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Abstract: We study one-dimensional p-Laplacian problems and answer the unsolved problem.
Our method is to study the property of the operator, the concavity of the solutions and the continuity
of the first eigenvalues. By the above study, the main difficulty is overcome and the fixed point
theorem can be applied for the corresponding compact maps. An affirmative answer is given to the
unsolved problem with superlinearity. A global growth condition is not imposed on the nonlinear
term f . The assumptions of this paper are more general than the usual, thus the existing results
cannot be utilized. Some recent results are improved from weak solutions to classical solutions and
from p ≥ 2 to p ∈ (1, ∞).
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1. Introduction

It is well-known that one-dimensional p-Laplacian problems{
−∆pz(x) = f (x, z(x)) for almost every (a.e.) x ∈ (0, 1),

z(0) = z(1) = 0.
(1)

are of great importance in the fields of Newtonian fluids (p = 2) and non-Newtonian fluids (p 6= 2);
Dilatant fluids and pseudoplastic fluids may be characterized by p > 2 and 1 < p < 2, respectively (e.g.,

see [1]), where ∆pz(x) = (φp(z′(x)))′, z′(x) =
dz
dx

denotes the usual derivative, φp(s) = |s|p−2s, s ∈ R
and p ∈ (1, ∞),

The existence of positive solutions of Equation (1) has been widely investigated via various
methods and a lot of results have been proved under various assumptions. Let us mention just
a few. Using the fixed point index, Wang [2] and Webb and Lan [3] studied Equation (1). In [2],
f (x, u) = g(x) f0(u) and f0 was assumed to satisfy

lim
u→∞

f0(u)
up−1 = 0 and lim

u→0+

f0(u)
up−1 = ∞ (2)

and in [3], p = 2 and

0 ≤ lim
u→∞

f (u)
u

< π2 < lim
u→0+

f (u)
u
≤ ∞
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was imposed on f . Rynne [4] and Dai and Ma [5] investigated Equation (1) with suitable boundary
conditions using bifurcation theory. When p ≥ 2, the existence of positive weak solutions was studied by
Ćwiszewski and Maciejewski [6] under the sublinear conditions:

0 ≤ lim
u→∞

f (u)
up−1 < µp < lim

u→0+

f (u)
up−1 ≤ ∞, (3)

or under the superlinear conditions:

0 ≤ lim
u→0+

f (u)
up−1 < µp < lim

u→∞

f (u)
up−1 ≤ ∞, (4)

where µp is the first eigenvalue of the corresponding homogeneous Dirichlet boundary value problem
and µ2 = π2. Actually, Ćwiszewski et al. [6] covered PDE cases, where f was not required to be
nonnegative, but Ćwiszewski et al. [6] only studied weak solutions and requires both a global growth
condition on f and p ≥ 2. Hence, they [6] obtained less restrictive solution under stronger assumptions.

In 2015, Lan et al. [7] proved the existence of positive (classical) solutions for Equation (1)under
the general conditions (see (H1) and (H2) in Theorem 2.11 [7], which cover Equation (3)) involving
the first eigenvalues of the corresponding problems. However, the problem in Equation (1) under the
superlinear case is left unsolved [7], that is, whether Equation (1) has positive (classical) solutions
under the superlinear conditions in Equation (4).

In [8–10], the existence of solutions for high-dimensional cases was studied, where topological
degree theory, bifurcation theory and the variational approach were employed, respectively. One may
refer to [5–10] and the references therein for more related study of p-Laplacian problems.

The core of this paper is to give an affirmative answer to the unsolved problem with
superlinearity [7]. Our method is to study the property of the operator (see Lemma 4), the concavity of
the solutions (see Lemma 5) and the continuity of the first eigenvalues (see Lemma 12). By the study in
the above aspects, the difficulty such as of lacking linearity of the operator is overcome, the fixed point
theorem can be applied for the corresponding compact maps and new results are obtained. Since we
do not assume that f satisfies a global growth condition (see, for example, [6,8,9]) and the assumptions
of this paper are more general than the usual that (see, for example, [6]), the existing results cannot be
utilized in this paper. In addition, some recent results are improved from weak solutions to classical
solutions and from p ≥ 2 to p ∈ (1, ∞).

2. Preliminaries

Let AC[0, 1] denote the space of all the absolutely continuous functions defined on [0, 1].
Let function z : [0, 1] → R with z(x) > 0 for x ∈ (0, 1) satisfy z ∈ C1[0, 1], φp(z′) ∈ AC[0, 1].
If z satisfies Equation (1) [11], then we call z being a positive (classical) solution of Equation (1).

Let W1,p
0 (0, 1) denote the standard Sobolev space with norm

‖u‖
W1,p

0
=
(∫ 1

0
|u′(x)|p dx

)1/p
:= ‖u′‖Lp ,

and P denote the positive cone in W1,p
0 (0, 1), that is,

P = {u ∈W1,p
0 (0, 1) : u(x) ≥ 0 for x ∈ [0, 1]}.

We recall some facts (see, for example, [7]) and establish several Lemmas. The first fact

W1,p
0 (0, 1) ⊆ C[0, 1] and ‖u‖C[0,1] ≤ c0‖u‖W1,p

0
for u ∈W1,p

0 (5)
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(Lemma 2.2 in [7]) is used to prove the limit property of the first eigenvalue µg (Lemma 8) and the
main result, where c0 > 0 is a constant.

The following two Lemmas are the maximum principle and the weak comparison principle.

Lemma 1. Assume that a function u ∈ C[0, 1] satisfies the following conditions [7]:

1. u′(x) exists for x ∈ (0, 1) and φp(u′) ∈ AC(0, 1).
2. −∆pu(x) ≥ 0 for a.e. x ∈ (0, 1), and u(0) = u(1) = 0.

Then, u(x) ≥ 0 for x ∈ [0, 1]. If u 6≡ 0 on (0, 1), then u(x) > 0 for x ∈ (0, 1).

Lemma 2. Assume that u, w ∈W1,p
0 (0, 1) satisfy [7],

(−∆pu(x), v(x)) ≤ (−∆pw(x), v(x)) for v ∈ P,

where (−∆pu(x), v(x)) =
∫ 1

0 (−∆pu(x))v(x) dx.
Then, u(x) ≤ w(x) a.e. on (0, 1).

Let
D(∆p) = {u ∈ C1

0 [0, 1] : φp(u′) ∈ AC[0, 1]}

and C1
0 [0, 1] = {u ∈ C1[0, 1] : u(0) = u(1) = 0} denote a Banach space with the norm

‖u‖C1[0,1] = ‖u‖C[0,1] + ‖u′‖C[0,1].

Lemma 3. For every v ∈ L1(0, 1), there exists a unique function u in D(∆p) satisfying the quasilinear
boundary value problem [7], {

−∆pu(x) = v(x) for a.e. x ∈ (0, 1),

u(0) = 0 = u(1).
(6)

We denote by T the inverse of −∆p. Then, T : L1(0, 1)→ D(∆p) is defined by

Tv = u, (7)

where u is in Equation (6).
It is easy to verify that T satisfies

T(λv) = λ
1

p−1 T(v) for v ∈ L1(0, 1) and λ ≥ 0. (8)

Lemma 4. The map T : L1(0, 1) → D(∆p) is increasing, that is, w1, w2 ∈ L1(0, 1), w1 ≤ w2 implies
Tw1 ≤ Tw2.

Proof. We may assume that, by Lemma 3, ui ∈ D(∆p)(i = 1, 2) satisfying Twi = ui(i = 1, 2). Then,
−∆pui(x) = wi(x)(i = 1, 2). w1 ≤ w2 implies

(−∆pu1(x), v(x)) ≤ (−∆pu2(x), v(x)) for v ∈ P.

By Lemma 2, we have that u1 ≤ u2 and Tw1 ≤ Tw2.

In [12], the following fact was proved (Proposition 2.1, [12]): Assume that u : [0, 1] → R is
continuous, u′(x) exists for x ∈ (0, 1) and is decreasing on (0, 1). Then, u is concave down on [0, 1].
Utilizing this fact, we prove
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Lemma 5. Let w ∈ L1(0, 1) with w(x) ≥ 0 a.e. on [0, 1] and u ∈ D(∆p) such that −∆pu(x) = w(x). Then,
u is concave down on [0, 1].

Proof. Let η ∈ (0, 1) such that u′(η) = 0. Then,

u′(x) =

{
φ−1

p (
∫ η

x w(s)ds) if 0 ≤ x ≤ η,
φ−1

p (−
∫ x

η w(s)ds) if η ≤ x ≤ 1,

where φ−1
p (s) =sgn(s)|s|

1
p−1 denotes the inverse function of φp. Since φ−1

p (s) is increasing, u′(x) is
decreasing on [0, 1], thus u(x) is concave down on [0, 1].

We need some assumptions on the nonlinear term f [7].

(C1) Assume that f : [0, 1]×R+ → R+ is the Carathéodory function, that is, f (·, u) is measurable for
u ∈ R+ and f (x, ·) is continuous for a.e. x ∈ [0, 1].

(C2) For each r > 0, there exists gr ∈ L1
+(0, 1) such that

f (x, u) ≤ gr(x) for a.e. x ∈ [0, 1] and all u ∈ [0, r].

Define a map A from P to D(∆p) by

Az(x) = (TFz)(x), (9)

where Fz(x) = f (x, z(x)) is the well-known Nemytskii operator F : C+[0, 1] → L1
+(0, 1) and T is in

Equation (7).
By Theorem 2.8 in [7] and Lemma 1, we have

Lemma 6. Under the assumption (C1) and (C2), the following conclusions hold.

(i) A(P) ⊆ P and A is compact, where A defined in Equation (9) and A(P) = {Ax : x ∈ P}.
(ii) z ∈ P \ {0} satisfying z = Az is equivalent to z being a positive solution of Equation (1).

Lemma 7. For each g ∈ L1
+(0, 1) with

∫ 1
0 g(x) dx > 0, there exist µg > 0 and ϕg ∈ C1

0 [0, 1] ∩ (P \ {0})
satisfying [7], {

−∆p ϕg(x) = µgg(x)ϕ
p−1
g (x) for a.e. x ∈ (0, 1),

ϕg(0) = 0 = ϕg(1).
(10)

The positive value µg is called to be the first eigenvalue of (10), ϕg is called to be the eigenfunction
for µg. Moreover, we know that, for each g ∈ L1

+(0, 1) \ {0},

µg = inf
{ ∫ 1

0 |v
′(x)|p dx∫ 1

0 g(x)|v(x)|p dx
: v ∈W1,p

0 (0, 1) \ {0}
}

, (11)

where

∫ 1
0 |v

′(x)|p dx∫ 1
0 g(x)|v(x)|p dx

= ∞ if
∫ 1

0 g(x)|v(x)|p dx = 0. For g ≡ 1, µg is given in ([11] (3.8)) by

µ1(p) :=
{

2
∫ (p−1)

1
p

0

[
1− sp(p− 1)−1]− 1

p ds
}p

. (12)
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Lemma 8. Let n > 1 be a natural number, g ∈ L1
+(0, 1) with

∫ 1
0 g(x) dx > 0 and

gn(x) =

{
g(x) if 1

n ≤ x ≤ 1− 1
n ,

0 if x ∈ [0, 1
n ) ∪ (1− 1

n , 1].

Then, limn→∞ µgn = µg.

Proof. For v ∈W1,p
0 (0, 1) \ {0}, we have

µg ≤
∫ 1

0
|v′(x)|p dx

/ ∫ 1

0
g(x)|v(x)|p dx ≤

∫ 1

0
|v′(x)|p dx

/ ∫ 1

0
gn(x)|v(x)|p dx

and µg ≤ µgn for any n.

For any ε > 0, by Equation (11), there exists v ∈W1,p
0 (0, 1) \ {0} such that

∫ 1

0
|v′(x)|p dx

/ ∫ 1

0
g(x)|v(x)|p dx < µg +

ε

2
.

By Equation (5), v ∈ C[0, 1] and limn→∞
∫ 1− 1

n
1
n

g(x)|v(x)|p dx =
∫ 1

0 g(x)|v(x)|p dx. This, together

with
∫ 1

0 g(x) ds > 0, shows that there exists n0 > 0 such that

∫ 1

0
|v′(x)|p dx

/ ∫ 1

0
gn(x)|v(x)|p dx =

∫ 1

0
|v′(x)|p dx

/ ∫ 1− 1
n

1
n

g(x)|v(x)|p dx < µg + ε

for n ≥ n0, that is, µgn < µg + ε. The result follows.

Lemma 9. Let zn, e ∈ P \ {0} with Te ∈ P \ {0} and tn > 0 such that zn = T(Fzn + tne).
If limn→∞ ‖zn‖W1,p

0
= ∞, then limn→∞ ‖zn‖C[0,1] = ∞.

Proof. In fact, if it is false, then we have a constant r1 > 0 and a subset {ni} ⊆ N (N is the natural
number set) satisfying 0 ≤ zni (x) ≤ r1 for all i and x ∈ [0, 1]. Obviously, we may assume {ni} = N.

By Lemma 4, zn ≥ T(tne) = t
1

p−1
n Te, we see that {tn} is bounded. Let r2 > 0 be a constant such

that 0 ≤ tn ≤ r2 for all n. Let ξn ∈ (0, 1) such that z′n(ξn) = 0 and

z′n(x) =

{
φ−1

p (
∫ ξn

x ( f (s, zn(s)) + tne(s))ds) if 0 ≤ x ≤ ξn,
φ−1

p (−
∫ x

ξn
( f (s, zn(s)) + tne(s))ds) if ξn ≤ x ≤ 1.

By (C2), let gr1 ∈ L1
+(0, 1) satisfy | f (x, z)| ≤ gr1(x) for a.e x ∈ [0, 1] and all 0 ≤ z ≤ r1.

From f (x, zn(x)) + tne(x) ≤ gr1(x) + r2e(x), we have that {z′n(x)} is bounded, which contradicts
limn→∞ ‖zn‖W1,p

0
= ∞. Hence limn→∞ ‖zn‖C[0,1] = ∞.

Let r > 0 and let Pr = {z ∈ P : ‖z‖ < r}, ∂Pr = {z ∈ P : ‖z‖ = r} and Pr = {z ∈ P : ‖z‖ ≤ r}.

Lemma 10. (i) If A : Pr → P is compact and satisfies z 6= tAz for z ∈ ∂Pr and t ∈ (0, 1], then
iP(A, Pr) = 1 [7,13].

(ii) If A : Pr → P is compact and z 6= Az for z ∈ Pr, then iP(A, Pr) = 0.
(iii) Assume that h : [0, 1]× Pr → P is compact and satisfies z 6= h(t, z) for (t, z) ∈ [0, 1]× ∂Pr. Then

iP(h(0, ·), Pr) = iP(h(1, ·), Pr).
(iv) If iP(A, Pr) = 1 and iP(A, Pρ) = 0 for some ρ ∈ (r, ∞), then A has a fixed point in Pρ \ Pr.
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3. Main Result and Proof

Now, we state and prove our main result.

Theorem 1. Assume that (C1), (C2) and the following conditions hold.

• (H1) There exist r0 > 0, ε1 ∈ (0, µκr0
) and κr0 ∈ L1

+(0, 1) \ {0} satisfying

f (x, u) ≤ (µκr0
− ε1)κr0(x)up−1 for a.e. x ∈ [0, 1] and each u ∈ [0, r0].

• (H2) There exist ρ0 > 0, ε2 > 0 and ψρ0 ∈ L1
+(0, 1) \ {0} satisfying

f (x, u) ≥ (µψρ0
+ ε2)ψρ0(x)up−1 for a.e. x ∈ [0, 1] and each u ∈ [ρ0, ∞).

Then, Equation (1) has a positive solution z in C1
0 [0, 1].

Proof. Let r = c−1
0 r0. We prove that

z 6= tAz for z ∈ ∂Pr and t ∈ [0, 1]. (13)

In fact, if it is false, let z ∈ ∂Pr and t ∈ (0, 1] satisfy z = tAz. By Equation (8), z(x) = T(tp−1Fz)(x)
for x ∈ [0, 1]. It follows from Equation (7) that

− ∆pz(x) = tp−1 f (x, z(x)) for a.e. x ∈ [0, 1]. (14)

By Equation (5), ‖z‖C[0,1] ≤ c0‖z‖W1,p
0

= c0r = r0 and by (H1) f (x, z(x)) ≤ (µκr0
−

ε1)κr0(x)zp−1(x) for a.e. x ∈ [0, 1]. By Equations (14) and (11) with g = κr0 , we have

‖z‖p

W1,p
0

= (−∆pz, z) = tp−1
∫ 1

0
f (x, z(x))z(x) dx ≤

∫ 1

0
f (x, z(x))z(x) dx

≤
∫ 1

0

[
(µκr0

− ε1)κr0(x)zp−1(x)
]
z(x) dx ≤ (µκr0

− ε1)µ
−1
κr0
‖z‖p

W1,p
0

< ‖z‖p

W1,p
0

.

It is a contradiction. By Lemma 10 (i), we have iP(A, Pr) = 1.
If there is z ∈ ∂Pρ satisfying z = T(Fz), then the result of Theorem 1 holds. Let g = ψρ0 .

By Lemma 8, there is n0 > 0 satisfying 0 < µgn0
< µψρ0

+ ε2. Let e denote the eigenfunction
corresponding to the eigenvalue µgn0

, that is,

{
−∆pe(x) = µgn0

gn0(x)ep−1(x) for a.e. x ∈ (0, 1),

e(0) = 0 = e(1).
(15)

We assume z 6= T(Fz) for z ∈ ∂Pρ and prove that there exists ρ > r such that

z 6= T(Fz + ν(−∆pe)) for z ∈ ∂Pρ and ν > 0. (16)

In fact, if it is false, there are zn ∈ ∂Pρn with ρn → ∞ and νn > 0 such that zn 6= T(Fzn) and

zn = T(Fzn + νn(−∆pe)). (17)

By Lemma 4, we see zn ≥ T(νn(−∆pe)) = ν
1

p−1
n e. Let

τn = sup{ζ > 0 : zn(x) ≥ ζ
1

p−1 e(x) for x ∈ (0, 1)}. (18)
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Then, 0 < νn ≤ τn < ∞ and

zn(x) ≥ τ
1

p−1
n e(x) for x ∈ (0, 1). (19)

By T(−∆pe) = e ∈ P \ {0}, Equation (17) and Lemma 9, we see ‖zn‖C[0,1] → ∞. Hence,
there exists n = ñ satisfying ρñ > r and ‖zñ‖C[0,1] ≥ n0ρ0.

Since −∆pzñ(x) = f (x, zñ(x)) + vñe(x) ≥ 0 for x ∈ [0, 1], Lemma 5 shows that zñ(x) is concave
down on [0, 1]. Let ξ ∈ (0, 1) such that zñ(ξ) = ‖zñ‖C[0,1] ≥ n0ρ0. Then

zñ(x) ≥


n0ρ0

ξ
x if x ∈ [0, ξ],

n0ρ0

1− ξ
(1− x) if x ∈ [ξ, 1].

It is easy to verify zñ(x) ≥ ρ0 for x ∈ [ 1
n0

, 1− 1
n0
].

By (H2) and Equation (19), we have

f (x, zñ(x)) ≥ (µψρ0
+ ε2)gn0(x)zp−1

ñ (x), x ∈ [0, 1]

and
f (x, zñ(x)) ≥ (µψρ0

+ ε2)τñgn0(x)ep−1(x), x ∈ [0, 1]. (20)

From Equation (20) and Lemma 4 we have

zñ(x) ≥ TF(zñ(x)) ≥ T((µψρ0
+ ε2)τñgn0(x)ep−1(x)) = (µψρ0

+ ε2)
1

p−1 τ
1

p−1
ñ T(gn0(x)ep−1(x))

for x ∈ [0, 1]. By Equation (15), we see µ
− 1

p−1
gn0

e(x) = T(gn0(x)ep−1(x)) for x ∈ [0, 1] and

zñ(x) ≥ TF(zñ(x)) ≥ (µψρ0
+ ε2)

1
p−1 µ

− 1
p−1

gn0
τ

1
p−1

ñ e(x), x ∈ [0, 1].

This implies zñ(x) ≥ ξ
1

p−1
ñ e(x), where ξñ = (µψρ0

+ ε2)µ
−1
gn0

τñ > τñ, which contradicts the
definition of τñ in Equation (18). Hence, there exists ρ(= ρñ) > r such that Equation (16) holds.

Let σ > (
c0ρ

‖e‖C[0,1]
)p−1. Then, z 6= T(Fz + σ(−∆pe)) for z ∈ Pρ. In fact, if there exists z ∈ Pρ

such that z = T(Fz + σ(−∆pe)), then z ≥ T(σ(−∆pe)) = σ
1

p−1 e. By Equation (5), we see ‖z‖C[0,1] ≤
c0‖z‖W1,p

0
≤ c0ρ and σ ≤ (

c0ρ

‖e‖C[0,1]
)p−1. It is a contradiction. Hence, iP(T(Fz + σ(−∆pe)), Pρ) = 0 by

Lemma 10 (ii).
We define a map h : [0, 1]× Pρ → P by

h(t, z) = T(Fz + σt(−∆pe)).

Then, h : [0, 1]× Pρ → P is compact and by Equation (16), z 6= h(t, z) for (t, z) ∈ [0, 1]× ∂Pρ.
By Lemma 10 (iii), we obtain

iP(A, Pρ) = iP(h(0, ·), Pρ) = iP(h(1, ·), Pρ) = iP(T(Fz + σ(−∆pe)), Pρ) = 0.

By Lemma 10 (iv), there exists z ∈ Pρ \ Pr satisfying z = Az and thus, by Lemma 6 (ii), z is a
positive solution of Equation (1).



Symmetry 2018, 10, 363 8 of 10

4. Conclusions

First, we give an affirmative answer to the unsolved problem [7].
Let E ⊆ [0, 1] with m(E) = 0 and

f (u) = sup
x∈[0,1]\E

f (x, u), f (u) = inf
x∈[0,1]\E

f (x, u).

Notation 1.
f 0 = lim sup

u→0+
f (u)/up−1, f∞ = lim inf

u→∞
f (u)/up−1.

Corollary 1. Assume that (C1), (C2) and the following condition(superlinear conditions) hold.

0 ≤ f 0 < µ1(p) < f∞ ≤ ∞, (21)

where µ1(p) is given by Equation (12).
Then, Equation (1) possesses a positive solution z in C1

0 [0, 1].

Proof. By Equation (21), (H1) with κr0 ≡ 1 and (H2) with ψρ0 ≡ 1 hold for some εi > 0(i = 1, 2) and
ρ0, r0 with 0 < r0 < ρ0 < ∞. By Theorem 1, we know that the result holds.

By Corollary 1, an affirmative answer is given to the unsolved problem [7]:

Corollary 2. Assume that (C1), (C2) hold and

0 ≤ lim
u→0+

f (u)
up−1 < µ1(p) < lim

u→∞

f (u)
up−1 ≤ ∞. (22)

Then, Equation (1) possesses a positive solution z in C1
0 [0, 1].

Next, some results are improved and the existing results cannot be used in this paper.
In [6], Ćwiszewski and Maciejewski studied positive weak solutions under the superlinear conditions

in Equation (4) or (21), where a global growth condition on f and p ≥ 2 were required. Corollary 2
improves Ćwiszewski and Maciejewski’s results (Theorem 1.1 with n = 1, [6]) from p ≥ 2 to p ∈ (1, ∞)

and from weak solutions to classical solutions under the superlinear conditions.
The following example shows that the assumptions (H1) and (H2) of this paper are more general

than the usual superlinear conditions in Equation (21).

Example 1. Let f (x, u) = cx−
1
2 uσ−1, σ > p and c > 0 be a constant. Then, f satisfies (C1)-(C2). Let κ(x) =

x−
1
2 and c > µκ . Choosing ε1 =

µκ

2
, ε2 =

c− µκ

2
> 0, then

f (x, u) ≤ (µκr0
− ε1)κr0(x)up−1 for x ∈ [0, 1], u ∈ [0, (

µκ

2c
)

1
σ−p ] = [0, r0],

f (x, u) ≥ (µψρ0
+ ε2)ψρ0(x)up−1 for x ∈ [0, 1], u ∈ [1, ∞) = [ρ0, ∞),

where κr0(x) = ψρ0(x) = x−
1
2 . This shows that (H1) and (H2) in Theorem 1 hold and Equation (1) possesses

one positive solution for any 0 < µκ < c.
However,

f (u) = sup
x∈[0,1]\E

f (x, u) = ∞ for u > 0 and f 0 = ∞,

f (u) = inf
x∈[0,1]\E

f (x, u) = cuσ−1 for u > 0 and f∞ = ∞,
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the usual superlinear conditions(see, for example, [6]) f 0 < µ1(p) < f∞ are not true. The key inequality [5]

0 ≤ lim
|s|→0

f (t, s)
s

:= c(t) ≤ λk(p)

does not hold and the global growth condition (see, see for example, [6,8,9])

0 ≤ | f (x, s)| ≤ C0(1 + sq−1) for all x ∈ Ω and s ∈ [0, ∞)

is not imposed on f . Hence the existing results such as [5,6,8–10] can not be used to treat this case.

Finally, in the study of boundary value problems, the linearity of the corresponding operators
was applied in an essential way in [3,12]. However, when p 6= 2, the corresponding operators of
Equation (1) is nonlinear, which is the main difficulty we encounter in this paper. We expect the
results obtained in this paper to be applied to other areas and, under (H1) and (H2) (p = 2, see [12]),
Equation (1) to be studied further for the case of f taking negative values.
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