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Abstract

:

The main topic in this article is to define and examine new sequence spaces   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  ) )  , where    F ^   ( s , r )    is generalized difference Fibonacci matrix in which    s , r ∈ R \   0   . Some algebric properties including some inclusion relations, linearly isomorphism and norms defined over them are given. In addition, it is shown that they are Banach spaces. Finally, the  α -,  β - and  γ -duals of the spaces   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  )   are appointed and some matrix transformations of them are given.
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1. Introduction


Italian mathematician Leonardo Fibonacci found the Fibonacci number sequence. The Fibonacci sequence actually originated from a rabbit problem in his first book “Liber Abaci”. This sequence is used in many fields. The Fibonacci sequence is as follows:


  1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , … .  











The Fibonacci sequence, which is denoted by   (  f n  )  , is defined as the linear reccurence relation


   f n  =  f  n − 1   +  f  n − 2   .  











   f 0  = 1 ,  f 1  = 1   and   n ≥ 2  . The golden ratio is


   lim  n → ∞     f  n + 1    f n   =   1 +  5   2  = φ  ( Golden  Ratio ) .  











The Golden Ratio, which is also known outside the academic community, is used in many fields of science.



Let w be the set of all real valued sequences. Any subspace of w is called the sequence space. c,   c 0   and   ℓ ∞   are called as sequences space convergent, convergent to zero and bounded, respectively. In addition to these representations,   ℓ 1  ,   b s   and   c s   are sequence spaces, which are called absolutely convergent, bounded and convergent series, respectively.



Let us take a two-indexed real valued infinite matrix   A = (  a  n k   )  , where    a  n k     is real number and   k , n ∈ N  .   A   is called a matrix transformation from X to Y if, for every   x = (  x k  ) ∈ X  , sequence   A x =   A n   ( x )     is A transform of   x   and in Y, where


   A n   ( x )  =  ∑ k   a  n k    x k   



(1)




and Equation (1) converges for each   n ∈ N  .



Let  λ  be a sequence space and   K   be an infinite matrix. Then, the matrix domain   λ K   is introduced by


   λ K  =  t = (  t k  ) ∈ w :  K t ∈ λ  .  



(2)







Here, it can be seen that   λ K   is a sequence space.



For calculation of any matrix domain of a sequence, a triangle infinite matrix is used by many authors. So many sequence spaces have been recently defined in this way. For more details, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22].



Kara [23] recently introduced the    F ^    which is derived from the Fibonacci sequence   (  f n  )   and defined the new sequence spaces    ℓ p   (  F ^  )    and    ℓ ∞   (  F ^  )    by using sequence spaces    ℓ p    and   ℓ ∞  , respectively, where   1 ≤ p < ∞  . The sequence space    ℓ p   (  F ^  )    has been defined as:


   ℓ p   (  F ^  )  =  x ∈ w :   F ^  x ∈  ℓ p   ,   ( 1 ≤ p < ∞ )  ,  








where    F ^  =  (  f  n k   )    defined by the sequence   (  f n  )   as follows:


   f  n k   : =      −   f  n + 1    f n   ,     k = n − 1 ,         f n   f  n + 1    ,     k = n ,       0 ,     0 ≤ k < n − 1  or  k > n ,       








for all   k , n ∈ N  . In addition, Kara et al. [24] have characterized some class of compact operators on the spaces    ℓ p   (  F ^  )    and    ℓ ∞   (  F ^  )   , where   1 ≤ p < ∞  .



Candan [25] introduced   c (  F ^   ( s , r )  )   and    c 0   (  F ^   ( s , r )  )   . Later, Candan and Kara [15] have investigated the sequence spaces    ℓ p   (  F ^   ( s , r )  )    in which   1 ≤ p ≤ ∞  .



The  α -,  β - and  γ -duals    P α  ,   P β    and    P γ    of a sequence spaces P are defined, respectively, as


     P α    =     a =  (  a k  )  ∈ w :  a t =  (  a k   t k  )  ∈  ℓ 1   for  all  t ∈ P  ,       P β    =     a =  (  a k  )  ∈ w :  a t =  (  a k   t k  )  ∈ c s  for  all  t ∈ P  ,       P γ    =     a =  (  a k  )  ∈ w :  a t =  (  a k   t k  )  ∈ b s  for  all  t ∈ P  ,     








respectively.



In Section 2, sequence space   b s (  F ^  )   and   c s (  F ^  )   are defined and some algebric properties of them are investigated. In the last section, the  α -,  β - and  γ -duals of the spaces   b s (  F ^  )   and   c s (  F ^  )   are found and some matrix tranformations of them are given.




2. Generalized Fibonacci Difference Spaces of   b s   and   c s   Sequences


In this section, spaces   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  )   of generalized Fibonacci difference of sequences, which constitutes bounded and convergence series, respectively, will be defined. In addition, some algebraic properties of them are investigated.



Now, we introduce the sets   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  )   as the sets of all sequences whose    F ^   ( s , r )  =   f  n k    ( s , r )     transforms are in the sequence space   b s   and   c s  ,


     b s (  F ^   ( s , r )  )    =     x =  (  x k  )  ∈ w :   sup  n ∈ N      ∑  k = 0  n    s   f k   f  k + 1     x k  + r   f  k + 1    f k    x  k − 1     < ∞  ,       c s (  F ^   ( s , r )  )    =     x =  (  x k  )  ∈ w :    ∑ n   k = 0    s   f k   f  k + 1     x k  + r   f  k + 1    f k    x  k − 1    ∈ c  ,     








where    F ^   ( s , r )  =   f  n k    ( s , r )     is


   f  n k    ( s , r )  : =      r   f  n + 1    f n   ,     k = n − 1 ,       s   f n   f  n + 1    ,     k = n ,       0 ,     k < n − 1  or  0 ≤ k > n ,       



(3)




for all   k , n ∈ N   where    s , r ∈ R \   0   . Actually, by using Equation (2), we can get


  b s  (  F ^   ( s , r )  )  =   ( b s )    F ^   ( s , r )     and   c s  (  F ^   ( s , r )  )  =   ( c s )    F ^   ( s , r )    .  











With a basic calculation, we can find the inverse matrix of    F ^   ( s , r )  =   f  n k    ( s , r )    . The inverse matrix of    F ^   ( s , r )  =   f  n k    ( s , r )     is     F ^   − 1    ( s , r )  =   f  n k   − 1    ( s , r )     such that


   f  n k   − 1    ( s , r )  =       1 s    ( −  r s  )   n − k     f  n + 1  2    f k   f  k + 1     ,     0 ≤ k < n ,       0 ,     k > n ,       



(4)




for all   k , n ∈ N  . If   y = (  y n  )   is    F ^   ( s , r )   -transform of a sequence   x = (  x n  )  , then the below equality is justified:


   y n  =   (  F ^   ( s , r )  x )  n  =      s  x 0  ,     n = 0 ,       s   f n   f  n + 1     x n  + r   f  n + 1    f n    x  n − 1   ,     n ≥ 1 ,       



(5)




for all   n ∈ N .   In this situation, we see that    x n  =   F ^   − 1    ( s , r )  y  , i.e.,


   x n  =   ∑  k = 0   n   1 s    ( −  r s  )   n − k     f  n + 1  2    f k   f  k + 1      y k   



(6)




for all   n ∈ N  .



Theorem 1.

  b s (  F ^   ( s , r )  )   is the linear space with the co-ordinatewise addition and scalar multiplation.





Proof. 

We omit the proof because it is clear and easy. ☐





Theorem 2.

  c s (  F ^   ( s , r )  )   is the linear space with the co-ordinatewise addition and scalar multiplation.





Proof. 

We omit the proof because it is clear and easy. ☐





Theorem 3.

The space   b s (  F ^   ( s , r )  )   is a normed space with


     x   b s (  F ^   ( s , r )  )   =  sup  n ∈ N      ∑ n   k = 0    s   f k   f  k + 1     x k  + r   f  k + 1    f k    x  k − 1     .   



(7)









Proof. 

It is clear that space   b s (  F ^   ( s , r )  )   ensures normed space conditions. ☐





Theorem 4.

The space   c s (  F ^   ( s , r )  )   is a normed space with norm Equation (7).





Proof. 

It is clear that normed space conditions are ensured by space   c s (  F ^   ( s , r )  )  . ☐





Theorem 5.

  b s (  F ^   ( s , r )  )   is linearly isomorphic as isometric to the space   b s ,   that is,   b s (  F ^   ( s , r )  ) ≅ b s  .





Proof. 

For proof, we must demonstrate that bijection and linearly transformation T exist between the space   b s (  F ^   ( s , r )  )   and   b s  . Let us take the transformation   T : b s (  F ^   ( s , r )  ) → b s   mentioned above with the help of Equation (5) by    T x =    F ^   ( s , r )  x   . We omit the details that   T   is both linear and injective because the demonstration is clear. ☐





Let us prove that transformation T is surjective. For this, we get   y = (  y n  ) ∈ b s  .



In this case, by using Equations (6) and (7), we find


      x   b s (  F ^   ( s , r )  )     =     sup  n ∈ N      ∑ n   k = 0    s   f k   f  k + 1     x k  + r   f  k + 1    f k    x  k − 1           =     sup  n ∈ N      ∑ n   k = 0    s   f k   f  k + 1       ∑ k   i = 0   −  1 s    ( −  r s  )   k − i     f  k + 1  2    f i   f  i + 1      y i              + r   f  k + 1    f k      ∑  k − 1    i = 0   −  1 s    ( −  r s  )   k − i − 1     f  k  2    f i   f  i + 1      y i          =     sup  n ∈ N      ∑ n   k = 0    y k   =   y   b s   .     











This result shows that   x ∈ b s (  F ^   ( s , r )  )  . That is, T is surjective. At the same time, this result also indicates that T is preserving the norm. Therefore, the sequence spaces   b s (  F ^   ( s , r )  )   and   b s   are linearly isomorphic as isometric.



Theorem 6.

The sequence space   c s (  F ^   ( s , r )  )   is linearly isomorphic as isometric to the space   c s  , that is,   c s (  F ^   ( s , r )  ) ≅ c s  .





Proof. 

If we write   c s   instead of   b s   and   c s (  F ^   ( s , r )  )   instead of   b s (  F ^   ( s , r )  )   in Theorem 5, the proof will be demonstrated. ☐





Theorem 7.

The space   b s (  F ^   ( s , r )  )   is a Banach space with the norm, which is given in Equation (7).





Proof. 

We can easily see that norm conditions are ensured. Let us take that    x i  =  (  x  k  i  )    is a Cauchy sequence in   b s (  F ^   ( s , r )  )   for all   i ∈ N  . By using Equation (5), we have


   y  k  i  = s   f k   f  k + 1     x  k  i  + r   f  k + 1    f k    x  k − 1  i   








for all   i , k ∈ N  . Since    x i  =  (  x  k  i  )    is a Cauchy sequence, for every   ε > 0  , there exists    n 0  =  n 0   ( ε )    such that


       x i  −  x m    b s (  F ^   ( s , r )  )     =     sup  n ∈ N      ∑ n   k = 0    s   f k   f  k + 1     (  x  k  i  −  x  k  m  )  + r   f  k + 1    f k    (  x  k − 1  i  −  x  k − 1  m  )          =     sup  n ∈ N      ∑ n   k = 0     y  k  i  −  y  k  m    =    y i  −  y m    b s   < ε     








for all   i , m ≥  n 0   . Since   b s   is complete,    y i  → y   ( i → ∞ )    such that   y ∈ b s   exist and since the sequence spaces   b s (  F ^   ( s , r )  )   and   b s   are linearly isomorphic as isometric   b s (  F ^   ( s , r )  )   is complete. Consequently,   b s (  F ^   ( s , r )  )   is a Banach space. ☐





Theorem 8.

The space   c s (  F ^   ( s , r )  )   is a Banach space with the norm, which is given in Equation (7).





Proof. 

We can easily see that norm conditions are ensured. Let us take that    x i  =  (  x  k  i  )    is a Cauchy sequence in   c s (  F ^   ( s , r )  )   for all   i ∈ N  . By using Equation (5), we have


   y  k  i  = s   f k   f  k + 1     x  k  i  + r   f  k + 1    f k    x  k − 1  i   








for all   i , k ∈ N  . Since    x i  =  (  x  k  i  )    is a Cauchy sequence, for every   ε > 0  , there exists    n 0  =  n 0   ( ε )    such that


       x i  −  x m    c s (  F ^   ( s , r )  )     =     sup  n ∈ N      ∑ n   k = 0    s   f k   f  k + 1     (  x  k  i  −  x  k  m  )  + r   f  k + 1    f k    (  x  k − 1  i  −  x  k − 1  m  )          =     sup  n ∈ N      ∑ n   k = 0     y  k  i  −  y  k  m    =    y i  −  y m    c s   < ε     








for all   i , m ≥  n 0   . Since   c s   is complete,    y i  → y   ( i → ∞ )    such that   y ∈ c s   exists and since the sequence spaces   c s (  F ^   ( s , r )  )   and   c s   are linearly isomorphic as isometric   c s (  F ^   ( s , r )  )   is complete. Consequently,   c s (  F ^   ( s , r )  )   is a Banach space. ☐





Now, let   A = (  a  n k   )   be an arbitrary infinite matrix and list the following:


   sup  n ∈ N    ∑ k    a  n k    < ∞ ,  



(8)






   lim k   a  n k   = 0  for  each  n ∈ N ,  



(9)






   sup m   ∑ k     ∑  n = 0   m   (  a  n k   −  a  n , k + 1   )   < ∞ ,  



(10)






   lim n   ∑ k   a  n k   = α  for  each  k ∈ N ,  α ∈ C ,  



(11)






   sup n   ∑ k    a  n k   −  a  n , k + 1    < ∞ ,  



(12)






   lim n   a  n k   =  α k   for  each  k ∈ N ,   α k  ∈ C ,  



(13)






   sup  N , K ∈ F     ∑  n ∈ N    ∑  k ∈ K    (  a  n k   −  a  n , k + 1   )   < ∞ ,  



(14)






   sup  N , K ∈ F     ∑  n ∈ N    ∑  k ∈ K    (  a  n k   −  a  n , k − 1   )   < ∞ ,  



(15)






   lim n   (  a  n k   −  a  n , k + 1   )  = α  for  each  k ∈ N ,  α ∈ C ,  



(16)






   lim  n → ∞    ∑ k    a  n k   −  a  n , k + 1    =   ∑ k    lim  n → ∞    (  a  n k   −  a  n , k + 1   )   ,  



(17)






   sup n    lim k   a  n k    < ∞ ,  



(18)






   lim  n → ∞    ∑ k    a  n k   −  a  n , k + 1    = 0  uniformly  in  n ,  



(19)






   lim m   ∑ k     ∑ m   n = 0    (  a  n k   −  a  n , k + 1   )   = 0 ,  



(20)






   lim m   ∑ k     ∑ m   n = 0    (  a  n k   −  a  n , k + 1   )   =  ∑ k    ∑ n   (  a  n k   −  a  n , k + 1   )   ,  



(21)






   sup  N , K ∈ F     ∑  n ∈ N    ∑  k ∈ K    [  (  a  n k   −  a  n , k + 1   )  −  (  a  n − 1 , k   −  a  n − 1 , k + 1   )  ]   < ∞ ,  



(22)






   sup  m ∈ N     lim k    ∑ m   n = 0    a  n k    < ∞ ,  



(23)






  ∃  α k  ∈ C ∋   ∑ n   a  n k   =  α k   for  each  k ∈ N ,  



(24)






   sup  N , K ∈ F     ∑  n ∈ N    ∑  k ∈ K     (  a  n k   −  a  n − 1 , k   )  −  (  a  n , k − 1   −  a  n − 1 , k − 1   )    < ∞ ,  



(25)




where  F  denote the collection of all finite subsets of  N .



Now, we can give some matrix transformations in the following Lemma for the next step that we will need in the inclusion Theorems.



Lemma 1.

Let   A = (  a  n k   )   be an arbitrary infinite matrix. Then,




	(1) 

	
  A =  (  a  n k   )  ∈  ( b s ,  ℓ ∞  )    iff Equations (9) and (12) hold (Stieglitz and Tietz [26]),




	(2) 

	
  A =  (  a  n k   )  ∈  ( c s , c )    iff Equations (12) and (13) hold (Wilansky [27]),




	(3) 

	
  A =  (  a  n k   )  ∈  ( b s ,  ℓ 1  )    iff Equations (9) and (14) hold (K.-G. Grosse-Erdman [28]).




	(4) 

	
  A =  (  a  n k   )  ∈  ( c s ,  ℓ 1  )    iff Equation (15) holds (Stieglitz and Tietz [26]).




	(5) 

	
  A =  (  a  n k   )  ∈  ( b s , c )    iff Equations (9), (16) and (17) hold (K.-G. Grosse-Erdman [28]).




	(6) 

	
  A =  (  a  n k   )  ∈  ( c s ,  ℓ ∞  )    iff Equations (12) and (18) hold (Stieglitz and Tietz [26]).




	(7) 

	
  A =  (  a  n k   )  ∈  ( b s ,  c 0  )    iff Equations (9) and (19) hold (Stieglitz and Tietz [26]).




	(8) 

	
  A =  (  a  n k   )  ∈  ( b s , c  s 0  )    iff Equations (9) and (20) hold (Zeller [29]).




	(9) 

	
  A =  (  a  n k   )  ∈  ( b s , c s )    iff Equations (9) and (21) hold (Zeller [29]).




	(10) 

	
  A =  (  a  n k   )  ∈  ( b s , b v )    iff Equations (9) and (22) hold (Zeller [29]).




	(11) 

	
  A =  (  a  n k   )  ∈  ( b s , b s )    iff Equations (9) and (10) hold (Zeller [29]).




	(12) 

	
  A =  (  a  n k   )  ∈  ( c s , c s )    iff Equations (10) and (11) hold (Hill, [30]).




	(13) 

	
  A =  (  a  n k   )  ∈  ( b s , b  v 0  )    iff Equations (12), (19) and (22) hold (Stieglitz and Tietz [26]).




	(14) 

	
  A =  (  a  n k   )  ∈  ( c s ,  c 0  )    iff Equation (12) holds and Equation (13) also holds with    α k  = 0   for all   k ∈ N   (Dienes [31]).




	(15) 

	
  A =  (  a  n k   )  ∈  ( c s , b s )    iff Equations (10) and (23) hold (Zeller [29]).




	(16) 

	
  A =  (  a  n k   )  ∈  ( c s , c  s 0  )    iff Equation (10) holds and Equation (24) also holds with    α k  = 0   for all   k ∈ N   (Zeller [29]).




	(17) 

	
  A =  (  a  n k   )  ∈  ( c s , b v )    iff Equation (25) holds (Zeller [29]).




	(18) 

	
  A =  (  a  n k   )  ∈  ( c s , b  v 0  )    iff Equation (25) holds and Equation (13) also holds with    α k  = 0   for all   k ∈ N   (Stieglitz and Tietz [26]).











Theorem 9.

The inclusion   b s ⊂ b s (  F ^   ( s , r )  )   is valid.





Proof. 

Let   x ∈ b s  . We must demonstrate that   x ∈ b s (  F ^   ( s , r )  )  . It means that    F ^   ( s , r )  ∈  ( b s , b s )   . For    F ^   ( s , r )  ∈  ( b s , b s )   ,    F ^   ( s , r )    must ensure to the conditions of (11) of Lemma 1. We see that


   lim k   f  n k    ( s , r )  = 0  for  each  n ∈ N .  











The other condition also holds as follows:


      sup m   ∑ k     ∑  n = 0   m   (  f  n k    ( s , r )  −  f  n , k + 1    ( s , r )  )      =     sup m     lim  p     s + r    f  1 .    f 2    +   s + r    f  2 .    f 3    + … +   s + r    f  p + 1 .    f  p + 2            =     17 10   s + r  < ∞ .     











Consequently, the conditions of (11) of Lemma 1 hold. The proof is complete. ☐





Theorem 10.

If    r / s  < 1 / 4  , then   b s  (  F ^   ( s , r )  )  ⊂  ℓ ∞    is valid.





Proof. 

Let   x ∈ b s (  F ^   ( s , r )  )  . Then,   y =  F ^   ( s , r )  x ∈ b s  . We must demonstrate that   x =   F ^   − 1    ( s , r )  y ∈  ℓ ∞   . That is,     F ^   − 1    ( s , r )  ∈  ( b s ,  ℓ ∞  )   . For     F ^   − 1    ( s , r )  ∈  ( b s ,  ℓ ∞  )   ,      F ^   − 1    ( s , r )    must satisfy the conditions of (1) of Lemma 1. It is clear that


   lim k   f  n k   − 1    ( s , r )  = 0  for  each  n ∈ N .  











The other condition is also holds as follows:


      sup n   ∑ k   (  f  n k   − 1    ( s , r )  −  f  n , k + 1   − 1    ( s , r )  )     ≤    2  sup n   ∑ k   (  f  n k   − 1    ( s , r )   −   r s         ≤     4 s   ∑ k      4 r  s   k  < ∞ .     



(26)







Consequently, the conditions of (1) of Lemma 1 hold. The proof is complete. ☐





Theorem 11.

The inclusion   c s ⊂ c s (  F ^   ( s , r )  )   is valid.





Proof. 

Let   x ∈ c s  . We must demonstrate that   x ∈ c s (  F ^   ( s , r )  )  . It means that    F ^   ( s , r )  ∈  ( c s , c s )   . For    F ^   ( s , r )  ∈  ( c s , c s )   ,    F ^   ( s , r )    must satisfy the conditions of (12) of Lemma 1. Equation (10) has been satisfied in Theorem 9. Now, we must demonstrate Equation (11). For every   k ∈ N  ,


   lim  n → ∞    ∑ k   f  n k    ( s , r )  =  lim n   ( s   f n   f  n + 1    + r   f  n + 1    f n   )  =  s φ  + r φ = ℓ  








such that   ℓ ∈ C   exist. Consequently, the conditions of (12) of Lemma 1 hold. The proof is complete. ☐





Theorem 12.

If    r / s  < 1 / 4  , then   c s (  F ^   ( s , r )  ) ⊂ c   is valid.





Proof. 

Let   x ∈ c s (  F ^   ( s , r )  )  . Then,   y =  F ^   ( s , r )  x ∈ c s  . We must demonstrate that   x =   F ^   − 1    ( s , r )  y ∈ c  . That is,     F ^   − 1    ( s , r )  ∈  ( c s , c )   . For     F ^   − 1    ( s , r )  ∈  ( c s , c )   ,     F ^   − 1    ( s , r )    must satisfy the conditions of (2) of Lemma 1. Equation (12) has been satisfied in Theorem 10. Now, we must demonstrate Equation (13). For each   k ∈ N ,  


      lim n   f  n k   − 1    ( s , r )     ≤     lim n    f  n k   − 1    ( s , r )   =  lim n     f  n + 1    s  f n      −  r s    n − k      f  n + 1    f  k + 1      f k   f n     =  lim n     f  n + 1    s  f n      ∏  i = k    n − 1     r   f  i + 2    f  i + 1      s   f i   f  i + 1             ≤     lim n    f  n + 1     s   f n      ∏  i = k    n − 1       sup  i ∈ N   r   f  i + 2    f  i + 1       inf  i ∈ N   s   f i   f  i + 1       ≤  lim n    f  n + 1     s   f n        4 r  s    n − k   =  φ  s   . 0 = 0 .     











Thus, Equation (13) is also satisfied. ☐





Theorem 13.

The inclusion   c s  (  F ^   ( s , r )  )  ⊂ b s  (  F ^   ( s , r )  )    is valid.





Proof. 

Let   x ∈ c s (  F ^   ( s , r )  )  . Then,   y =  F ^   ( s , r )  x ∈ c s  . Hence,    ∑ k   F ^   ( s , r )  x ∈ c  .   c ⊂  ℓ ∞   , so it becomes    ∑ k   F ^   ( s , r )  x ∈  ℓ ∞   . That is,    F ^   ( s , r )  x ∈ b s  . Hence,   x ∈ b s (  F ^   ( s , r )  )  . Consequently,   c s  (  F ^   ( s , r )  )  ⊂ b s  (  F ^   ( s , r )  )   .



Before giving the corollary about the Schauder basis for the space   c s (  F ^   ( r , s )  )  , let us define the Schauder basis which was introduced by J. Schauder in 1927. Let   ( X ,  .  )   be normed space and be a sequence    (  a k  )   ∈ X   . There exists a unique sequence   (  λ k  )   of scalars such that   x =   ∑  k = 0  ∞    λ k   a k   , and


   lim  n → ∞    x −   ∑ n   k = 0    λ k   a k   = 0 .  











Then,   (  a k  )   is called a Schauder basis for X. ☐





Now, we can give the corollary about Schauder basis.



Corollary 1.

Let us sequence    b  ( k )   =    b  n   ( k )     n ∈ N     defined in the   c s (  F ^   ( s , r )  )   such that


    b  n   ( k )   =       1 s    ( −  r s  )   n − k     f  n + 1  2    f k   f  k + 1     ,     n > k ,        1 s    f  k + 1    f k   ,     n = k ,       0 ,     n < k .        











Then, sequence     b  ( k )     n ∈ N    is a basis of   c s (  F ^   ( s , r )  )   and every sequence   x ∈ c s (  F ^   ( s , r )  )   has a unique representation   x =   ∑ k    y k   b k   , where    y k  =   (  F ^   ( s , r )  x )  k   .






3. The  α -,  β - and  γ -Duals of the Spaces   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  )   and Some Matrix Transformations


In this section, the alpha-, beta-, gamma-duals of the spaces   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  )   are determined and characterized the classes of infinite matrices from the space   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  )   to some other sequence spaces.



Now, we give the two lemmas to prove the theorems that will be given in the next stage.



Lemma 2.

Suppose that   a = (  a n  ) ∈ w   and the infinite matrix   B = (  b  n k   )   is defined by    B n  =  a n    (   F ^   − 1    ( s , r )  )  n   , that is,


    b  n k   =       a n   f  n k   − 1    ( s , r )  ,      0 ≤ k < n ,       0 ,     k > n ,        








for all   k , n ∈ N ,  δ ∈  b s , c s   . Then,   a ∈   { δ (  F ^   ( s , r )  ) }  α    iff   B ∈ ( δ ,  ℓ 1  )  .





Proof. 

Let   a = (  a n  )   and   x = (  x n  )   be an arbitrary subset of w.   y = (  y n  )   such that   y =  F ^   ( s , r )  x ,   which is defined by Equation (5). Then,


   a n   x n  =  a n    (   F ^   − 1    ( s , r )  y )  n  =   ( B y )  n   



(27)




for all   n ∈ N  . Hence, we obtain by Equation (5) that   a x =  (  a n   x n  )  ∈  ℓ 1    with   x =  (  x n  )  ∈ δ  (  F ^   ( s , r )  )    iff    B y   ∈  ℓ 1     with   y ∈ δ  . That is,   B ∈ ( δ ,  ℓ 1  )  . ☐





Lemma 3.

Let [32]   C = (  c  n k   )   be defined via a sequence   a = (  a k  ) ∈ w   and the inverse matrix   V = (  v  n k   )   of the triangle matrix   U = (  u  n k   )   by


    c  n k   =       ∑  j = k  n   a j   v  j k   ,     0 ≤ k < n ,       0 ,     k > n ,        








for all   k , n ∈ N  . Then, for any sequence space λ,


      λ  U  γ    =     a =  (  a k  )  ∈ w : C ∈  ( λ ,  ℓ ∞  )   ,       λ  U  β    =     a =  (  a k  )  ∈ w : C ∈  ( λ , c )   .      













If we consider Lemmas 1–3 together, the following is obtained.



Corallary 1.

Let   B = (  b  n k   )   and   C = (  c  n k   )   such that


    b  n k   =       a n   f  n k   − 1    ( s , r )  ,     0 ≤ k < n       0 ,     k > n       a n d   c  n k   =  ∑  j = k  n   1 s    ( −  r s  )   j − k     f  j + 1  2    f k   f  k + 1      a j  .   











If we take    t 1  ,  t 2  ,  t 3  ,  t 4  ,  t 5  ,  t 6  ,  t 7    and   t 8   as follows:


      t 1    =     a =  (  a k  )  ∈ w :  sup  N , K ∈ F     ∑  n ∈ N    ∑  k ∈ K    (  b  n k   −  b  n , k + 1   )   < ∞  ,       t 2    =     a =  (  a k  )  ∈ w :  sup  N , K ∈ F     ∑  n ∈ N    ∑  k ∈ K    (  b  n k   −  b  n , k − 1   )   < ∞  ,       t 3    =     a =  (  a k  )  ∈ w :  lim  k → ∞    c  n k   = 0  ,       t 4    =     a =  (  a k  )  ∈ w : ∃ α ∈ C ∋  lim  n → ∞    (  c  n k   −  c  n , k + 1   )  = α  ,       t 5    =     a =  (  a k  )  ∈ w :  lim  n → ∞    ∑ k    c  n k   −  c  n , k + 1    =  ∑ k    lim  n → ∞    (  c  n k   −  c  n , k + 1   )    ,       t 6    =     a =  (  a k  )  ∈ w : ∃ α ∈ C  lim  n → ∞    c  n k   = α ,  f o r  a l l  k ∈ N  ,       t 7    =     a =  (  a k  )  ∈ w :  sup  n ∈ N    ∑ k    c  n k   −  c  n , k + 1    < ∞  ,       t 8    =     a =  (  a k  )  ∈ w :  sup  n ∈ N     lim k   c  n k    < ∞  .      











Then, the following statements hold:




	(1) 

	
     {  b s (  F ^   ( s , r )  )  }  α  =  t 1  ,   




	(2) 

	
     {  c s (  F ^   ( s , r )  )  }  α  =  t 2  ,   




	(3) 

	
     {  b s (  F ^   ( s , r )  )  }  β  =  t 3  ∩  t 4  ∩  t 5  ,   




	(4) 

	
     {  c s (  F ^   ( s , r )  )  }  β  =  t 6  ∩  t 7  ,   




	(5) 

	
     {  b s (  F ^   ( s , r )  )  }  γ  =  t 3  ∩  t 7  ,   




	(6) 

	
     {  c s (  F ^   ( s , r )  )  }  γ  =  t 7  ∩  t 8  .   











Theorem 14.

Let   λ ∈  b s , c s    and μ ⊂ w. Then,   A =  (  a  n k   )  ∈  ( λ  (  F ^   ( s , r )  )  , μ )    iff


    D m  =  (  d  n k   ( m )   )  ∈  ( λ , c )   f o r  a l l  n ∈ N ,   



(28)






   D =  (  d  n k   )  ∈  ( λ , μ )  ,   



(29)




where


    d  n k   ( m )   =       ∑  j = k  m   1 s    ( −  r s  )   j − k     f  j + 1  2    f k   f  k + 1      a  n j   ,     0 ≤ k < m ,       0 ,     k > m ,        



(30)




and


    d  n k   =  ∑  j = k  ∞   1 s    ( −  r s  )   j − k     f  j + 1  2    f k   f  k + 1      a  n j     



(31)




for all   k , m , n ∈ N  .





Proof. 

To prove the necessary part of the theorem, let us suppuse that   A =  (  a  n k   )   ∈ ( λ   (  F ^   ( s , r )  , μ )    and   x =  (  x k  )  ∈ λ  (  F ^   ( s , r )  )   . By using Equation (6), we find


      ∑  k = 0  m   a  n k    x k     =     ∑  k = 0  m   a  n k    ∑  j = o  k   1 s    ( −  r s  )   k − j     f  k + 1  2    f j   f  j + 1      y j        =     ∑  k = 0  m   ∑  j = k  m   1 s    ( −  r s  )   j − k     f  j + 1  2    f k   f  k + 1      a  n j    y k  =  ∑  k = 0  m   d  n k   ( m )    y k  =  D  n   ( m )    ( y )      



(32)




for all   m , n ∈ N  . For each   m ∈ N   and   x =  (  x k  )  ∈ λ  (  F ^   ( s , r )  )   ,    A m   ( x )    exists and also lies in c. Then,   D  n   ( m )    also lies in c for each   m ∈ N  . Hence,    D  ( m )   ∈  ( λ , c )   . Now, from Equation (32), we consider for   m → ∞  , and then   A x = D y  . Consequently, we obtain   D =  (  d  n k   )  ∈  ( λ , μ )   .



If we want to prove the sufficient part of the theorem, then let us assume that Equations (28) and (29) are satisfied and   x =  (  x k  )  ∈ λ  (  F ^   ( s , r )  )   . By using Corollary 1 and Equations (28) and (32), we obtain   y =  F ^   ( s , r )  x ∈ λ   and    D  n   ( m )    ( y )  =  ∑  k = 0  m   d  n k   ( m )    y k  =  ∑  k = 0  m   a  n k    x k  =  A  n   ( m )    ( x )  ∈ c  . Hence,   A =   (  a  n k   )   k ∈ N     exists. In addition, in Equation (32), if we consider   m → ∞  . Then,   A x = D y  . Consequently, we obtain   A =  (  a  n k   )  ∈  ( λ  (  F ^   ( s , r )  )  , μ )   .



In Theorem 14, we take   λ (  F ^   ( s , r )  )   instead of  μ  and   μ   instead of   λ (  F ^   ( s , r )  )  , and then we get the following theorem. ☐





Theorem 15.

Let   λ ∈  b s , c s    and μ be an arbitrary subset of   w   and   A = (  a  n k   )   and   B = (  b  n k   )   be infinite matrices. If we take


    b  n k   : = r   f  n + 1    f n    a  n − 1 , k   + s   f n   f  n + 1     a  n k     



(33)




for all   k , n ∈ N  , then   A ∈ ( μ , λ  (  F ^   ( s , r )  )  )   iff   B ∈ ( μ , λ )  .





Proof. 

Let us suppose that   A ∈ ( μ , λ  (  F ^   ( s , r )  )  )   and Equation (33) exist. For   z = (  z k  ) ∈ μ ,   we obtain   A z ∈ λ (  F ^   ( s , r )  )   from   A ∈ ( μ , λ  (  F ^   ( s , r )  )  )  . Hence,    F ^   ( s , r )   ( A z )  ∈ λ  . On the other hand, we have


   ∑  k = 0  m   b  n k    z k  =  ∑  k = 0  m   r   f  n + 1    f n    a  n − 1 , k   + s   f n   f  n + 1     a  n k     z k   



(34)




for all   m , n ∈ N  . If we carry out   m → ∞   to Equation (34), we obtain that


    ( B z )  n  =   ( (  F ^   ( s , r )  A ) z )  n  =   (  F ^   ( s , r )   ( A z )  )  n  .  



(35)







Since    F ^   ( s , r )   ( A z )  ∈ λ  , we find   B z =   ( B z )  n  ∈ λ   for   z = (  z k  ) ∈ μ   from Equation (35). Hence, we obtain that   B ∈ ( μ , λ )  . This is the desired result. ☐





At this stage, let us consider almost convergent sequences spaces, which were given by Lorentz [33]. This is because they will help in calculating some of the results of Theorems 14 and 15. Let a sequence   x =  (  x k  )  ∈  ℓ ∞   . x is said to be almost convergent to the generalized limit ℓ iff    lim  m → ∞    ∑  k = 0  m    x  n + k    m + 1   = ℓ   uniformly in n and is denoted by   f − lim x = ℓ  . By f and    f 0   , we indicate the space of all almost convergent and almost null sequences, respectively. However, in this article, we use    c ^    and    c ^  0   instead of f and   f 0  , respectively, in order to avoid any confusion. This is because the Fibonacci sequence is also denoted by f. In addition, by    c ^  s  , we indicate the space of sequences, which is composed of all almost convergent series. The sequences spaces    c ^    and    c ^  0   are


      c ^  0    =     x =  (  x k  )  ∈  ℓ ∞  :  lim  m → ∞    ∑  k = 0  m    x  n + k    m + 1   = 0  uniformly  in  n  ,       c ^    =     x =  (  x k  )  ∈  ℓ ∞  : ∃ ℓ ∈ C ∋  lim  m → ∞    ∑  k = 0  m    x  n + k    m + 1   = ℓ  uniformly  in  n  .     











Now, let   A = (  a  n k   )   be an arbitrary infinite matrix and list the following conditions:


  ∃  α k  ∈ C ∋ f − lim  a  n k   =  α k   for  each  k ∈ N ,  



(36)






   lim q   ∑ k   1  q + 1      ∑ q   i = 0   △    ∑  n + i    j = 0    (  a  j k   −  α k  )    = 0  uniformly  in  n ,  



(37)






   sup  n ∈ N    ∑ k   △    ∑ n   j = 0    a  j k     < ∞ ,  



(38)






  ∃  α k  ∈ C ∋ f − lim   ∑ n   j = 0    a  j k   =  α k   for  each  k ∈ N ,  



(39)






   sup  n ∈ N    ∑ k     ∑ n   j = 0    a  j k    < ∞ ,  



(40)






  ∃  α k  ∈ C ∋  ∑ n   ∑ k   a  n k   =  α k   for  all  k ∈ N ,  



(41)






   lim n   ∑ k   △    ∑ n   j = 0    (  a  j k   −  α k  )    = 0 ,  



(42)






   sup  n ∈ N    ∑ k      ∑ n   j = 0    a  j k    q  < ∞ ,   q =  p  p − 1   ,  



(43)






   sup  m , n ∈ N      ∑ m   n = 0    a  n k    < ∞ ,  



(44)






   sup  m , l ∈ N      ∑ m   n = 0     ∑ ∞   k = l    a  n k    < ∞ ,  



(45)






   sup  m , l ∈ N      ∑ m   n = 0     ∑ l   k = 0    a  n k    < ∞ ,  



(46)






   lim m   ∑ k     ∑ ∞   n = m    a  n k    = 0 ,  



(47)






   ∑ n   ∑ k   a  n k   ,   convergent ,  



(48)






   lim  m → ∞     ∑ m   n = 0    (  a  n k   −  a  n , k + 1   )  = α ,  for  each  k ∈ N ,  α ∈ C .  



(49)







Let us give some matrix transformations in the following Lemma for use in the next step.



Lemma 4.

Let   A = (  a  n k   )   be an infinite matrix for all   k , n ∈ N  . Then,




	(1) 

	
  A =  (  a  n k   )  ∈  (  c ^  , c s )    iff Equations (24) and (40)–(42) hold (Başar [34]).




	(2) 

	
  A =  (  a  n k   )  ∈  ( c s ,  c ^  )    iff Equations (12) and (36) hold (Başar and Çolak [35]).




	(3) 

	
  A =  (  a  n k   )  ∈  ( b s ,  c ^  )    iff Equations (9), (12), (36) and (37) hold (Başar and Solak [36]).




	(4) 

	
  A =  (  a  n k   )  ∈  ( b s ,  c ^  s )    iff Equations (9) and (37)–(39) hold (Başar and Solak [36]).




	(5) 

	
  A =  (  a  n k   )  ∈  ( c s ,  c ^  s )    iff Equations (38) and (39) hold (Başar and Çolak [35]).




	(6) 

	
  A =  (  a  n k   )  ∈  (  ℓ ∞  , b s )  =  ( c , b s )  =  (  c 0  , b s )    iff Equation (40) holds (Zeller [29]).




	(7) 

	
  A =  (  a  n k   )  ∈  (  ℓ p  , b s )    iff Equation (43) holds (Jakimovski and Russell [37]).




	(8) 

	
  A =  (  a  n k   )  ∈  ( ℓ , b s )    iff Equation (44) holds (Zeller [29]).




	(9) 

	
  A =  (  a  n k   )  ∈  ( b v , b s )    iff Equation (45) holds (Zeller [29]).




	(10) 

	
  A =  (  a  n k   )  ∈  ( b  v 0  , b s )    iff Equation (46) holds (Jakimovski and Russell [37]).




	(11) 

	
  A =  (  a  n k   )  ∈  (  ℓ ∞  , c s )    iff Equation (47) holds (Zeller [29]).




	(12) 

	
  A =  (  a  n k   )  ∈  ( c , c s )    iff Equations (11), (40) and (48) hold (Zeller [29]).




	(13) 

	
  A =  (  a  n k   )  ∈  ( c  s 0  , c s )    iff Equations (10) and (49) hold (Zeller [29]).




	(14) 

	
  A =  (  a  n k   )  ∈  (  ℓ p  , c s )    iff Equations (11) and (43) hold (Jakimovski and Russell [37]).




	(15) 

	
  A =  (  a  n k   )  ∈  ( ℓ , c s )    iff Equations (11) and (44) hold (Jakimovski and Russell [37]).




	(16) 

	
  A =  (  a  n k   )  ∈  ( b v , c s )    iff Equations (11), (44) and (46) hold (Zeller [29]).




	(17) 

	
  A =  (  a  n k   )  ∈  ( b  v 0  , c s )    iff Equations (11) and (46) hold (Jakimovski and Russell [37]).











Now, let us list the following condition, where   d  n k    and   d  n k   ( m )    are taken as in Equations (30) and (31):


   lim k   d  n k   ( m )   = 0  for  all  n ∈ N ,  



(50)






  ∃  d  n k   ∈ C ∋  lim  n → ∞    (  d  n k   ( m )   −  d  n , k + 1   ( m )   )  =  d  n k    for  all  k , n ∈ N ,  



(51)






   lim  n → ∞    ∑ k    d  n k   ( m )   −  d  n , k + 1   ( m )    < ∞  uniformly  in  n ,  



(52)






   lim k   d  n k   = 0  for  all  n ∈ N ,  



(53)






   sup n   ∑ k    d  n k   −  d  n , k + 1    < ∞ ,  



(54)






  ∃  d k  ∈ C ∋  lim  n → ∞    (  d  n k   −  d  n , k + 1   )  =  d k   for  all  k , n ∈ N ,  



(55)






  ∃ α ∈ C ∋  lim  n → ∞    ∑ k    d  n k   −  d  n , k + 1    = α  uniformly  in  n ,  



(56)






   sup  m ∈ N    ∑ k     ∑ m   n = 0    (  d  n k   −  d  n , k + 1   )   < ∞ ,  



(57)






   lim m   ∑ k     ∑ m   n = 0    (  d  n k   −  d  n , k + 1   )   =  ∑ k    ∑ n   (  d  n k   −  d  n , k + 1   )   ,  



(58)






   lim m   ∑ k     ∑ m   n = 0    (  d  n k   −  d  n , k + 1   )   = 0 ,  



(59)






   sup  N , K ∈ F     ∑  n ∈ N    ∑  k ∈ K    (  d  n k   −  d  n , k + 1   )   < ∞ ,  



(60)






   sup  N , K ∈ F     ∑  n ∈ N    ∑  k ∈ K    (  d  n k   −  d  n , k + 1   )  −  (  d  n − 1 , k   −  d  n − 1 , k + 1   )   < ∞ ,  



(61)






   sup n   ∑ k    d  n k   ( m )   −  d  n , k + 1   ( m )    < ∞ ,  



(62)






  ∃  d k  ∈ C ∋  lim n   d  n k   ( m )   =  d k   for  all  k , n ∈ N ,  



(63)






   sup  n ∈ N     lim k   d  n k    < ∞ ,  



(64)






  ∃  d k  ∈ C ∋  lim n   d  n k   =  d k   for  all  k , n ∈ N ,  



(65)






   sup  m ∈ N     lim k    ∑ m   n = 0    d  n k    < ∞ ,  



(66)






   sup  m ∈ N    ∑ k     ∑ m   n = 0    (  d  n k   −  d  n , k − 1   )   < ∞ ,  



(67)






  ∃  d k  ∈ C ∋   ∑ n   d  n k   =  d k   for  each  k ∈ N ,  



(68)






   sup  N , K ∈ F    ∑  n ∈ N     ∑  k ∈ K    (  d  n k   −  d  n , k − 1   )   < ∞ ,  



(69)






  ∃  d k  ∈ C ∋ f − lim  d  n k   =  d k   for  each  k ∈ N ,  



(70)






   sup  N , K ∈ F     ∑  n ∈ N    ∑  k ∈ K    (  d  n k   −  d  n − 1 , k   )  −  (  d  n , k − 1   −  d  n − 1 , k − 1   )   < ∞ ,  



(71)






   lim q   ∑ k   1  q + 1      ∑ q   i = 0   △    ∑  n + i    j = 0    (  d  j k   −  α k  )    = 0  uniformly  in  n ,  



(72)






   sup  n ∈ N    ∑ k     ∑ n   j = 0    d  j k    < ∞ ,  



(73)






  ∃  d k  ∈ C ∋  ∑ n   ∑ k   d  n k   =  d k   for  all  k ∈ N ,  



(74)






   lim n   ∑ k   △    ∑ n   j = 0    (  d  j k   −  α k  )    = 0 ,  



(75)






     sup  n ∈ N     k    △    ∑ n   j = 0    d  j k     < ∞ ,  



(76)






  ∃  d k  ∈ C ∋ f − lim   ∑ n   j = 0    d  j k   =  d k   for  each  k ∈ N ,  



(77)







Now, we can give several conclusions of Theorems 14 and 15, and Lemmas 1 and 4.



Corallary 2.

Let   A = (  a  n k   )   be an infinite matrix for all   k , n ∈ N  . Then,




	(1) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  ,  c 0  )    iff Equations (50)–(53) hold and Equation (56) also holds with   α = 0  .




	(2) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  , c  s 0  )    iff Equations (50)–(53) and (59) hold.




	(3) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  , c )    iff Equations (50)–(53), (55) and (56) hold.




	(4) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  , c s )    iff Equations (50)–(53) and (58) hold.




	(5) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  ,  ℓ ∞  )    iff Equations (50)–(54) hold.




	(6) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  , b s )    iff Equations (50)–(53) and (57) hold.




	(7) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  ,  ℓ 1  )    iff Equations (50)–(53) and (60) hold.




	(8) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  , b v )    iff Equations (50)–(53) and (61) hold.




	(9) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  , b  v 0  )    iff Equations (50)–(52), (54) and (61) hold and Equation (56) also holds with   α = 0  .











Corallary 3.

Let   A = (  a  n k   )   be an infinite matrix for all   k , n ∈ N .   Then,




	(1) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  ,  c 0  )    iff Equations (54), (62) and (63) hold and Equation (65) also holds with    d k  = 0   for all   k ∈ N  .




	(2) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  , c  s 0  )    iff Equations (57), (62) and (63) hold and Equation (68) also holds with    d k  = 0   for all   k ∈ N  .




	(3) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  , c )    iff Equations (54), (62), (63) and (65) hold.




	(4) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  , c s )    iff Equations (62), (63), (67) and (68) hold.




	(5) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  ,  ℓ ∞  )    iff Equations (54) and (62)–(64) hold.




	(6) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  , b s )    iff Equations (57), (62), (63) and (66) hold.




	(7) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  ,  ℓ 1  )    iff Equations (62), (63) and (69) hold.




	(8) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  , b v )    iff Equations (62), (63) and (71) hold.




	(9) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  , b  v 0  )    iff Equations (62), (63) and (65) hold and Equation (71) also holds with    d k  = 0   for all   k ∈ N  .











Corallary 4.

Let   A = (  a  n k   )   be an infinite matrix for all   k , n ∈ N .   Then,




	(1) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  ,  c ^  )    iff Equations (50)–(54), (70) and (72) hold.




	(2) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  ,   c ^  0  )    iff Equations (50)–(54) hold and (70) and Equation (72) also hold with    α k  = 0   in Equation (70) and    d k  = 0   in (72).




	(3) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  ,  c ^  )    iff Equations (54), (62), (63) and (70) hold.




	(4) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  ,   c ^  0  )    iff Equations (62), (63) and (54) hold and Equation (70) also holds with    α k  = 0  .




	(5) 

	
  A =  (  a  n k   )   ∈ (   c ^  , c s  (  F ^   ( s , r )  )    iff Equations (68) and (73)–(75) hold with    b  n k     instead of   d  n k   , where   b  n k    is defined by Equation (33).




	(6) 

	
  A =  (  a  n k   )   ∈ ( b s   (  F ^   ( s , r )  ,  c ^  s )    iff Equations (50)–(53), (72), (76) and (77) hold.




	(7) 

	
  A =  (  a  n k   )   ∈ ( c s   (  F ^   ( s , r )  ,  c ^  s )    iff Equations (62), (63), (76) and (77) hold.











Corallary 5.

Let   A = (  a  n k   )   be an infinite matrix for all   k , n ∈ N .   Then,




	(1) 

	
  A =  (  a  n k   )   ∈ (   ℓ ∞  , b s  (  F ^   ( s , r )  )  =  ( c , b s )  =  (  c 0  , b s )    iff Equation (40) holds with    b  n k     instead of   a  n k   , where   b  n k    is defined by (33).




	(2) 

	
  A =  (  a  n k   )   ∈ (   ℓ p  , b s  (  F ^   ( s , r )  )    iff Equation (43) holds with    b  n k     instead of   a  n k   , where   b  n k    is defined by (33).




	(3) 

	
  A =  (  a  n k   )   ∈ ( ℓ , b s   (  F ^   ( s , r )  )    iff Equation (44) holds with    b  n k     instead of   a  n k   , where   b  n k    is defined by Equation (33).




	(4) 

	
  A =  (  a  n k   )   ∈ ( b v , b s   (  F ^   ( s , r )  )    iff Equation (45) holds with    b  n k     instead of   a  n k   , where   b  n k    is defined by Equation (33).




	(5) 

	
  A =  (  a  n k   )   ∈ ( b   v 0  , b s  (  F ^   ( s , r )  )    iff Equation (46) holds with    b  n k     instead of   a  n k   , where   b  n k    is defined by Equation (33).




	(6) 

	
  A =  (  a  n k   )   ∈ (   ℓ ∞  , c s  (  F ^   ( s , r )  )    iff Equation (47) holds with    b  n k     instead of   a  n k   , where   b  n k    is defined by Equation (33).




	(7) 

	
  A =  (  a  n k   )   ∈ ( c , c s   (  F ^   ( s , r )  )    iff Equations (11), (40) and (48) hold with    b  n k     instead of   a  n k   , where   b  n k    is defined by Equation (33).




	(8) 

	
  A =  (  a  n k   )   ∈ ( c   s 0  , c s  (  F ^   ( s , r )  )    iff Equations (10) and (49) hold with    b  n k     instead of   a  n k   , where   b  n k    is defined by Equation (33).




	(9) 

	
  A =  (  a  n k   )   ∈ (   ℓ p  , c s  (  F ^   ( s , r )  )    iff Equations (11) and (43) hold with    b  n k     instead of   a  n k   , where   b  n k    is defined by Equation (33).




	(10) 

	
  A =  (  a  n k   )   ∈ ( ℓ , c s   (  F ^   ( s , r )  )    iff Equations (11) and (44) hold with    b  n k     instead of   a  n k   , where   b  n k    is defined by Equation (33).




	(11) 

	
  A =  (  a  n k   )   ∈ ( b v , c s   (  F ^   ( s , r )  )    iff Equations (11), (44) and (46) hold with    b  n k     instead of   a  n k   , where   b  n k    is defined by Equation (33).




	(12) 

	
  A =  (  a  n k   )   ∈ ( b   v 0  , c s  (  F ^   ( s , r )  )    iff Equations (11) and (46) hold with    b  n k     instead of   a  n k   , where   b  n k    is defined by Equation (33).












4. Discussion


The difference sequence operator was introduced for the first time in the literature by Kızmaz [38]. Kirişçi and Başar [4] have characterized and investigated generalized difference sequence spaces. The Fibonacci difference matrix    F ^    , which is derived from the Fibonacci sequence   (  f n  ) ,   was recently introduced by Kara [23] in 2013 and defined the new sequence spaces    ℓ p   (  F ^  )    and    ℓ ∞   (  F ^  )  ,   which are derived by the matrix domain of   F ^   from the sequence spaces    ℓ p    and   ℓ ∞  , respectively, where   1 ≤ p < ∞  . Candan [25] in 2015 introduced the sequence spaces   c (  F ^   ( s , r )  )   and    c 0   (  F ^   ( s , r )  )   . Later, Candan and Kara [15] studied the sequence spaces    ℓ p   (  F ^   ( s , r )  )    in which   1 ≤ p ≤ ∞  . In addition, Kara et al. [24] have characterized some class of compact operators in the spaces    ℓ p   (  F ^  )    and    ℓ ∞   (  F ^  )   , where   1 ≤ p < ∞  .



The study is concerned with matrix domain on a sequences space of a triangle infinite matrix. In this article, we defined spaces   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  )   of Generalized Fibonacci difference of sequences, which constituted bounded and convergence series, respectively. We have demonstrated the sets of   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  ) ,   which are the linear spaces, and both spaces have the same norm


   x  =  sup  n ∈ N      ∑ n   k = 0    s   f k   f  k + 1     x k  + r   f  k + 1    f k    x  k − 1     ,  








where   x ∈ b s (  F ^   ( s , r )  )   or   x ∈ c s (  F ^   ( s , r )  )  . In addition, it was shown that they are normed space and Banach spaces. It was found that   b s (  F ^   ( s , r )  )   and   b s   are linearly isomorphic as isometric. At the same time,   c s (  F ^   ( s , r )  )   and   c s   are linearly isomorphic as isometric. Some inclusions’ theorems were given with respect to   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  )  . According to this, inclusions   b s ⊂ b s (  F ^   ( s , r )  )  ,   c s ⊂ c s (  F ^   ( s , r )  )   are valid. In addition, if    r / s  < 1 / 4  , then   b s  (  F ^   ( s , r )  )  ⊂  ℓ ∞    and   c s (  F ^   ( s , r )  ) ⊂ c   are valid. It was concluded that   c s (  F ^   ( s , r )  )   has a Schauder basis.



Finally, the  α -,  β - and  γ -duals of the both spaces are calculated and some matrix transformations of them were given.




5. Conclusions


In this article, we have defined spaces   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  )   of Generalized Fibonacci difference of sequences, which constituted bounded and convergence series, respectively. We have demonstrated that the sets of   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  )   are the linear spaces and both spaces have the same norm. In addition, it was shown that they are Banach spaces. Some inclusions theorems were given with respect to   b s (  F ^   ( s , r )  )   and   c s (  F ^   ( s , r )  )  . It was concluded that   c s (  F ^   ( s , r )  )   has a Schauder basis. Finally, the  α -,  β - and  γ -duals of the both spaces were calculated and some matrix transformations of them were given.
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