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Abstract: Blur is an important factor affecting the image quality. This paper presents an efficient
no-reference (NR) image blur assessment method based on a response function of singular values.
For an image, the grayscale image is computed to the acquire spatial information. In the meantime,
the gradient map is computed to acquire the shape information, and the saliency map can be obtained
by using scale-invariant feature transform (SIFT). Then, the grayscale image, the gradient map,
and the saliency map are divided into blocks of the same size. The blocks of the gradient map are
converted into discrete cosine transform (DCT) coefficients, from which the response function of
singular values (RFSV) are generated. The sum of the RFSV are then utilized to characterize the
image blur. The variance of the grayscale image and the DCT domain entropy of the gradient map
are used to reduce the impact of the image content. The SIFT-dependent weights are calculated in
the saliency map, which are assigned to the image blocks. Finally, the blur score is the normalized
sum of the RFSV. Extensive experiments are conducted on four synthetic databases and two real
blur databases. The experimental results indicate that the blur scores produced by our method are
highly correlated with the subjective evaluations. Furthermore, the proposed method is superior to
six state-of-the-art methods.

Keywords: image blur assessment; gradient; no-reference; visual saliency; DCT domain entropy

1. Introduction

The quality assessment of digital images has become an increasingly important issue in many modern
multimedia systems, where various kinds of distortions are introduced during storage, compression,
processing, and transmission. Based on the availability of the reference image, the existing image
quality assessment (IQA) metrics are classified into three categories, full-reference (FR) metrics [1-6],
reduced-reference (RR) metrics [7-13], and no-reference (NR) metrics [14-23]. By comparison,
NR metrics have more applications in the real world, as the image quality of the distorted image can
be assessed without any reference.

Blur is a major factor affecting the image quality. In the past few years, a series of NR assessment
methods have been proposed. Blur is usually created by low pass filtering, which widens the edge of
the image. Marziliano et al. [14] presented a method by detecting the width of the image edges in the
spatial domain. First of all, the edges are extracted using Sobel edge detection operators. Then, the blur
degree of the whole image is estimated by calculating the mean edge width. In the literature [15],
Ferzli et al. presented a metric based on the just noticeable blur (JNB). The image local contrast
and edge width are calculated as the inputs to a probability summation model, which produces the
blur score. Narvekar et al. [16] introduced an approach based on JNB. The probability of detecting
a blur is first estimated using a probabilistic model, then the blur score is produced by computing
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the cumulative probability of blur detection (CPBD). Vu et al. [17] presented the spectral and spatial
sharpness (S3) model. Firstly, the attenuation of the high-frequency information is computed, and then
the total variation (TV) model is utilized to estimate the change of contrast component on the blur
image. The final blur score is calculated based on these features. In the literature [18], the metric
predicted the image blur by using local phase coherence (LPC). The blur score is calculated in the
transform domains. In the literature [19], Bahrami and Kot proposed to use the maximum local
variation (MLV), which is computed within a small neighborhood for each pixel. The blur score is
calculated by the standard deviation of the weighted MLV distribution. Kerous et al. [20] proposed
a method using discrete cosine transform (DCT) and JNB. The edge map is obtained through the JNB
method. Then, the blue score is computed based on a machine learning system. In the literature [21],
the authors proposed a blind image blur evaluation (BIBLE) method based on Tchebichef moments [24],
which was are to calculate the sum of the squared non-DC moment (S5SM) values. SSM values are
employed to estimate the degree of blur. In consideration of the effect of the image content, the sum
of variances is employed to normalize the SSM values. Meanwhile, in order to generate a blur score
close to HVS, the saliency detection by simple priors (SDSP) method [25] is employed to obtain the
visually salient regions. Finally, the blur score is produced by normalizing the SSM values, which
is assigned weights by the saliency map. Zhang et al. [22] introduced a novel metric based on SIFT
and DCT. Some interested blocks are determined based on scale-invariant feature transform (SIFT)
technology. Then, the sum of the squared AC coefficients of the DCT (SSAD) of the corresponding
block is calculated to represent the extent of the blur. Considering of the impact of the image content,
the sum of block variances and entropy are used to normalize the final blur score.

Although the method in the literature [22] showed the good results on four synthetic blur
databases, this method did not achieve good performances for the real blur images. First of all, as the
qualities of the real blurred images are usually determined by many factors, the sum of the SSAD does
not suffice to represent the extent of the blur. In response to this, we use a difference matrix to analyze
the change between the DCT coefficients, singular values to represent this change, and a response
function of the singular values to estimate the image blur. Secondly, the image content is generally
affected by many factors, such as variance and entropy. As the DCT domain entropy is important
spectral information, we combine the variance of the original image and the DCT domain entropy,
in order to reduce the impact of the image content.

As aforementioned, the previous methods cannot produce good results simultaneously on both the
synthetic blur databases and real blur databases. In this paper, an efficient NR image blur evaluation
metric is presented, which outperforms the state-of-the-art methods on both classes of databases.
We utilize the singular values of the response function (PVRF) combining with the scale-invariant
feature transform (SIFT) and the DCT domain entropy, in order to estimate the degree of blur in the
images. Our method is motivated by the literature [12,22,26,27]. Sun et al. [12] proposed a novel NR
image quality assessment method based on the SIFT intensity. In fact, the feature points can represent
the sharpness of the image, and the number of feature points can reflect the image shape changes.
In order to obtain the robust feature points, we select the SIFT points here, because of its multiscale
characteristic. Meanwhile, the number of SIFT feature points is used to assign different weights. In the
literature [26,27], an image is first divided into 8 x 8 blocks, and then these blocks are transformed to
a DCT domain. Finally, the DCT domain entropies are calculated as the spectral features. We combine
the variance and DCT domain entropy to normalize the sum of RFSV, and the final blur score is less
affected by the image content in our experiment. Extensive experiments are made on four synthetic
databases and two real blur databases. The experimental results indicate that our method is superior
to the existing NR image quality assessment methods. The three main contributions of our method are
as follows:

e  We designed a response function of the singular values in the DCT domain, which is effective to
characterize the image blur.
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e  We combine the spatial information of the blurred image and the spectral information of the
gradient map, in order to reduce the impact of the image content.

e  We assign SIFT-dependent weights to the image blocks, according to the characteristics of the
human visual system (HVS).

The rest of this paper is organized as follows. Section 2 describes our methodology. Section 3
discusses the experimental results. Finally, Section 4 concludes with a summary of our paper.

2. The Proposed Methods

We propose a no-reference blur image assessment method based on the response function of the
singular values in the DCT domain. The flowchart of our method is shown in Figure 1. It includes two
phases; in the first phase, we calculate four components, as follows: (1) the RFSV for every block of the
gradient map; (2) the variance for every block of the gray image; (3) the DCT domain entropy for every
block of the gradient map; and (4) the block weight for every block of the saliency map. The sum of
the RFSV is used to evaluate the blur degree. The sum of variances and the DCT domain entropy are
used to normalize the sum of the RFSV. The block weight of the saliency map is designed to adapt to
the characteristics of the HVS. In the second phase, we combine these four components to generate the
final blur score.

Blurred
image
Gray Gradient Saliency
image map map
Blocks Blocks Blocks

| 1] [ ] | |
T e
faasiae EiEacass
e EiEisass

[ [ [ ]

Bl.ock RESV DCT-domain Bl(}ck
variance entropy weight
Pooling
Blur score

Figure 1. Flowchart of the proposed method. DCT—discrete cosine transform; RFSV—response
function of singular values.

2.1. Computing Gray Image and Gradient Map

To begin with, a blur image is converted to a grayscale image I(x,y), where x € {1,2,3,..., M},
y€{1,2,3,...,N}. In order to acquire the shape information of the grayscale image, the gradient map
is first calculated as follows:

[ L[ +1y|

G= > 1)
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L=I%[-101], [,=Ix[-1 0 1]" )

where “ x ” denotes the convolution and “T” denotes the transpose.

Then, the grayscale image and the gradient map are divided into blocks of the same size. The block
size is set to m X n. The grayscale image block and the gradient block sets are denoted by {Bf]} and
{Bg}, respectively, wherei € {1,2,3,...R},j € {1,2,3,...K}, R= [M/m|, K= |[N/n|,and |e] is
the floor operator.

2.2. Computing RFSV for Every Block

First of all, each gradient block in {BS} is converted into DCT domain, and denoted by the
following:

Dy1y Dip -+ Diy
Dy Dy -+ Day

D;j = . . : 3)
Dui Dm2 -+ Dmn

where Dy, is the DC coefficient of a block, and the rest variables are the AC coefficients that reflect the
image’s edges and shapes. By replacing the DC coefficient with 0, we obtain the following

0 Dip -+ Diy
Dy1 Dy -+ Dyy

L= . . : 4)
Dml DmZ e Dmn

Next, we estimate the blur degree from the DCT domain information of a block image. In order
to analyze the change between the DCT coefficients, the horizontal and vertical direction difference
values are calculated and are denoted, respectively, by the following:

Fl,_]) - Lx,y - Lx,y+1 (5)
wherex € {1,...,m}andy € {1,...,n — 1}, and
FI]' = Lx+1,y - Lx,y (6)

where x € {1,...,m—1}and y € {1,...,n}. F;;(;) € R"™! and Fj]() € R™! can be represented

collectively as a difference matrix F € R"*?, as follows:

= [F () F0)] )

where (:) denotes a conversion from a matrix to a column, and 7 is the length of the column.

In order to illustrate the validity of the differential matrix to estimate the blur degree of the image,
we plot (in Figure 2) the value of the difference matrix in the horizontal direction and vertical direction
of a block under different blur degrees. One can observe from Figure 2a,b that the distribution of
the scattered points is very scattered, which is due to the weak dependencies between Fl7 and Fj i
The dependencies increase with a stronger Gaussian blur, resulting an approximately elliptical structure
in Figure 2c, which concentrates around the zero values. The dependencies can be distinguished from
the singular values of the difference matrices. The singular values are computed by singular value
decomposition (SVD).

F=UsVT (8)



Symmetry 2018, 10, 304 50f 15

where U € R"™*" and V € R?*?2 are the unitary matrices. The columns of U and V are the left and right
singular vectors. S € R™2is a diagonal matrix with the ordered singular values s; and s (s1 > 53) on
the diagonal. In order to demonstrate the validity of both singular values to capture the dependencies
of the differential matrix elements, we select an image from the categorical subjective image quality
(CSIQ) database [4]. Then, the singular values of each block are computed using Equation (8). In our
experiment, we randomly select thirty blocks from the total blocks. The distribution of the singular
values s; and the singular values s, of thirty blocks with different standard deviations of the Gaussian
blur are shown in Figure 3.

It is shown in Figure 3 that the singular values, s; and s, of a block decrease with the increasing
blur strength. If an image block is sharp, the singular values, s; and s, tend to be large. Inspired by
the Harris corner detection, we design a response function of singular values (RFSV), as follows:

Eij =51 XSy —a(sy+ 52)2 )

In Equation (9), E;; is a RFSV of an image block. In our experiment, we set a = 0.01. Intuitively,
if a block is blurred, the singular values, s; and s;, tend to be small, and RFSV of the block will also
be small. We can say that the RFSV is positively related to s; and s,. Therefore, the sum of RFSV can
estimate the degree of the blur within an image. An experiment is designed to prove this, we randomly
select 10 undistorted images from the CSIQ database. The relation between the sum of the RESV
and the Gaussian blur standard deviation is shown in Figure 4. It is observed in Figure 4, that the
sum of the RFSV of an image decreases significantly with the increasing standard deviation of the
Gaussian blur.
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Figure 2. Distribution of the value of the difference matrix in the horizontal direction (x-axis) and
vertical direction (y-axis) of a block with a different Gaussian blur: (a) o = 0; (b) ¢ = 0.5; and (c) 0 = 2.
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Figure 3. Distribution of singular values s; (x-axis) against singular values s, (y-axis) of thirty blocks
with different standard deviations of the Gaussian blur: (a) c = 0; (b) 0 = 1; (c) ¢ = 2; and (d) o = 3.
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Figure 4. Relationship between the sum of the RFSV and the Gaussian blur standard deviation.
Each line represents an image of categorical subjective image quality [CSIQ] database.

2.3. Computing Variance and the DCT Domain Entropy for Every Block

The sum of the RFSV can be used to measure the blur degree of an image. However, from Figure 4,
we discover that the sum of the RFSV of the different blur images are different, although they are at the
same Gaussian blur degree. This is because the different blur images have different contents. In order
to obtain similar blur scores of the images with the similar blur degree, we should minimize the impact
of the image content.

Li et al. [21] proposed to minimize the impact of the image content by using the sum of block
variances, because of the fact that the different images have different variances. Zhang et al. [22]
indicated that the use of variance is not enough to eliminate the effects of the image content completely,
because some of the images with the almost equal variance may have different contents. Therefore,
they proposed to add entropy on the basis of variance. However, we found that the images with
different contents might have the same entropy. As shown in Figure 5, the entropies of the two
images are both 7.23. Because the spatial information of the image (e.g., variance and entropy) are not
enough to eliminate the effects of the image content completely, we should also consider the spectral
information of the image.

(@)

Figure 5. Two images with the same entropy but different contents. (a) An image from categorical
subjective image quality [CSIQ] database. (b) An image from categorical subjective image quality
[CSIQ] database.

The DCT domain entropy was employed to assess the image quality in the literature [26,27].
Different from the image entropy, the DCT domain entropy represents the probability distribution of
the local DCT coefficients. We combine the variance and DCT domain entropy to normalize the sum
of the RFSV, and as a result, the blur scores generated by our method are less affected by the image
content. The variance and DCT domain entropy are defined by the following;:

—%ZZ I(x,y) — u)? (10)

x=1y=1
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where 0’1-2]- denotes the variance of a block {BZI] }, and u denotes the mean value of the corresponding
block. Each DCT coefficient is normalized by the following:

Lij(x,y)*
pij(x,y) = (11)
x=1 ZZ:l Ll-j(x,y)z
and the DCT domain entropy of a local block {L;;} is computed by the following:
m n
cij = =), Y Pij(xy)log, pij(x,y) (12)

x=1y=1

2.4. Computing Block Weight

In practice, the visually salient regions are often used to estimate the sharpness of an image.
For example, in Figure 6a, the visually salient region is the image’s foreground, rather than the blur
background. If an image is sharp, the salient regions will also be sharp. Therefore, this characteristic is
crucial to the final blur score. In the literature [12], the SIFT features were used to assess the image
quality. In the literature [21], the SDSP model was used to generate a saliency map. In this paper,
the saliency map is constructed using SIFT technology. Compared with the SDSP model, the SIFT
technology has a lower time complexity and a higher accuracy. The saliency map in Figure 6b is
detected from the blurred image in Figure 6a. It is observed that the SIFT points can accurately locate
the visually salient regions. Therefore, the number of SIFT points is used to assign weights. We combine
the visual saliency with the normalized sum of the RFSV to generate the blur score. The saliency map

is divided into blocks of the same size. The saliency map blocks are denoted by {BZ }, and the block
weight denoted by {w;;}, as follows:

1
n;:P
w;j = 14+e'7, nij;éO (13)
0, 7’11‘]‘ =0

where i € {1,2,3,...,R}, j € {1,2,3,...,K}, njj is the SIFT number of the block {Bg-}, and B is
a constant determined by experiments. The final blur score is denoted by the following:
TR Z]K:l wij - Ejj

score =1 X (14)
Y Z]I‘<:1 wz’j(‘Tizj +ci?)

where r is the scale factor.

Figure 6. (a) Blurred image and (b) saliency map.
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3. Results

3.1. Experimental Settings

In this section, six public image quality databases are used to estimate the performance of
our method, including the laboratory for the image as well as the Video Engineering (LIVE) [28],
CSIQ [4], Tampere Image Database 2008 (TID2008) [29], Tampere Image Database 2013 (TID2013) [30],
Camera Image Database (CID2013) [31], and Blurred Image Database (BID) [32] . Among them,
LIVE, CSIQ, TID2008, and TID2013 are synthetic blur databases, while CID2013 and BID are real
blur databases. The images in the synthetic blur databases are generated using Gaussian low-pass
filtering, and thus they aim to simulate the pure blur. By contrast, the real blur databases contain
images captured by cameras in complex environments; in other words, they are distorted by multiple
distortions. The number of blurred images that are tested on the six databases are 145, 150, 100, 125,
474, and 586, respectively. For each image in LIVE and CSIQ), human assessment scores are provided by
a difference mean opinion score (DMOS), and for each image in TID2008, CID2013, TID2013, and BID,
the human assessment scores are provided by the mean opinion score (MOS).

We compare the performance of our method with seven existing methods, JNB [15], CPBD [16],
S3[17], LPC [18], MLV [19], BIBLE [21], and Ref. [22]. Four common criterions are used as a reference,
including the Pearson Linear Correlation Coefficient (PLCC), root mean square error (RMSE), Spearman
Rank Order Correlation Coefficient (SRCC), and the Kendall rank order correlation coefficient (KRCC).
SRCC and KRCC are employed for measuring the monotonicity. The PLCC and RMSE are employed
to assess the prediction accuracy. In order to calculate these values, a nonlinear fitting function is
needed to describe the relation between the predicted scores and the human assessment scores. In this
paper, we employ a four-parameter logistic function, as follows:

_ T —T
N 1+ e(x—m) /1y

f(x) + 1 (15)
where 11, T, T3, and 14 are the four fitting parameters. Typically, an excellent method produces high
values of SRCC, KRCC, and PLCC, and low values of RMSE.

In implementation, the block size is 6 x 6, the scale factor r is 0.1, the exponential of variance ‘Tizj is
1, the exponential of the DCT domain entropy c;; is 2, the parameter of response function E;; is set with
a = 0.01, and the parameter of the weight function w;; is set with f = 20. Lowe’s Matlab source code

is applied to detect the SIFT points, and the detailed configurations can be found in the literature [33].
3.2. Results and Analysis

3.2.1. Image-Level Evaluation

We test the proposed method with some blurred images. Six images with different blur degrees
from the CSIQ database are shown in Figure 7. The human assessment scores are provided by
DMOS, and the predicted blur scores generated by the proposed method as well as the seven existing
blind image blur methods, including JNB [15], CPBD [16], S3 [17], LPC [18], MLV [19], BIBLE [21],
and Ref. [22].

It is shown in Figure 7 that six images have increasing blur degrees. From Table 1, one can see
that the blur scores generated by our method decrease drastically with the increasing blur degree.
What’s more, our blur scores are consistent with the human assessment scores. By comparing with the
seven existing methods, we find that LPC and Ref. [22] can generate scores that are consistent with the
blur degree. However, the blur scores generated by the other metrics do not always make an accurate
evaluation. The CPBD method generates incorrect scores between Figure 7d,e. Figure 7e has higher
DMOS than Figure 7d, while the blur score of Figure 7d should be greater than the score of Figure 7e.
The S3 and MLV methods generate incorrect scores between Figure 7b,c. According to the changes of
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the DMOS, the blur score for Figure 7c should be higher than the score for Figure 7b. The BIBLE and
JNB methods have the same issue between Figure 7e f.

(a) DMOS = 0.0730

>

y i
(d) DMOS = 0.6730 (e) DMOS = 0.7900 (f) DMOS = 0.9630

Figure 7. Six images with different blur degrees. DMOS—difference mean opinion score.

Table 1. Blur scores generated by different methods for the images in Figure 7. DMOS—difference mean
opinion score; JNB—just noticeable blur; CPBD—cumulative probability of blur detection; S3—spectral
and spatial sharpness; LPC—Ilocal phase coherence; MLV—maximum local variation; BIBLE—blind
image blur evaluation.

Image () (b) () (d (e) f)
DMOS 0.0730 0.3000 0.5480 0.6730 0.7900 0.9630
JNB [15] 2.8646 1.5821 1.3920 1.2821 0.8128 1.1096

CPBD [16] 0.1210 0.1017 0.0033 0 0 0
S3[17] 0.1107 0.1520 0.0637 0.0408 0.0597 0.0257
LPC [18] 0.9613 0.9474 0.8607 0.6935 0.5735 0.2031
MLV [19] 0.0721 0.0815 0.0239 0.0156 0.0119 0.0044
BIBLE [21] 3.5098 2.6294 1.2471 0.5666 0.2031 0.2689
Ref. [22] 1.4592 1.4238 0.6613 0.4199 0.1892 0.1638
Ours 0.9931 0.9439 0.4674 0.4415 0.2005 0.0669

In the next experiment, we test our method with six images of the LIVE database. It is shown in
Figure 8 that they all have similar blur degrees. Because the DMOS of these images monotonically
increase, a good blind blur method is expected to generate the monotonically increasing or decreasing
scores. Moreover, these blur scores should be nearly identical. The blur scores generated by different
methods are summarized in Table 2.
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(e)DMOS=349790 (f) DMOS = 35.0583

P

(d) DMOS = 32.4380

Figure 8. Six images with similar blur degrees.

From Table 2, our method can generate nearly identical and monotonically decreasing scores.
However, the blur scores generated by other methods do not have better monotonicity. Therefore,
our method effectively distinguishes the images with similar blur degrees, which are highly consistent
with DMOS.

Table 2. Blur scores generated by different methods for the images in Figure 8.

Image (a) (b) (0 (d (e) (f)
DMOS 29.9480 30.8705 31.0057 32.4380 34.9790 35.0583
JNB [15] 4.1472 3.5025 4.5699 5.1309 3.8593 4.1892
CPBD [16] 0.3273 0.5576 0.4599 0.5438 0.3902 0.3971
S3[17] 0.1586 0.2394 0.2656 0.3621 0.1674 0.1252
LPC [18] 0.9571 0.9755 0.9592 0.9605 0.9543 0.9583
MLV [19] 0.0913 0.0939 0.0874 0.1035 0.0806 0.0666
BIBLE [21] 3.6730 3.8631 3.5880 3.9721 3.5388 3.3057
Ref. [22] 1.6156 1.6946 1.4822 1.4156 1.3212 1.2756
Ours 1.2174 1.1844 1.1146 1.0966 1.0117 0.9461

3.2.2. Database-Level Evaluation

In order to illustrate the validity of the proposed method, we calculate the overall performance
on the four public image databases. Figure 9 shows the scatter plots of the objective scores generated
by the different methods versus the subjective scores given by the databases. We choose five recent
methods for comparison, including S3, MLV, LPC, BIBLE, and Ref. [22].
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Figure 9. Scatter plots of the objective scores generated by different methods versus subjective scores
(DMOS for Video Engineering [LIVE] and categorical subjective image quality [CSIQ], mean opinion
score [MOS] for Tampere Image Database 2008 [TID2008] and Tampere Image Database 2013 [TID2013])
on four image databases. The x-axis represents the objective score and the y-axis represents the
subjective score.

In Figure 9, our method shows less biasness and the best correlation of all of the databases.
LPC produces slightly worse results in the LIVE and CSIQ databases. In the other two databases,
S3 produces slightly worse results. MLV, BIBLE, Ref. [22], and our method produce a somewhat
similar fitting. Although, the fitting results produced by Ref. [22] are better than those of methods.
A closer comparison indicates that our method achieves the best fitting results, because the scatter
points are more densely and evenly clustered around the fitting line. For the four synthetic databases,
our method achieves the best consistency and correlation.
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We use four criteria to compare the performance of these methods, including PLCC, KRCC, SRCC,
and RMSE. Some experimental results between the proposed method and the others on the four
synthetic databases are summarized in Table 3. For each performance measure, we mark the top two
results in boldface. Meanwhile, taking into account the differences between the number of images in
the different databases, we calculate the weighted average value of the four synthetic databases. It is
shown in Table 3 that our method demonstrates the best performance among all of the methods.

In order to verify our method, we use three criteria to compare the performance of six methods,
including SRCC, PLCC, and RMSE. The experimental results are summarized in Table 4. In the
CID2013 database, our method achieves the best accuracy and the second best monotonicity. In the
BID database, our method achieves the second best accuracy and monotonicity. The experimental
results indicated that our method also performs well on the real blur images.

Table 3. Comparison of our proposed method and six existing metrics on four synthetic databases.
LIVE—Video Engineering; CSIQ—categorical subjective image quality; TID2008—Tampere Image
Database 2008; TID2013—Tampere Image Database 2013; PLCC—Pearson Linear Correlation
Coefficient; KRCC—Kendall rank order correlation coefficient; SRCC—Spearman Rank Order
Correlation Coefficient; RMSE—root mean square error.

Database Criterion CPBD S3 LPC MLV BIBLE Ref. [22] Ours

PLCC 0.8956 0.9436 0.9017 0.9429 0.9622 0.9694 0.9739
KRCC 0.7652 0.8004 0.7149 0.7776 0.8328 0.8464 0.8561

LIVE SRCC 09190 09441 0.88% 09316 09611 09671  0.9712
RMSE 69929 52058 67972 52366 42815  3.8603  3.5713

PLCC 08818 09107 09412 09488 09403 09492  0.9518

csi0 KRCC 07079 07294 07683 07713 07439  0.7678  0.7688
SRCC 08847 09059 09224 09247 09132 09272  0.9294

RMSE 01351 01184 00968 00905 00975  0.902  0.0879

PLCC 08235 08541 08903 08585 08929 09101  0.9151

Des KRCC 06310 06124 07155 06524 07009 07381 07640
SRCC 08412 08418 08959  0.8548 08915 09075  0.9239

RMSE 06657 06104 05344 06018 05284 04862  0.4731

PLCC 08552 08813 08197 08827 09051 09264  0.9276

Dos  KRCC 06467 06397 07479 06810 07066 07479 07660

SRCC 0.8518 0.8609 0.9191 0.8787 0.8988 0.9243 0.9327
RMSE 0.6467 0.5896 0.7148 0.5865 0.5305 0.4699 0.4660

PLCC 0.8680 0.9019 0.8912 0.9139 0.9288 0.9418 0.9451

Weighted KRCC 0.6944 0.7051 0.7384 0.7285 0.7515 0.7792 0.7915
average SRCC 0.8780 0.8943 0.9071 0.9021 0.9189 0.9350 0.9396
RMSE 2.2724 1.7449 2.1976 1.7430 1.4509 1.3087 1.2240

Table 4. Comparison of our proposed method and six existing metrics on two real blur databases.
BID—Blurred Image Database; CID2013—Camera Image Database.

Database Criterion CPBD S3 LPC MLV BIBLE Ref. [22] OURS

PLCC 0.5254 0.6863 0.7013 0.6890 0.6943 0.6770 0.7104
CID2013 SRCC 0.4448 0.6460 0.6024 0.6206 0.6888 0.6685 0.6843
RMSE 194530 16.6190 16.2474 16.5594 16.4794 16.8530 16.1160

PLCC 0.2704 0.4271 0.3901 0.3643 0.3606 0.3018 0.3915
BID SRCC 0.2717 0.4253 0.3161 0.3236 0.3165 0.2935 0.3352
RMSE 1.2053 0.1320 1.1528 1.1659 1.1876 1.1935 1.1506
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3.2.3. Impact of Block Sizes

In the proposed method, the block size is crucial to the final blur score. In order to determine the
block size, we set the block size from 4 x 4 to 12 x 12. For each block size, we calculate the average
results of the SRCC, PLCC, and RMSE, which are listed in Table 5. It is shown in table that the best
results can be achieved when the setting block size is 6 x 6. Therefore, the block size is selected 6 x 6
in the experiment.

Table 5. Average values of three criteria for different block sizes.

Size 4x4 6 X6 8 X8 10 X 10 12 X 12
PLCC 0.9191 0.9451 0.9407 0.9423 0.9408
SRCC 0.9100 0.9396 0.9335 0.9341 0.9319
RMSE 1.5724 1.2240 1.2279 1.2378 1.3086

4. Conclusions

Blur is one of the most critical factors that affects image quality. Hence, it is of great significance
to design an objective assessment algorithm for the blur degree of the digital images. In this paper,
we propose an efficient NR image blur assessment method. The three main contribution of our
method are as follows: (1) we observed that to some extent the blur introduces distortion to the DCT
coefficients, and thus we design a response function of the singular values (RFSV) to characterize the
change; (2) we combine the spatial (i.e., variance of the blurred image) and spectral (i.e., DCT domain
entropy of the gradient map) information to minimize the impact of the image content; and (3) we
use SIFT-dependent weights to normalize the sum of RFSV, and therefore, the produced score is close
to that assessed by the HVS. Compared with the six state-of-the-art NR methods on the six blurred
image databases, the blur scores produced by our method are closest to the human subjective scores.
Moreover, the proposed method achieves a high accuracy and strong robustness. While the existing
methods are effective for synthetic blur, they are limited in predicting the real blur. Our method
is more effective for the real blur than most of the existing methods, and yet there is still room for
improvement. In the future, we will analyze more useful features and develop advanced assessment
algorithms for the real blur databases.
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