 (2)-(i), we have the cuspidal edge singularities at u = 0
(Figure 4). The rectifying developable surface of -y is as follows:

DO(S,M) = ( — TSIHS, _7 COS s, 75 —

In this case, 6(s) = 0. By Theorem 1, the rectifying developable surface of <y is a cylinder (Figure 5).

Example 2. Let y(s) = (352, s, [; V1 — 12— 6dt), where s € (—0.68,0.68). Then, we have

t(s) :(5,53, V1—s2—5s°),

n(s) = m’%zm, —s(1+3s%) ,
V1 +9st — 456" \/1+9s% — 456" /1 +9s% — 456

s2(—3 +2s%) 1+ 2s° 253y/1 — 52 — 56

V1 +9s% — 456" /14 9s% — 456" /1 + 9s% — 40

b(s) =(



Symmetry 2019, 11, 108 12 0f 15

VI—2-s6 g (s) = 25(458 1256 —45+3)
V1+9s%—456 (1+9s% —456)y/1—s2—56
developable surface of vy is as follows:

We can calculate that x(s) = Therefore, the one-parameter

25(4s% — 125% — 45 +3)t(s) — (1 — 5% — 5°)v/1 + 954 — 456 cos O(sin On(s) — cos Ob(s))

Dg(s,u) = y(s) +u
o(su) = 7(s) /452 (458 — 1256 — 4s +3)2 + (1 — 52 — s6)(1 + 9s* — 456) cos2 0

45

Figure 4. v and Dz (s,u) of Example 1.

-2

Figure 5. ¢ and Dy(s, u) of Example 1.

The tangent developable surface of vy is as follows:
1 1 s
Dy (s,u) = (552 + us, 254 + us3,/ V1 — 2 —t8dt + u\/1—s% —s%).
0

In this case, 6(s) = —V\}ﬁ%:‘:&sé # 0 when s € (—0.68,0.68). Since T2(s) + x*(s) cos® 0 # 0, then o'(s) = 1.

By Theorem 2 (2)-(i), we have the cuspidal edge singularities are at u = 0 if s # 0 (Figure 6). The rectifying
developable surface of vy is as follows:
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152 1u2s% (458 — 12s% — 45 + 3) + us?(1 — 52 — °) (=3 + 252)

2 V/4s2(4s8 — 1256 — 45+ 3)2 + (1 — 52 — s6) (1 + 9s% — 4s6)’
14 u2s* (458 — 120 — 45 +3) + u(1 — s> —s°)(1 + 2s°)

4 /4s2(458 — 1256 — 45 +3)2 + (1 — 52 — 50) (1 + 9s% — 4s6)”

/smdt+u25(458—1256—4s+3)\/1—52—56+u253(1—52—s6) 1—52—56)
0 /452 (48 — 1256 — 45 +3)2 + (1 — 52 — 6) (1 + 9s% — 4s°) '

Dy(s,u) = (

In this case, we have

2(3 — 12s% — 73s* + 126s° — 84s8 — 130510 + 252512 — 12054 4 32510 + 24518)

s0) = TO|  — —6
x(s) ls—o (1—52—56)(149s% — 4s6)2 s=0
and
14 9s% — 450)3
o(0) = S(1 495" —457) 9 1 28152
(3= 1252 — 73s% + 1265° — 8455 — 130510 + 252512 — 120514 + 32516 + 24518)2

— 1144s* — 4055° + 6397s® — 9474510 + 10,9622 — 10,6985 + 639650 + 185458 — 818052

=0.
5=0

+6a&ﬂ—1n&ﬂ+5%¥ﬁ+M%%)]

We can also calculate o’ (0) = 1. By Theorem 2 (3), we have the swallowtail singularities at (0, — L) (Figure 7).

-10

-10

-05

1.0
=10

-3 0.0 05 10

Figure 6. <y and D (s, u) of Example 2.
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=10

Figure 7. v and Dy(s, u) of Example 2.

Author Contributions: Conceptualization, Q.Z.; Writing—Original Draft Preparation, Q.Z.; Calculations, D.P;
Manuscript Correction, D.P.; Giving the Examples, Y.W.; Drawing the Pictures, Y.W.

Funding: This research was funded by National Natural Science Foundation of China grant numbers 11271063
and 11671070 and the Fundamental Research Funds for the Central Universities grant number 3132018220.

Acknowledgments: This research was funded by National Natural Science Foundation of China grant numbers
11271063 and 11671070 and the Fundamental Research Funds for the Central Universities grant number
3132018220.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Ishikawa, G. Topological classification of the tangent developable of space curves. J. Lond. Math. Soc. 2000,
62, 583-598. [CrossRef]

2. Izumiya, S.; Katsumi, H.; Yamasaki, T. The Rectifying Developable and the Spherical Darboux Image of a
Space Curve. Banach Center Publ. 1999, 50, 137-149. [CrossRef]

3.  Pottmann, H.; Wallner, J]. Approximation algorithms for developable surfaces. Comput. Aided Geom. Des.
1999, 16, 539-556. [CrossRef]

4. Solomon, J.; Vouga, E.; Wardetzky, M.; Grinspun, E. Flexible developable surfaces. Comput. Graph. Forum
2012, 31, 1567-1576. [CrossRef]

5. Tang, C.; Bo, P.; Wallner, J.; Pottmann, H. Interactive design of developable surfaces. ACM Trans. Graph. 2016,
35, 1-12. [CrossRef]

6.  Cayley, A. On the developable surfaces which arise from two surfaces of second order. Camb. Dublin Math. ].
1850, 2, 46-57.

7. Sun,],; Pei, D. Singularity analysis of Lorentzian hypersurfaces on pseudo n-spheres. Math. Methods Appl. Sci.
2015, 38, 2561-2573. [CrossRef]

8.  Sun, J,; Pei, D. Singularity properties of one-parameter lightlike hypersurfaces in Minkowski 4-space.
J. Nonlinear Sci. Appl. 2015, 8, 467-477. [CrossRef]

9.  Wang, Y,; Pei, D.; Cui, X. Pseudo-spherical normal Darboux images of curves on a lightlike surface.
Math. Methods Appl. Sci. 2017, 40, 7151-7161. [CrossRef]

10. Wang, Y.; Pei, D.; Gao, R. Singularities for one-parameter null hypersurfaces of Anti-de Sitter spacelike

curves in semi-Euclidean Space. J. Funct. Spaces 2016, 2, 1-8. [CrossRef]


http://dx.doi.org/10.1112/S0024610700001095
http://dx.doi.org/10.4064/-50-1-137-149
http://dx.doi.org/10.1016/S0167-8396(99)00012-6
http://dx.doi.org/10.1111/j.1467-8659.2012.03162.x
http://dx.doi.org/10.1145/2832906
http://dx.doi.org/10.1002/mma.3242
http://dx.doi.org/10.22436/jnsa.008.05.02
http://dx.doi.org/10.1002/mma.4519
http://dx.doi.org/10.1155/2016/2319741

Symmetry 2019, 11, 108 15 of 15

11.
12.
13.
14.

15.

Izumiya, S.; Takeuchi, N. Geometry of ruled surfaces. Appl. Math. Gold. Age 2003, 18, 305-338.

Bruce, J.W.; Giblin, PJ. Curves and Singularities; Cambridge Press: Cambridge, UK, 1992.

Arnol'd, V. I; Gusein-Zade, S.M.; Varchenko, A.N. Singularities of Differentiable Maps; Birkhduser: New York,
NY, USA, 1986; Volume I.

Damon, J. The Unfolding and Determinacy Theorems for Subgroups of A and IC; Memoirs American Mathematical
Society: Providence, RI, USA, 1984.

Stoker, J.J. Differential Geometry. In Pure and Applied Math; Wiley-Interscience: New York, NY, USA, 1969.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Notation
	One-Parameter Developable Surfaces
	One-Parameter Support Functions
	Unfoldings of One-Parameter Support Functions
	Examples
	References

