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Abstract: This article considers the fourth-order family of weighted-Newton methods. It provides the
range of initial guesses that ensure the convergence. The analysis is given for Banach space-valued
mappings, and the hypotheses involve the derivative of order one. The convergence radius, error
estimations, and results on uniqueness also depend on this derivative. The scope of application of the
method is extended, since no derivatives of higher order are required as in previous works. Finally,
we demonstrate the applicability of the proposed method in real-life problems and discuss a case where
previous studies cannot be adopted.
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1. Introduction

In this work, B1 and B2 denote Banach spaces, A ⊆ B1 stands for a convex and open set,
and ϕ : A → B2 is a differentiable mapping in the Fréchet sense. Several scientific problems can be
converted to the expression. This paper addresses the issue of obtaining an approximate solution s∗ of:

ϕ(x) = 0, (1)

by using mathematical modeling [1–4]. Finding a zero s∗ is a laborious task in general, since analytical
or closed-form solutions are not available in most cases.

We analyze the local convergence of the two-step method, given as follows:

yj = xj − δϕ′(xj)
−1 ϕ(xj),

xn+1 = xj − A−1
j
(
c1 ϕ(xj) + c2 ϕ(yj)

)
,

(2)

where x0 ∈ A is a starting point, Aj = αϕ′(xj) + βϕ′
( xj+yj

2

)
+ γϕ′(yj), and α, β, γ, δ, c1, c2 ∈ S,

where S = R or S = C. The values of the parameters α, γ, β, and c1 are given as follows:

α = −1
3

c2(3δ2 − 7δ + 2), β = −4
3

c2(2δ− 1),

γ =
1
3

c2(δ− 2) and c1 = −c2(δ
2 − δ + 1), for δ 6= 0, c2 6= 0.
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Comparisons with other methods, proposed by Cordero et al. [5], Darvishi et al. [6], and Sharma [7],
defined respectively as:

wj = xj − ϕ′(xj)
−1 ϕ(xj),

xn+1 = wj − B−1
j ϕ(wj),

(3)

wj = xj − ϕ′(xj)
−1 ϕ(xj),

zj = xj − ϕ′(xj)
−1(ϕ(xj) + ϕ(wj)

)
,

xn+1 = xj − C−1
j ϕ(xj),

(4)

yj = xj −
2
3

ϕ′(xj)
−1 ϕ(xj),

xn+1 = xj −
1
2

D−1
j ϕ′(xj)

−1 ϕ(xj),
(5)

where:
Bj = 2ϕ′(xj)

−1 − ϕ′(xj)
−1 ϕ′(wj)ϕ′(xj)

−1,

Cj =
1
6

ϕ′(xj) +
2
3

ϕ′
( xj + wj

2

)
+

1
6

ϕ′(zj),

Dj = −I +
9
4

ϕ′(yj)
−1 ϕ′(xj) +

3
4

ϕ′(xj)
−1 ϕ′(yj),

were also reported in [8]. The local convergence of Method (2) was shown in [8] for B1 = B2 = Rm and
S = R, by using Taylor series and hypotheses reaching up to the fourth Fréchet-derivative. However,
the hypothesis on the fourth derivative limits the applicability of Methods (2)–(5), particularly because
only the derivative of order one is required. Let us start with a simple problem. Set B1 = B2 = R and
A = [− 5

2 , 3
2 ]. We suggest a function ϕ : A→ R as:

ϕ(x) =

{
0, x = 0
x3lnx2 + x5 − x4, x 6= 0

,

which further yield:
ϕ′(x) = 3x2 ln x2 + 5x4 − 4x3 + 2x2,

ϕ′′(x) = 12x ln x2 + 20x3 − 12x2 + 10x,

ϕ′′′(x) = 12 ln x2 + 60x2 − 12x + 22,

where the solution is s∗ = 1. Obviously, the function ϕ′′′(x) is unbounded in the domain A. Therefore,
the results in [5–9] and Method (2) cannot be applicable to such problems or its special cases that
require the hypotheses on the third- or higher order derivatives of ϕ. Without a doubt, some of the
iterative method in Brent [10] and Petkovíc et al. [4] are derivative free and are used to locate zeros of
functions. However, there have been many developments since then. Faster iterative methods have
been developed whose convergence order is determined using Taylor series or with the technique
introduce in our paper. The location of the initial points is a “shot in the dark” in these references;
no uniqueness results or estimates on ‖xn − x∗‖ are available. Methods on abstract spaces derived
from the ones on the real line are also not addressed.

These works do not give a radius of convergence, estimations on ‖xj − s∗‖, or knowledge about
the location of s∗. The novelty of this study is that it provides this information, but requiring only
the derivative of order one for method (2). This expands the scope of utilization of (2) and similar
methods. It is vital to note that the local convergence results are very fruitful, since they give insight
into the difficult operational task of choosing the starting points/guesses.

Otherwise, with the earlier approaches: (i) use the Taylor series and high-order derivative; (ii) have
no clue about the choice of the starting point x0; (iii) have no estimate in advance about the number of
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iterations needed to obtain a predetermined accuracy; and (iv) have no knowledge of the uniqueness
of the solution.

The work is laid out as follows: we give the convergence of the iterative scheme (2) with the
main Theorem 1 is given in Section 2. Six numerical problems are discussed in Section 3. The final
conclusions are summarized in Section 4.

2. Convergence Study

This section starts by analyzing the convergence of Scheme (2). We assume that L > 0, L0 > 0,
M ≥ 1 and γ, α, β, δ, c1, c2 ∈ S. We consider some maps/functions and constant numbers. Therefore,
we assume the following functions g1, p, and hp on the open interval [0, 1

L0
) by:

g1(t) =
1

2(1− L0t)
(Lt + 2M|1− δ|),

p(t) =
L0

|α + β + γ|

(
|α|+ |β|

2

(
|β|
2

+ |γ|
)

g1(t)
)

t, for α + β + γ 6= 0,

hp(t) = p(t)− 1,

and the values of r1 and rA are given as follows:

r1 =
2(M|1− δ| − 1)

, rA =
2

L + 2L0
.

Consider that:
M|1− δ| < 1. (6)

It is clear from the function g1, parameters r1 and rA, and Equation (6), that 0 < r1 ≤ rA < 1
L0

,

g1(r1) = 1, and 0 ≤ g1(t) < 1, for each t ∈ [0, r1) and hp(0) = −1 and hp(t) → +∞ as t → 1−

L0
.

On the basis of the classical intermediate value theorem, the function hp has at least one zero in the

open interval
(

0,
1
L0

)
. Let us call rp as the smallest zero. We suggest some other functions g2 and h2

on the interval [0, rp) by means of the expressions:

g2(t) =
1

2(1− L0t)

[
Lt +

2M2(|α− 1|+ |β|+ |γ|
)(
|1− c1|+ |c2|g1(t)

)
|α + β + γ|(1− L0t)(1− p(t))

+
2M
(
|1− c1|+ |c2|g1(t)

)
1− L0t

]
and:

h2(t) = g2(t)− 1.

Suppose that:

M
(
|1− c1|+ c2M|1− δ|

) (
1 +

M
(
|α− 1|+ |β|+ |γ|

)
|α + β + γ|

)
< 1. (7)

Then, we have by Equation (7) that h2(0) < 0 and h2(t) → +∞ as t → r−p by the definition of rp.
We recall r2 as the least zero of h2 on (0, rp).
Define:

r = min{r1, r2}. (8)

Then, notice that for all t ∈ [0, r):
0 < r < rA, (9)

0 ≤ g1(t) < 1, (10)
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0 ≤ p(t) < 1, (11)

0 ≤ g2(t) < 1. (12)

Assume that Q(x, δ) =

{
y ∈ B1 : ‖x − y‖ < δ

}
. We can now proceed with the local convergence

study of (2) adopting the preceding notations.

Theorem 1. Let us assume that ϕ : A ⊂ B1 → B2 is a differentiable operator. In addition, we consider that
there exist s∗ ∈ A, L > 0, L0 > 0, M ≥ 1 and the parameters α, β, γ, c1, c2 ∈ S, with α + β + γ 6= 0,
are such that:

ϕ(s∗) = 0, ϕ′(s∗)−1 ∈ L(B2, B1), (13)

‖ϕ′(s∗)−1(ϕ′(s∗)− ϕ′(x)‖ ≤ L0‖s∗ − x‖, ∀ x ∈ A. (14)

Set x, y ∈ A0 = A∩Q
(

s∗, 1
L0

)
so that:

‖ϕ′(s∗)−1(ϕ′(y)− ϕ′(x)
)
‖ ≤ L‖y− x‖, ∀ y, x ∈ A0 (15)

‖ϕ′(s∗)−1 ϕ′(x)‖ ≤ M, ∀ x ∈ A0, (16)

satisfies Equations (6) and (7), the condition:

Q̄(s∗, r) ⊂ A, (17)

holds, and the convergence radius r is provided by (8). The obtained sequence of iterations {xj} generated for
x0 ∈ Q(s∗, r)− {x∗} by (2) is well defined. In addition, the sequence also converges to the required root s∗,
remains in Q(s∗, r) for every n = 0, 1, 2, . . ., and:

‖yj − s∗‖ ≤ g1(‖xj − s∗‖)‖xj − s∗‖ ≤ ‖xj − s∗‖ < r, (18)

‖xn+1 − s∗‖ ≤ g2(‖xj − s∗‖)‖xj − s∗‖ < ‖xj − s∗‖, (19)

where the g functions were described previously. Moreover, the limit point s∗ of the obtained sequence {xj} is
the only root of ϕ(x) = 0 in A1 := Q̄(s∗, T) ∩A, and T is defined as T ∈ [r, 2

L0
).

Proof. We prove the estimates (18)–(19), by mathematical induction. Adopting the hypothesis
x0 ∈ Q(s∗, r)− {x∗} and Equations (6) and (14), it results:

‖ϕ′(s∗)−1(ϕ′(x0)− ϕ′(s∗))‖ ≤ L0‖x0 − s∗‖ < L0r < 1. (20)

Using Equation (20) and the results on operators by [1–3] that ϕ′(x0) 6= 0, we get:

‖ϕ′(x0)
−1 ϕ′(s∗)‖ ≤

1
1− L0‖x0 − s∗‖

. (21)

Therefore, it is clear that y0 exists. Then, by using Equations (8), (10), (15), (16), and (21), we obtain:

‖y0 − s∗‖ = ‖
(

x0 − s∗ − ϕ′(x0)
−1 ϕ(x0)

)
+ (1− δ)ϕ′(x0)

−1 ϕ(x0)‖

≤ ‖ϕ′(x0)
−1 ϕ′(s∗)‖‖

∫ 1
0 ϕ′(x∗)−1[ϕ′(s∗ + θ(x0 − s∗))− ϕ′(x0)

]
(x0 − s∗)dθ‖

+‖ϕ′(x0)
−1 ϕ′(s∗)‖‖

∫ 1
0 ϕ′(x∗)−1 ϕ′(s∗ + θ(x0 − s∗))(x0 − s∗)dθ‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − s∗‖)
+

M|1− δ|‖x0 − s∗‖
1− L0‖x0 − s∗‖

= g1(‖x0 − s∗‖)‖x0 − s∗‖ < ‖x0 − s∗‖ < r,

(22)
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illustrating that y0 ∈ Q(s∗, r) and Equation (18) is true for j = 0.
Now, we demonstrate that the linear operator A0 is invertible. By Equations (8), (10), (14), and (22),

we obtain:
‖
(
(α + β + γ)ϕ′(s∗)

)−1(A0 − (α + β + γ)ϕ′(s∗)
)
‖

≤ L0
|α + β + γ|

[
|α|‖x0 − s∗‖+

|β|
2
(
‖x0 − s∗‖+ ‖y0 − s∗‖

)
+ |γ|‖y0 − s∗‖

]
≤ L0
|α + β + γ|

[
|α|+ |β|

2

(
|β|
2

+ |γ|
)

g1
(
‖x0 − s∗‖

)
‖x0 − s∗‖

]
= p(‖x0 − s∗‖) < p(r) < 1.

(23)

Hence, A−1
0 ∈ L(B2, B1),

‖A−1
0 ϕ′(s∗)‖ ≤

1
|α + β + γ|(1− p(‖x0 − s∗‖))

, (24)

and x1 exists. Therefore, we need the identity:

x1 − s∗ =x0 − s∗ − ϕ′(x0)
−1 ϕ(x0)− ϕ′(x0)

−1((1− c1)ϕ(x0) + c2 ϕ(y0)
)

+ ϕ′(x0)
−1(A0 − ϕ′(x0)

)
A−1

0
(
c1 ϕ(x0) + c2 ϕ(y0)

)
.

(25)

Further, we have:

‖x1 − s∗‖ ≤ ‖x0 − s∗ − ϕ′(x0)
−1 ϕ(x0)‖+ ‖ϕ′(x0)

−1((1− c1)ϕ(x0) + c2 ϕ(y0)
)
‖

+ ‖ϕ′(x0)
−1 ϕ′(s∗)‖‖ϕ′(s∗)−1(A0 − ϕ′(x0)

)
‖‖A−1

0 ϕ′(s∗)‖‖ϕ′(s∗)−1(c1 ϕ(x0) + c2 ϕ(y0)
)
‖

≤ L‖x0 − s∗‖2

2
(
1− L0‖x0 − s∗‖

) + M
(
|1− c1|‖x0 − s∗‖+ |c2|‖y0 − s∗‖

)
1− L0‖x0 − s∗‖

+
M2(|α− 1|+ |β|+ |γ|

)(
|1− c1|+ |c2|g1(‖x0 − s∗‖)

)
‖x0 − s∗‖

|α + β + γ|(1− L0‖x0 − s∗‖)
(
1− p(‖x0 − s∗‖)

)
≤ g2(‖x0 − s∗‖)‖x0 − s∗‖ < ‖x0 − s∗‖ < r,

(26)

which demonstrates that x1 ∈ Q(s∗ r) and (19) is true for j = 0, where we used (15) and (21) for the
derivation of the first fraction in the second inequality. By means of Equations (21) and (16), we have:

‖ϕ(s∗)−1 ϕ(x0)‖ = ‖ϕ′(s∗)−1(ϕ(x0)− ϕ(s∗)
)
‖

=
∥∥∥ ∫ 1

0
ϕ′(s∗)−1 ϕ′(s∗ + θ(x0 − s∗))dθ

∥∥∥ ≤ M‖x0 − s∗‖.

In the similar fashion, we obtain ‖ϕ′(s∗)−1 ϕ(y0)‖ ≤ M‖y0 − s∗‖ ≤ Mg1(‖x0 − s∗‖)‖x0 − s∗‖ (by (22))
and the definition of A to arrive at the second section. We reach (18) and (19), just by changing x0,
z0, y0, and x1 by xj, zj, yj, and xj+1, respectively. Adopting the estimates ‖xj+1− s∗‖ ≤ q‖xj− s∗‖ < r,
where q = g2(‖x0 − s∗‖) ∈ [0, 1), we conclude that xj+1 ∈ Q(s∗, r) and lim

j→∞
xj = s∗. To illustrate the

unique solution, we assume that y∗ ∈ A1, satisfying ϕ(y∗) = 0 and U =
∫ 1

0 ϕ′(y∗ + θ(s∗ − y∗))dθ.
From Equation (14), we have:

‖ϕ′(s∗)−1(U − ϕ′(s∗))‖ ≤ ‖
∫ 1

0 L0|y∗ + θ(s∗ − y∗)− s∗‖dθ

≤
∫ 1

0 (1− t)‖y∗ − s∗‖dθ ≤ L0

2
T < 1.

(27)

It follows from Equation (27) that U is invertible. Therefore, the identity 0 = ϕ(y∗) − ϕ(s∗) =

U(y∗ − s∗) leads to y∗ = s∗.
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3. Numerical Experiments

Herein, we illustrate the previous theoretical results by means of six examples. The first two are
standard test problems. The third is a counter problem where we show that the previous results are
not applicable. The remaining three examples are real-life problems considered in several disciplines
of science.

Example 1. We assume that B1 = B2 = R3, A = Q̄(0, 1). Then, the function ϕ is defined on A for
u = (x1, x2, x3)

T as follows:

ϕ(u) =
(

ex
1 − 1, x2 −

1
2
(1− e)x2

2, x3

)T
. (28)

We yield the following Fréchet-derivative:

ϕ′(u) =

ex1 0 0
0 (e− 1)x2 + 1 0
0 0 1

 .

It is important to note that we have s∗ = (0, 0, 0)T , L0 = e − 1 < L = e
1

L0 , δ = 1, M = 2, c1 = 1,

and ϕ′(s∗) = ϕ′(s∗)−1 =

1 0 0
0 1 0
0 0 1

. By considering the parameter values that were defined in Theorem 1,

we get the different radii of convergence that are depicted in Tables 1 and 2.

Table 1. Radii of convergence for Example 1, where L0 < L.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 0.382692 0.0501111 0.0501111

2 − 2
3

4
3 −100 1

100 0.382692 0.334008 0.334008
3 1 1 1 0 0.382692 0.382692 0.382692
4 1 1 1 1

100 0.382692 0.342325 0.342325
5 10 1

10
1
10

1
100 0.382692 0.325413 0.325413

Table 2. Radii of convergence for Example 1, where L0 = L = e by [3,11].

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 0.245253 0.0326582 0.0326582

2 − 2
3

4
3 −100 1

100 0.245253 0.213826 0.213826
3 1 1 1 0 0.245253 0.245253 0.245253
4 1 1 1 1

100 0.245253 0.219107 0.219107
5 10 1

10
1
10

1
100 0.245253 0.208097 0.208097

Example 2. Let us consider that B1 = B2 = C[0, 1], A = Q̄(0, 1) and introduce the space of continuous
maps in [0, 1] having the max norm. We consider the following function ϕ on A:

ϕ(φ)(x) = ϕ(x)− 5
∫ 1

0
xτφ(τ)3dτ, (29)
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which further yields:

ϕ′
(
φ(µ)

)
(x) = µ(x)− 15

∫ 1

0
xτφ(τ)2µ(τ)dτ, for each µ ∈ A.

We have s∗ = 0, L = 15, L0 = 7.5, M = 2, δ = 1, and c1 = 1. We will get different radii of convergence on
the basis of distinct parametric values as mentioned in Tables 3 and 4.

Table 3. Radii of convergence for Example 2, where L0 < L.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 0.0666667 0.00680987 0.00680987

2 − 2
3

4
3 −100 1

100 0.0666667 0.0594212 0.0594212
3 1 1 1 0 0.0666667 0.0666667 0.0666667
4 1 1 1 1

100 0.0666667 0.0609335 0.0609335
5 10 1

10
1
10

1
100 0.0666667 0.0588017 0.0588017

Table 4. Radii of convergence for Example 2, where L0 = L = 15 by [3,11].

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 0.0444444 0.00591828 0.00591828

2 − 2
3

4
3 −100 1

100 0.0444444 0.0387492 0.0387492
3 1 1 1 0 0.0444444 0.0444444 0.0444444
4 1 1 1 1

100 0.0444444 0.0397064 0.0397064
5 10 1

10
1
10

1
100 0.0444444 0.0377112 0.0377112

Example 3. Let us return to the problem from the Introduction. We have s∗ = 1, L = L0 = 96.662907,
M = 2, δ = 1, and c1 = 1. By substituting different values of the parameters, we have distinct radii of
convergence listed in Table 5.

Table 5. Radii of convergence for Example 3.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 0.00689682 0.000918389 0.000918389

2 − 2
3

4
3 −100 1

100 0.00689682 0.00601304 0.00601304

3 1 1 1 0 0.00689682 0.00689682 0.00689682

4 1 1 1 1
100 0.00689682 0.00616157 0.00616157

5 10 1
10

1
10

1
100 0.00689682 0.0133132 0.0133132

Example 4. The chemical reaction [12] illustrated in this case shows how W1 and W2 are utilized at rates
q∗ −Q∗ and Q∗, respectively, for a tank reactor (known as CSTR), given by:
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W2 + W1 →W3

W3 + W1 →W4

W4 + W1 →W5

W5 + W1 →W6

Douglas [13] analyzed the CSTR problem for designing simple feedback control systems. The following
mathematical formulation was adopted:

KC
2.98(x + 2.25)

(x + 1.45)(x + 2.85)2(x + 4.35)
= −1,

where the parameter KC has a physical meaning and is described in [12,13]. For the particular value of choice
KC = 0, we obtain the corresponding equation:

ϕ(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875. (30)

The function ϕ has four zeros s∗ = (−1.45, −2.85, −2.85, −4.35). Nonetheless, the desired zero is
s∗ = −4.35 for Equation (30). Let us also consider A = [−4.5,−4].

Then, we obtain:

L0 = 1.2547945, L = 29.610958, M = 2, δ = 1, c1 = 1.

Now, with the help of different values of the parameters, we get different radii of convergence displayed in Table 6.

Table 6. Radii of convergence for Example 4.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 0.0622654 0.00406287 0.00406287

2 − 2
3

4
3 −100 1

100 0.0622654 0.0582932 0.0582932

3 1 1 1 0 0.0622654 0.0622654 0.0622654

4 1 1 1 1
100 0.0622654 0.0592173 0.0592173

5 10 1
10

1
10

1
100 0.0622654 0.0585624 0.0585624

Example 5. Here, we assume one of the well-known Hammerstein integral equations (see pp. 19–20, [14])
defined by:

x(s) = 1 +
1
5

∫ 1

0
F(s, t)x(t)3dt, x ∈ C[0, 1], s, t ∈ [0, 1], (31)

where the kernel F is:

F(s, t) =

{
s(1− t), s ≤ t,

(1− s)t, t ≤ s.

We obtain (31) by using the Gauss–Legendre quadrature formula with
∫ 1

0 φ(t)dt '
8

∑
k=1

wkφ(tk), where tk and

wk are the abscissas and weights, respectively. Denoting the approximations of x(ti) with xi (i = 1, 2, 3, ..., 8),
then it yields the following 8× 8 system of nonlinear equations:
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5xi − 5−
8

∑
k=1

aikx3
k = 0, i = 1, 2, 3..., 8,

aik =

{
wktk(1− ti), k ≤ i,

wkti(1− tk), i < k.

The values of tk and wk can be easily obtained from the Gauss–Legendre quadrature formula when k = 8.
The required approximate root is:

s∗ = (1.002096 . . . , 1.009900 . . . , 1.019727 . . . , 1.026436 . . . , 1.026436 . . . ,
1.019727 . . . , 1.009900 . . . , 1.002096 . . . )T .

Then, we have:

L0 = L =
3
40

, M = 2, δ = 1, c1 = 1

and A = Q(s∗, 0.11). By using the different values of the considered disposable parameters, we have different
radii of convergence displayed in Table 7.

Table 7. Radii of convergence for Example 5.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 8.88889 1.18366 1.18366

2 − 2
3

4
3 −100 1

100 8.88889 7.74984 7.74984

3 1 1 1 0 8.88889 8.88889 8.88889

4 1 1 1 1
100 8.88889 7.94127 7.94127

5 10 1
10

1
10

1
100 8.88889 7.54223 7.54223

Example 6. One can find the boundary value problem in [14], given as:

y′′ =
1
2

y3 + 3y′ − 3
2− x

+
1
2

, y(0) = 0, y(1) = 1. (32)

We suppose the following partition of [0, 1]:

x0 = 0 < x1 < x2 < x3 < · · · < xj, where xi+1 = xi + h, h =
1
j
.

In addition, we assume that y0 = y(x0) = 0, y1 = y(x1), . . . , yj−1 = y(xj−1) and yj = y(xj) = 1. Now,
we can discretize this problem (32) relying on the first- and second-order derivatives, which is given by:

y′k =
yk+1 − yk−1

2h
, y′′k =

yk−1 − 2yk + yk+1

h2 , k = 1, 2, . . . , j− 1.

Hence, we find the following general (j− 1)× (j− 1) nonlinear system:

yk+1 − 2yk + yk−1 −
h2

2
y3

k −
3

2− xk
h2 − 1

h2 = 0, k = 1, 2, . . . , j− 1.

We choose the particular value of j = 7 that provides us a 6×6 nonlinear systems. The roots of this nonlinear system
are s∗ =

(
0.07654393 . . . , 0.1658739 . . . , 0.2715210 . . . , 0.3984540 . . . , 0.5538864 . . . , 0.7486878 . . .

)T, and
the results are mentioned in Table 8.
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Then, we get that:
L0 = 73, L = 75, M = 2, δ = 1, c1 = 1,

and A = Q(s∗, 0.15).
With the help of different values of the parameters, we have the different radii of convergence listed in Table 8.

Table 8. Radii of convergence for Example 6.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 0.00904977 0.00119169 0.00119169

2 − 2
3

4
3 −100 1

100 0.00904977 0.00789567 0.00789567

3 1 1 1 0 0.00904977 0.00904977 0.00904977

4 1 1 1 1
100 0.00904977 0.00809175 0.00809175

5 10 1
10

1
10

1
100 0.00904977 0.00809175 0.00809175

Remark 1. It is important to note that in some cases, the radii ri are larger than the radius of Q(s∗, r). A similar
behavior for Method (2) was noticed in Table 7. Therefore, we have to choose all ri = 0.11 because Expression
(17) must be also satisfied.

4. Concluding Remarks

The local convergence of the fourth-order scheme (2) was shown in earlier works [5,6,8,15] using
Taylor series expansion. In this way, the hypotheses reach to four-derivative of the function ϕ in the
particular case when B1 = B2 = Rm and S = R. These hypotheses limit the applicability of methods
such (2). We analyze the local convergence using only the first derivative for Banach space mapping.
The convergence order can be found using the computational order of convergence (COC)or the
approximate computational order of convergence (ACOC) (Appendix A), avoiding the computation
of higher order derivatives. We found also computable radii and error bounds not given before using
Lipschitz constants, expanding, therefore, the applicability of the technique. Six numerical problems
were proposed for illustrating the feasibility of the new approach. Our technique can be used to study
other iterative methods containing inverses of mapping such as (3)–(5) (see also [1–9,11–45]) and to
expand their applicability along the same lines.
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Appendix A

Remark

(a) The procedure of studying local convergence was already given in [1,2] for similar methods.
Function M(t) = M = 2 or M(t) = 1 + L0t, since 0 ≤ t < 1

L0
can be replaced by

(16). The convergence radius r cannot be bigger than the radius rA for the Newton method
given in this paper. These results are used to solve autonomous differential equations.
The differential equation plays an important role in the study of network science, computer
systems, social networking systems, and biochemical systems [46].

In fact, we refer the reader to [46], where a different technique is used involving discrete
samples from the existence of solution spaces. The existence of intervals with common solutions,
as well as disjoint intervals and the multiplicity of intervals with common solutions is also shown.
However, this work does not deal with spaces that are continuous and multidimensional.

(b) It is important to note that the scheme (2) does not change if we adopt the hypotheses of
Theorem 1 rather than the stronger ones required in [5–9]. In practice, for the error bounds,
we adopt the following formulas [22] for the computational order of convergence (COC),
when the required root is available, or the approximate computational order of convergence
(ACOC), when the required root is not available in advance, which can be written as:

ξ =
ln ‖xk+2−s∗‖
‖xk+1−s∗‖

ln ‖xk+1−s∗‖
‖xk−s∗‖

, k = 0, 1, 2, 3 . . . ,

ξ∗ =
ln ‖xk+2−xk+1‖
‖xk+1−xk‖

ln ‖xk+1−xk‖
‖xk−xk−1‖

, k = 1, 2, 3, . . . ,

respectively. By means of the above formulas, we can obtain the convergence order without
using estimates on the high-order Fréchet derivative.
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