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Abstract: Quantum fluctuations of the electromagnetic field give rise to the force between parallel
plates: the Casimir force. We theoretically calculate the Casimir force between two parallel isotropic
plates when the space between the plates is filled with anisotropic material. Our result shows that the
Casimir force, especially in the direction of the force, can be significantly affected by the anisotropy
of the intervening material. We also discuss the combined influence of dispersion and anisotropy,
and analyze the impact of the external electric filed on the Casimir force by affecting the anisotropy
of the intervening material by Kerr electro-optical effect.
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1. Introduction

The Casimir effect, which is a macroscopic quantum effect arising from the quantum fluctuations
of the electromagnetic field is one of the most remarkable findings of quantum field theory [1–6].
Over past years, the Casimir effect has drawn a lot of experimental and theoretical attention, as it plays
a significant role in various fields of physics [4–6].

Lifshitz’s original theory for the force between dielectric plates is based on isotropic dielectrics,
and is not applicable to anisotropic materials. However, if the anisotropy of the plates is considered,
we can see some new features of the Casimir effect, like Casimir torque. Parsegian calculated the
van der Waals interaction energy between two uniaxial bodies in the nonretarded limit [7]. Barash
calculated the torque of van der Waals forces between two anisotropic thick plates [8]. Based on
previous works, Munday et al. calculated the Casimir torque between parallel anisotropic plates
immersed in liquid, and their recent works showed that the retardation and the intervening dielectric
could enhance this torque [9,10]. As a supplementary work, Shao et al. gave the analytical expression
of the Casimir torque between two birefringent plates with static permittivity [11]. In one of our works,
we calculated the Casimir torque between parallel birefringent plates with frequency dependent
magnetic permeabilities, and showed that the magnetic properties of the plates could significantly
affect the torque [12]. Anisotropy does not only affect the Casimir torque, but it also affects the
Casimir force directly. Romanowsky found that the orientation of the optical axis of highly anisotropic
materials could significantly affect the Casimir force [13]. The direction of the Casimir force could
also be affected by the anisotropy. Shao et al. gave the analytical result of the repulsive Casimir
force between two uniaxial plates with static permittivity and permeability [14]. In one of our works,
the Casimir force between anisotropic metamaterial plates was calculated [15], and the result showed
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that the direction of the force depended on the anisotropy in some distance ranges. Parashar and his
colleagues calculated the Casimir force between two parallel semitransparent δ-function plates and
between two parallel anisotropic dielectric slabs [16]. Somers and Munday found that, for particular
orientations of optical axes, the Casimir force can be repulsive, even when the two anisotropic slabs are
identical [17]. In recent years, scientists have started to investigate the interaction between anisotropic
particles and a surface [16,18,19].

Most of the previous works [9–19] only focused on the anisotropy of the plates and assumed
that the space between the two plates was a vacuum or was filled with isotropic materials. However,
in fact, this region could also be anisotropic. Some liquid, like nitrobenzene, can be anisotropic under
special circumstances. Moreover, in biology, liquid films between the two biomembranes are often
anisotropic. Thus, taking the anisotropy of the intervening media into account should prove both
more interesting and closer to reality. Are there any new phenomena if the gap between the two plates
is filled with anisotropic media? This is an interesting question. To find answers to this question,
Parsegian first calculated the van der Waals interaction energy between two uniaxial slabs acting across
a gap that is filled with a third anisotropic material, and the result was limited in the nonretarded
case [7]. Kornilovitch investigated the impact of angle between the optical axis and the surface normal
on the Van der Waals interaction between parallel slabs in uniaxial media, and their result was also
in the nonretarded limit [20]. When compared with attractive Casimir force, repulsive force is more
interesting to researchers [2–6,9,11,14,15,17]. According to Lifshitz’s theory, the repulsive Casimir
force arises between two materials that are separated by a third isotropic material whose dielectric
permittivity is intermediate to the other two materials [2,3]. However, if the intervening media is
anisotropic, ε3 will have different values in different directions. Accordingly, this makes the condition
for repulsive force more complicated. One of our recent works shows that it is still possible to have
repulsive force in this case and that the force can be significantly affected by the anisotropy of the media
between the plates [21]. As we know liquid like nitrobenzene can be anisotropic under an external
field [22–24]. This means that the external field can affect the Casimir force by affecting the anisotropy
of the intervening media. This is important for both theoretical and experimental investigations on the
Casimir effect. In order to supplement our previous work [18], in this paper, we calculate the fully
relativistic Casimir force between two isotropic plates separated by a gap filled with a third uniaxial
material, and then analyze the exact impact of the anisotropy of the intervening media and dispersion
on the Casimir force. Furthermore, we discuss the influence of the external electric field on the Casimir
effect by affecting the anisotropy of the intervening media though the Kerr electro-optical effect.

2. Calculation of the Casimir Force between Parallel Slabs Separated by Uniaxial Material

In this section, we will give a detailed calculation of the Casimir force between two parallel
isotropic slabs separated by uniaxial material. We consider two parallel plates (with diameter D and
thickness d) made of isotropic materials, with the distance between them being a (as shown in Figure 1).
The gap between the two plates is filled with uniaxial material. Both the plates and the material
between them are assumed to be nonmagnetic in this paper. We consider the case that the optical axis
of the anisotropic media is perpendicular to the surfaces of the plates. We let the x-y plane be parallel
to the surfaces of the plates. Therefore, the optical axis of the intervening anisotropic media is in z
direction. In view of D >> a and d >> a, the system may be considered to be two parallel semi-infinite
plates separated by anisotropic uniaxial material with an optical axis in z direction as shown in Figure 2.
Therefore, the space could be considered to be divided into three regions (I, II, III). The dielectric
properties of each region can be described by corresponding relative permittivities.
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Figure 1. Two parallel isotropic plates interact across an anisotropic media. The surfaces of the plates 
are parallel to the x-y plane. The optical axis of the intervening anisotropic media between the plates 
is in the z direction. 

 

Figure 2. The schematic of the system under investigation. The space can be considered to be divided 
into three regions with corresponding permittivities. 

The relative dielectric pemittivities of the plates and the anisotropic media between them can be 
expressed by following matrices [11,12,14,17,21,24]. 
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Figure 1. Two parallel isotropic plates interact across an anisotropic media. The surfaces of the plates
are parallel to the x-y plane. The optical axis of the intervening anisotropic media between the plates is
in the z direction.
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Figure 2. The schematic of the system under investigation. The space can be considered to be divided
into three regions with corresponding permittivities.

The relative dielectric pemittivities of the plates and the anisotropic media between them can be
expressed by following matrices [11,12,14,17,21,24].

ε1 =

 ε1 0 0
0 ε1 0
0 0 ε1

, (1)

ε2 =

 ε2 0 0
0 ε2 0
0 0 ε2

, (2)
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ε3 =

 ε3x 0 0
0 ε3x 0
0 0 ε3z

, (3)

where the subscripts z and x indicate the components of the permittivity tensors parallel and
perpendicular to the optical axis, respectively.

Due to the fact that all of the regions in Figure 2 are considered to be homogenous, the electric
and magnetic fields with the surface mode q can be written as [21,25].

Eq = iNbaqeq(k)− a+q e∗q(k)c, (4)

Hq = Nbaqhq(k) + a+q h∗q(k)c, (5)

where N is the normalization factor. The parameters aq and a+q in (4) and (5) are the usual creation and
annihilation operators, respectively. k = (kx, ky, kz) is the wave vector. We can choose ky = 0 without loss
of generality, and we can have k = (kx, 0, kz) = K0 (α, 0, γ), with K0 = ωc−1. In order to determine the
mode of the electric and magnetic field eq and hq with frequency ω, we can use the classical Maxwell
equations without sources.

∇× E = − ∂

∂t
H, (6)

∇×H =
1
c2

∂

∂t
εiE, (7)

where εi (i = 1, 2, 3) is the dielectric permittivity in region I, II, and III, which could be expressed
by Equations (1)–(3). The solution of the electromagnetic fields can be expressed in the plane wave
form as:

(
E
)

=



ex

ey

ez

bx

by

bz


eiK0(αx+γz)−iωt. (8)

Here, ex, ey, and ez indicate the elements of the electric field (E) polarization vectors, and bx, by,
and bz indicate the elements of the magnetic field (B) polarization vectors. As all of the materials that
are considered in this paper are assumed to be nonmagnetic, we can have B = µ0H.

Substituting (1) and (8) into (4) and (5), we can obtain the eigenequations of the transverse
elements of the electric and magnetic field polarization vectors ex, ey bx, and by in region: I

0 0 1− α2

ε1
0

0 0 0 −1
ε1 0 0 0
0 −ε1 + α2 0 0




ex

ey

cby

cbx

 = γ


ex

ey

cby

−cbx

. (9)

Moreover, the four eigenvectors and their corresponding eigenvalues can be expressed in the
matrix form:

WI =


0 − it1

ε 0 it1
ε

− i
t1

0 i
t1

0
0 1 0 1
1 0 1 0

, (10)

γI = (γI,1, γI,2, γI,3, γI,4) = (−it1,−it1, it1, it1), (11)

with (t1)2 = α2 − ε1. These four eigenvalues correspond to four independent mode solutions
whose linear superposition should be the general solution of the electromagnetic field. Further,
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the superposition coefficients should be the amplitudes of each mode. Therefore, the transverse
elements of the electromagnetic field modes in (4) and (5) in region I can be expressed as:

Ex

Ey

cBy

cBx

 = WI


AI,1eiK0(αx+γI,1z)

AI,2eiK0(αx+γI,2z)

AI,3eiK0(αx+γI,3z)

AI,4eiK0(αx+γI,4z)

eiωt. (12)

Similarly, in region II, the transverse elements of the electromagnetic field modes in (4) and (5)
can be expressed as: 

Ex

Ey

cBy

cBx

 = WII


AII,1eiK0(αx+γII,1z)

AII,2eiK0(αx+γII,2z)

AII,3eiK0(αx+γII,3z)

AII,4eiK0(αx+γII,4z)

eiωt, (13)

with:

WII =


0 − it2

ε2
0 it2

ε2

− i
t2

0 i
t2

0
0 1 0 1
1 0 1 0

, (14)

and:
γII = (γII,1, γII,2, γII,3, γII,4) = (−it2,−it2, it2, it2), (15)

where (t2)2 = α2 − ε2.
In region III, where it is anisotropic, the case is slightly different. However, the method for

calculation is similar. Therefore, we can have the transverse elements of the electromagnetic field
modes in (4) and (5) in region III:

Ex

Ey

cBy

cBx

 = WIII


AIII,1eiK0(αx+γIII,1z)

AIII,2eiK0(αx+γIII,2z)

AIII,3eiK0(αx+γIII,3z)

AIII,4eiK0(αx+γIII,4z)

eiωt, (16)

with:

WIII =


0 − it3z

ε3x
0 it3z

ε3x

− i
t3x

0 i
t3x

0
0 1 0 1
1 0 1 0

, (17)

and:
γIII = (γIII,1, γIII,2, γIII,3, γIII,4) = (−it3x,−it3z, it3x, it3z), (18)

where (t3x)2 = α2 − ε3x and (t3z)2 = (α2 − ε3z)(ε3x/ε3z).
For the requirement that the surface modes should be exponentially decaying when z > a and z < 0,

we have AI,3 = AI,4 = AII,1 = AII,2 = 0. As the boundary conditions require the transverse elements of the
electromagnetic field to be continuous at z = a and z = 0, we can get a set of eight linear homogeneous
equations that are relating the unknown coefficients AI,1, AI,2, AII,3, AII,4, AIII,1, AIII,2, AIII,3, and AIII,4.
It has nontrivial solutions if the determinant of its coefficients is equal to zero, which is, accordingly,
the equation to determine the proper frequency ω of the modes. This equation can be expressed as:

D1(ω⊥)G1(ω⊥)D2(ω||)G2(ω||) = 0. (19)
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The subscripts ⊥ and || indicate the modes with the polarization of the field perpendicular and
parallel to the plane formed by k|| = (kx, ky) and z (according to previous assumption, this plane
is x-z plane), respectively. We introduce δ = (ε3z/ε3x) − 1 to express the degree of anisotropy of the
intervening material between the plates, and δ = 0 refers to isotropic media. The detailed expression of
the functions D1 and D2 can be found in Appendix A, and the functions G1 and G2 can be expressed as
(ω = iξ),

G1(iξ) = 1− s1 − p
s1 + p

s2 − p
s2 + p

exp
(
−2paξ

c
√

ε3x

)
, (20)

G2(iξ) = 1−
s1 − ε1

ε3x

√
1 + p2−1

1+δ

s1 +
ε1
ε3x

√
1 + p2−1

1+δ

s2 − ε2
ε3x

√
1 + p2−1

1+δ

s2 +
ε2
ε3x

√
1 + p2−1

1+δ

exp

−2aξ

c

√
1 +

p2 − 1
1 + δ

√
ε3x

, (21)

where the notations p2 = 1 − α2/ε3x, (s1)2 = −(t1)2/ε3x, and (s2)2 = −(t2)2/ε3x have been introduced.
According to the method that used in [4,11,14,21], the Casimir interaction energy at zero

temperature can be expressed as (the detailed mathematical derivation of (22) can be found in
Appendix A)

E(a) =
}

4π2c2

∫ ∞

1
pdp

∫ ∞

0
ε3xξ2[ln G1 + ln G2]dξ. (22)

The Casimir force between the plates per unit area should be:

F(a) =
}

2π2c3

∫ ∞

1
pdp

∫ ∞

0
ε3/2

3x ξ3

p
1− G1

G1
+

√
1 +

p2 − 1
1 + δ

1− G2

G2

dξ. (23)

It is clear that the Casimir force F(a) in (23) depends on δ, the degree of anisotropy of the material
between the plate. This means the anisotropy of the intervening material does affect the Casimir force.
However, one should also notice that G1 does not depend on δ, which means that the anisotropy affects
the Casimir force only though the second term in the bracket in (23). When δ = 0, (23) becomes:

Fisotropic(a) = }
2π2c3

∫ ∞
1 p2dp

∫ ∞
0 ε3/2

3x ξ3dξ

×
{[

s1+p
s1−p

s2+p
s2−p exp

(
2paξ

c
√

ε3x

)
− 1
]−1

+

[
s1+

ε1
ε3x

p

s1−
ε1

ε3x
p

s2+
ε2

ε3x
p

s2−
ε2

ε3x
p

exp
(

2paξ
c
√

ε3x

)
− 1
]1
}

, (24)

which is coincident with Lifshitz’s formula for isotropic materials (Equation (4.14) in [3]).
If we assume that the separation between the plates a is greater than the characteristic absorption

wavelength of the materials, we could replace the permittivities ε3x, ε3z, ε1, and ε2 with their values at
ξ = 0 (ε3x0, ε3z0, ε10, and ε20) [3]. Also, (23) can be written with considerable accuracy in the form:

F(a) =
3}c

16π2a4√ε3x0
Φ, (25)

with:

Φ =
∫ ∞

1
pdp

 1
p3

s10 − p
s10 + p

s20 − p
s20 + p

+
1(

1 + p2−1
1+δ

)3/2

s10 − ε10
ε3x0

√
1 + p2−1

1+δ

s10 +
ε10
ε3x0

√
1 + p2−1

1+δ

s20 − ε20
ε3x

√
1 + p2−1

1+δ

s20 +
ε20
ε3x0

√
1 + p2−1

1+δ

, (26)

s10 =
√

ε10
ε3x0
− 1 + p2

s20 =
√

ε20
ε3x0
− 1 + p2

. (27)
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3. The Impact of the Anisotropy of the Intervening Material between the Plates on Casimir Force

In this section, we will analyze the impact of the anisotropy of the intervening material between
the plates on Casimir force. According to (25) and (26), the function Φ is proportional to the magnitude
of the force and can reflect the direction of the force. The positive Φ indicates that the force is attractive,
while the negative Φ indicates that the force is repulsive. As we are mainly interested in the impact
of the anisotropy of the intervening media on the Casimir force, especially the direction of the force,
we simply need to focus on the sign of the function Φ.

For convenience, we can assume that ε10 > ε20. We need to emphasize that the case in which
ε10 > ε3x0 > ε20 and ε10 > ε3z0 > ε20 are satisfied at the same time is not within our interests. This is
because in this case, all the possible values of ε30 are greater than ε10 and smaller than ε20, and this will
make the force repulsive, which is almost the same as Lifshitz’s result [3]. For the same reason, we also
do not have interests in the case when both ε3x0 and ε3z0 are greater than ε10 or when both ε3x0 and
ε3z0 are smaller than ε20. Therefore, we only need to focus on two cases: 1. only one of ε3x0 and ε3z0

is between ε10 and ε20; and, 2. one of ε3x0 and ε3z0 is smaller than ε20, while the other one is greater
than ε10.

For case 1, we let ε10 > ε3x0 > ε20 > ε3z0 (or ε3z0 > ε10 > ε3x0 > ε20). The value of Φ for different δ,
the degree of anisotropy, is shown in Figure 3. The positive Φ indicates that the force is attractive,
while the negative Φ indicates that the force is repulsive. In Figure 3a, where ε10 > ε3x0 > ε20 > ε3z0,
we can see that the Casimir force is attractive at beginning and the magnitude decreases as the degree
of anisotropy δ changes. Finally, it switches into repulsive. In Figure 3b, where ε3z0 > ε10 > ε3x0 > ε20,
the Casimir force is repulsive at beginning and then switches into attractive as the degree of anisotropy
δ changes. Therefore, we can conclude that the magnitude, as well as the direction, of the Casimir force
could be significantly affected by the anisotropy of the intervening material in case 1. For a case where
ε3z0 is between ε10 and ε20, but ε3x0 is not, the result is similar.
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Figure 3. Φ and Φ0 vs. δ. ε10/ε3x0 = 1.5 and ε20/ε3x0 = 0.8. Φ is shown with the solid line and Φ0 is
shown with the red dash line. The positive value indicates that the force is attractive, while the negative
value indicates that the force is repulsive. (a) ε10 > ε3x0 > ε20 > ε3z0; (b) ε3z0 > ε10 > ε3x0 > ε20.

For case 2, let us consider ε3z0 > ε10 > ε20 > ε3x0. The value of Φ for different δ, the degree
of anisotropy, is shown in Figure 4. In Figure 4, we can see that the Casimir force is repulsive at
the very beginning and increases as δ increases. Then, as δ increases, the repulsive force starts to
decrease, before finally switching into attractive. Therefore, in this case, still, the magnitude as
well as the direction of the Casimir force could be significantly affected by the anisotropy of the
intervening material.
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In our previous work [21], we only roughly divided the force into two parts, which, in fact, is
not the best way to analyze the impact of the anisotropy. In order to see it more clearly, in this paper,
we expand the function Φ about δ to the first order:

Φ = Φ0 + δΦδ, (28)

with:

Φ0 = Φ| δ=0 =
∫ ∞

1

1
p2 dp

[
s10 − p
s10 + p

s20 − p
s20 + p

+
s10 − ε10

ε3x0
p

s10 +
ε10
ε3x0

p

s20 − ε20
ε3x

p

s20 +
ε20
ε3x0

p

]
, (29)

Φδ =
∫ ∞

1

p2 − 1
2p

dp

− 3
p3

s10 − ε10
ε3x0

p

s10 +
ε10
ε3x0

p

s20 − ε20
ε3x

p

s20 +
ε20
ε3x0

p
−

2p
(

ε10
ε3x0

s20 − ε20
ε3x

s10

)(
s10s20 − ε10

ε3x0

ε20
ε3x

p2
)

(
s10 +

ε10
ε3x0

p
)2(

s20 +
ε20
ε3x0

p
)2

. (30)

When δ = 0, when substituting (28) and (29) into (25), we can recover Lifshitz’s result for isotropic
materials in the same limiting case (Equation (4.20) in [3]).

In (28), Φ0 represents the contribution of isotropy to the total force, while δΦδ represents the
contribution of anisotropy. As Φ0 does not depend on δ, it will always be the same value and sign
when δ changes. Therefore, the changes of the magnitude and direction of the Casmir force are
caused by δΦδ, which depends on the anisotropy of the intervening material. In case 1, Φ0 is always
negative and produces a repulsive force. In Figure 3a,b, it is clear that when the absolute value of δ

increases, the repulsive force becomes smaller and finally changes into an attractive force. This means
that the anisotropy can produce an attractive force against the repulsive force that is produced by
Φ0, the isotropic term. When the contribution from anisotropy is greater than the contribution from
isotropy, the force switches its direction. In case 2, Φ0 is always positive and produces an attractive
force. However, the total force is not always attractive, because the anisotropy can produce a repulsive
force against the attractive force produced by Φ0, the isotropic term. One should notice that the curve
in Figure 3a represents a good linear relationship, while the curves in Figures 3b and 4 do not represent
a linear relationship. This is because the expansion in (28)–(30) is only valid for small δ, but the values
of δ are not so small in Figures 3b and 4. The higher order terms of δ produce the nonlinear relationship
between Φ and δ. However, in general, we can draw the conclusion that, in both case 1 and case 2, if the
isotropy of the material between the plates contributes a force in a certain direction, the anisotropy
could produce a force in the opposite direction. The direction of the Casimir force depends on which
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one has greater magnitude, which reflects the competition between the contribution from anisotropy
and isotropy. The change in the direction of the Casimir force is caused by the change of the degree of
anisotropy of the material between the plates in this limiting case. This confirms our conclusion in [21],
where we roughly divided the force into two parts.

4. The Impact of the Dispersion

One may notice that, in the previous section, the force seemed to switch direction at the same δ

for all of the separations if the materials are specified. This is because, in previous sections, we want to
focus on the influence of anisotropy of the intervening material only, and we ignore the dispersion,
which makes the function Φ independent of a and ξ. However, for real material, the case should not
be always like this, and it is necessary to consider the effects of dispersion. Therefore, in this section,
we will discuss the combined influence of dispersion and anisotropy of the intervening material
between the plates.

In this section, we consider that he permittivities are frequency dependent, as shown in Figure 5a.
ε3 is the average value of ε3z and ε3x. The models of the dispersion relations and the parameters
used are described in Appendix B. The Casimir forces at different separations for different values
of δ are calculated with (23) and the result is shown in Figure 5b. The positive value indicates that
the force is attractive, while the negative value indicates that the force is repulsive. The force is
repulsive in wide distance range, and can be attractive only at very small separations. This behavior
can be explained by the inequality between ε1, ε2 and ε3. ε3 is the average value of ε3z and ε3x.
The inequality ε1 > ε3 > ε2 is satisfied for the frequencies lower than ~2 × 1015 rad/s, and the modes
with these low frequencies will contribute to a repulsive force. For the frequencies that are higher
than ~2 × 1015 rad/s, the inequality ε1 > ε3 > ε2 is no longer valid, and the modes with these high
frequencies will contribute to an attractive force. The direction of the total force depends on which
contribution is greater. At small separation, the contribution from high frequency modes is dominant
and the force is attractive; while at large separation, the contribution from low frequency modes is
dominant and the force switches into repulsive.

The result above is similar to the result in [9]. However, it remains different and interesting.
One can notice that without anisotropy the force is always repulsive for separations that are greater
than a few nanometers. However, if anisotropy of the intervening media is considered, the force can
be attractive even at a separation greater than 10 nanometers. When δ is negative, the greater the value
of δ is, the greater the distance range we have for attractive force we have. However, positive δ cannot
help to produce attractive force at a distance greater than few nanometers. This can also be explained
by the inequality between ε1, ε2 and ε3. The negative δ will make ε3, the average value of ε3z and ε3x,
smaller, and the inequality ε1 > ε3 > ε2 will invalidate at even lower frequency. That is why negative δ

can help to produce an attractive force.
We can use the difference between F(a) in (23) and Fisotropic(a) to express the impact of anisotropy

of the intervening media. As shown in Figure 5c, at the separation greater than few nanometers,
negative δ always produces an attractive force, which is coincident with the result in the paragraph
above. One may also notice that ε1 is much greater tha n ε2 and ε3 in wide frequency range. Therefore,
for small positive δ, it is not possible to make ε3, the average value of ε3z and ε3x, go beyond ε1 at lower
frequency. That is why the impact of positive δ is always negative in Figure 5c.

Figure 5d shows that when dispersion is taken into account, the anisotropy can also affect the
amplitude and direction significantly. When δ is negative and with a relative large magnitude, the force
is attractive. As the magnitude of δ decreases and changes into positive, the force switches into
repulsive. We can also find in Figure 5d, that for different separations, the direction of the force
reverses at different values of δ, which is different from the result in Section 3, where the static
permittivities are used. This means the anisotropy of the intervening material can affect the direction
of the Casimir force, but at which separation and which δ the force switches its direction are affected
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by dispersion. This is the combined influence of dispersion and anisotropy of the material between
the plates.
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5. The Impact of the External Electric Field on the Casimir Force

When an external electric field is applied across some sample (especially for liquid like nitrotoluene
or nitrobenzene), the sample becomes birefringent, which is usually known as Kerr electro-optical
effect [22,23]. Therefore, the external electric field can affect both the amplitude and direction of the
Casimir force by affecting the degree of anisotropy of the intervening material. If the material between
the plates is isotropic and a DC electric field Eext is applied across the material in z direction, then the
intervening material will become birefringent, and the relationship between permittivity in z direction
and x direction should be: [24]

ε3z = ε3x + akE2
ext, (31)

where ak is associated with the property of the material. Here, we only consider the Kerr electro-optical
effect for the material between the plates and do not consider that for the plates, since this effect in
solid is often not as strong as that in liquid. As we have introduced δ = (ε3z/ε3x) − 1 to express the
degree of anisotropy of the intervening material, we can have:

δ =
akE2

ext
ε3x

. (32)
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In experiments and applications about the Casimir force, the electric field is usually reduced to
small level. Therefore, anisotropy caused by the electric field will be also small, and the expansion
Equation (28) is valid. Substituting (32) into (28), we have:

Φ = Φ0 +
akE2

ext
ε3x

Φδ, (33)

which means the impact of external electric field on the Casimir force is proportional to the square
of the field (we only consider the influence of external electric field by affecting the anisotropy of
intervening material). If dispersion is included, one can substitute (32) into (23). This effect will
not affect the result of current experiments measuring Casimir force. This is because most of the
experiments take place in vacuum and the electric force that is caused by the external electric field
could be much greater than this effect. For the same reason, it is also very difficult to observe this
effect experimentally.

6. Conclusions

We calculate the fully relativistic Casimir force between two isotropic plates separated by a gap
filled with a third anisotropic media. Further, we give the exact result for the impact of the anisotropy
of the intervening material on Casimir force. Our result shows that the anisotropy of the intervening
material can significantly affect both the magnitude and direction of Casimir force. If the isotropy
of the intervening material contributes a force in a certain direction, the anisotropy can contribute a
force in opposite direction. The direction of total Casimir force depends on which one has a greater
contribution. The change in the direction of the Casimir force is totally caused by the change of the
degree of anisotropy of the intervening material when dispersion is ignored. When dispersion is taken
into account, the degree of anisotropy of the intervening can still change the direction of the force,
but at which distance and what value of the degree of anisotropy the direction changes are determined
by dispersion. The external electric field can affect both the amplitude and direction of Casimir force by
affecting the anisotropy of the intervening material. This influence is proportional to the square of the
strength of external electric field. This effect would not have much influence on current experiments.
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Appendix A

In this section we will give the detailed derivation of Equation (22). From the equation of
determinant of coefficients equaling zero that mentioned in Section 2, we can have

D1(ω⊥)G1(ω⊥)D2(ω||)G2(ω||) = ∆1(ω⊥)∆2(ω||) = 0, (A1)

where:

∆1(ω⊥) = D1(ω⊥)G1(ω⊥)

=
(

1
t1
+ 1

t3x

)(
1
t2
+ 1

t3x

)
eωa(t3x−t2)c −

(
1
t1
− 1

t3x

)(
1
t2
− 1

t3x

)
e−ωa(t3x+t2)c , (A2)

∆2(ω||) = D2(ω||)G2(ω||)

=
(

t1
ε1
+ t3z

ε3x

)(
t2
ε2
+ t3z

ε3x

)
eωa(t3z−t2)/c −

(
t1
ε1
− t3z

ε3x

)(
t2
ε2
− t3z

ε3x

)
e−ωa(t3z+t2)/c , (A3)

D1(ω⊥) =

(
1
t1

+
1

t3x

)(
1
t2

+
1

t3x

)
eωa(t3x−t2)c, (A4)
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and:

D2(ω||) =

(
t1

ε1
+

t3z

ε3x

)(
t2

ε2
+

t3z

ε3x

)
eωa(t3z−t2)/c. (A5)

The expressions of functions G1 and G2 can be found in (20) and (21) and are transformed into
another form with the relations mentioned in Section 2.

The Casimir interaction energy per unit area is

U(a) =
}
2

∫ kdk

(2π)2

∫ 2π

0
dθ∑

n

(
ωn,⊥ + ωn,||

)
. (A6)

The summation over ω can be calculated with the help of argument theorem, which has been
applied in [4,11,14,21],

∑
n

ωn,⊥ =
1

2iπ

[∫ −i∞

i∞
ω⊥d ln ∆1(ω⊥) +

∫
C+

ω⊥d ln ∆1(ω⊥)

]
, (A7)

∑
n

ωn,|| =
1

2iπ

[∫ −i∞

i∞
ω||d ln ∆1

(
ω||

)
+
∫

C+
ω||d ln ∆1

(
ω||

)]
, (A8)

where C+ indicates a semicircle with infinite radius in the right one-half of the complex plane whose
center is the origin. As the function ∆1 and ∆2 are analytic and have no poles along the closed path
in (A7) and (A8), argument theorem is capable here. If we assume that along any radial direction in
complex plane we can have:

lim
ω→∞

ε(ω) = 0, lim
ω→∞

dε(ω)

dω
= 1, (A9)

the integration along C+ is infinite and independent of the separation a. To remove this divergence,
we can subtract the energy when a→∞ from U(a) and get a renormalized physical Casimir interaction
energy per unit area:

E(a) = U(a)−U(∞) =
}
2

∫ kdk

(2π)2

∫ 2π

0
dθ

[
∑
n

(
ωn,⊥ + ωn,||

)
− lim

a→∞∑
n

(
ωn,⊥ + ωn,||

)]
, (A10)

and the divergence can be canceled.
According to (A2)–(A5), we can have:

lim
a→∞

∆1(ω⊥) =

(
1
t1

+
1

t3x

)(
1
t2

+
1

t3x

)
eωa(t3x−t2)c = D1(ω⊥), (A11)

lim
a→∞

∆2(ω||) ==

(
t1

ε1
+

t3z

ε3x

)(
t2

ε2
+

t3z

ε3x

)
eωa(t3z−t2)/c = D2(ω||). (A12)

With the help of (A7) and (A8), we can have:

∑
n

ωn,⊥ − lim
a→∞∑

n
ωn,⊥ =

1
2iπ

∫ −i∞

i∞
ω⊥d ln

∆1(ω⊥)

lim
a→∞

∆1(ω⊥)
=

1
2iπ

∫ −i∞

i∞
ω⊥d ln G1(ω⊥), (A13)

and:

∑
n

ωn,|| − lim
a→∞∑

n
ωn,|| =

1
2iπ

∫ −i∞

i∞
ω||d ln

∆2

(
ω||

)
lim
a→∞

∆2(ω||)
=

1
2iπ

∫ −i∞

i∞
ω||d ln G2

(
ω||

)
, (A14)

Substitute (A11) and (A12) into (A8) and introduce ω = iξ, we can get (22), with the help of the
relations p2 = 1 − α2/ε3x, (s1)2 = −(t1)2/ε3x, and (s2)2 = −(t2)2/ε3x.
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Appendix B

In this section, we will describe the models of dispersion relation and the parameters used in the
calculations in Section 4.

For plate 1 (ε1), we use the Drude model:

ε(iξ) = 1 +
ω2

p

ξ(ξ + γ)
, (A15)

We use the parameters for gold [4]: ωp
2 = 1.37 × 1016 rad/s and γ = 5.32 × 1013 rad/s.

For plate 2 (ε2) and the intervening material between the plates (ε3x), we use the following model:

ε(iξ) = 1 +
CIR

1 + (ξ/ωIR)
2 +

CUV

1 + (ξ/ωUV)
2 . (A16)

For ε2, we use the parameters for quartz [9]: CIR = 1.920, CUV = 1.350, ωIR = 2.09 × 1014 rad/s
and ωUV = 2.04 × 1016 rad/s. For ε3x, we use the parameters for bromobenzene [26]: CIR = 2.967,
CUV = 1.335, ωIR = 5.47 × 1014 rad/s and ωUV = 1.28 × 1016 rad/s. In Figure 5a, δ = −0.1 is used.

References

1. Casimir, H.B.G. On the Attraction between Two Perfectly Conducting Plates. Proc. Kon. Ned. Akad. Wet.
1948, 51, 793–795.

2. Lifshitz, E.M. The Theory of Molecular Attractive Forces between Solids. Sov. Phys. JETP 1956, 2, 73–83.
3. Dzyaloshinskii, I.E.; Lifshitz, E.M.; Pitaevskii, L.P. The General Theory of van der Waals Forces. Adv. Phys.

1961, 10, 165–209. [CrossRef]
4. Bordag, A.; Mohideen, U.; Mostepanenko, V.M. New developments in the Casimir effect. Phys. Rep. 2001,

353, 1–205. [CrossRef]
5. Milton, K.A. The Casimir Effect: Physical Manifestations of Zero-Point Energy; World Scientific: Singapore, 2001;

ISBN 978-981-02-4397-5.
6. Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials:

Experiment and theory. Rev. Mod. Phys. 2009, 81, 1827. [CrossRef]
7. Parsegian, V.A.; Weiss, G.H. Dielectric Anisotropy and the van der Waals Interaction between Bulk Media.

J. Adhes. 1972, 3, 259–267. [CrossRef]
8. Barash, Y.S. Moment of van der Waals forces between anisotropic bodies. Radiophys. Quantum Electron. 1978,

21, 1138–1143. [CrossRef]
9. Munday, J.N.; Iannuzzi, D.; Barash, Y. Torque on birefringent plates induced by quantum fluctuations.

Phys. Rev. A 2005, 71, 042102. [CrossRef]
10. Somers, D.A.T.; Munday, J.N. Casimir-Lifshitz Torque Enhancement by Retardation and Intervening

Dielectrics. Phys. Rev. Lett. 2017, 119, 183001. [CrossRef] [PubMed]
11. Shao, C.G.; Tong, A.H.; Luo, J. Casimir torque between two birefringent plates. Phys. Rev. A 2005, 72, 022102.

[CrossRef]
12. Deng, G.; Liu, Z.Z.; Luo, J. Impact of magnetic properties on the Casimir torque between anisotropic

metamaterial plates. Phys. Rev. A 2009, 80, 062104. [CrossRef]
13. Romanowsky, M.B.; Capasso, F. Orientation-dependent Casimir force arising from highly anisotropic crystals

Application to Bi2Sr2CaCu2O8+δ. Phys. Rev. A 2008, 78, 042110. [CrossRef]
14. Shao, C.G.; Zheng, D.L.; Luo, J. Repulsive Casimir effect between anisotropic dielectric and permeable plates.

Phys. Rev. A 2006, 74, 012103. [CrossRef]
15. Deng, G.; Liu, Z.Z.; Luo, J. Attractive-repulsive transition of the Casimir force between anisotropic plates.

Phys. Rev. A 2008, 78, 062111. [CrossRef]
16. Parashar, P.; Milton, K.A.; Shajeshand, K.V.; Schaden, M. Electromagnetic semitransparent δ-function plate:

Casimir interaction energy between parallel infinitesimally thin plates. Phys. Rev. D 2012, 86, 085201.
[CrossRef]

http://dx.doi.org/10.1080/00018736100101281
http://dx.doi.org/10.1016/S0370-1573(01)00015-1
http://dx.doi.org/10.1103/RevModPhys.81.1827
http://dx.doi.org/10.1080/00218467208072197
http://dx.doi.org/10.1007/BF02121382
http://dx.doi.org/10.1103/PhysRevA.71.042102
http://dx.doi.org/10.1103/PhysRevLett.119.183001
http://www.ncbi.nlm.nih.gov/pubmed/29219602
http://dx.doi.org/10.1103/PhysRevA.72.022102
http://dx.doi.org/10.1103/PhysRevA.80.062104
http://dx.doi.org/10.1103/PhysRevA.78.042110
http://dx.doi.org/10.1103/PhysRevA.74.012103
http://dx.doi.org/10.1103/PhysRevA.78.062111
http://dx.doi.org/10.1103/PhysRevD.86.085021


Symmetry 2018, 10, 61 14 of 14

17. Somers, D.A.T.; Munday, J.N. Conditions for repulsive Casimir forces between identical birefringent
materials. Phys. Rev. A 2017, 95, 022509. [CrossRef]

18. Shajesh, K.V.; Schaden, M. Repulsive long-range forces between anisotropic atoms and dielectrics.
Phys. Rev. A 2012, 85, 012523. [CrossRef]

19. Taillandier-Loize, T.; Baudon, J.; Dutier, G.; Perales, F.; Boustimi, M.; Ducloy, M. Anisotropic atom-surface
interactions in the Casimir-Polder regime. Phys. Rev. A 2014, 89, 052514. [CrossRef]

20. Kornilovitch, P.E. Van der Waals interaction in uniaxial anisotropic media. J. Phys. Condens. Matter 2013,
25, 035102. [CrossRef] [PubMed]

21. Deng, G.; Tan, B.H.; Pei, L.; Hu, N.; Zhu, J.R. Casimir force between parallel plates separated by anisotropic
media. Phys. Rev. A 2015, 91, 062126. [CrossRef]

22. Kerr, J. A new relation between electricity and light: Dielectrified media birefringent. Philos. Mag. 1875, 50,
337–348. [CrossRef]

23. Kerr, J. A new relation between electricity and light: Dielectrified media birefringent (Second paper).
Philos. Mag. 1875, 50, 446–458. [CrossRef]

24. Landau, L.D.; Lifshitz, E.M.; Pitaevskii, L.P. Electrodynamics of Continuous Media, 2nd ed.; Elsevier Pte Ltd.:
Singapore, 2007; ISBN 978-7-5062-4262-2/O.258.

25. Milonni, P.W. The Quantum Vacuum; Academic Press: Boston, MA, USA, 1994; ISBN 978-0124980808.
26. Monday, J.N.; Capasso, F.; Parsegian, V.A. Measured long-range repulsive Casimir–Lifshitz forces. Nature

2009, 457, 171–173. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevA.95.022509
http://dx.doi.org/10.1103/PhysRevA.85.012523
http://dx.doi.org/10.1103/PhysRevA.89.052514
http://dx.doi.org/10.1088/0953-8984/25/3/035102
http://www.ncbi.nlm.nih.gov/pubmed/23234868
http://dx.doi.org/10.1103/PhysRevA.91.062126
http://dx.doi.org/10.1080/14786447508641302
http://dx.doi.org/10.1080/14786447508641319
http://dx.doi.org/10.1038/nature07610
http://www.ncbi.nlm.nih.gov/pubmed/19129843
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Calculation of the Casimir Force between Parallel Slabs Separated by Uniaxial Material 
	The Impact of the Anisotropy of the Intervening Material between the Plates on Casimir Force 
	The Impact of the Dispersion 
	The Impact of the External Electric Field on the Casimir Force 
	Conclusions 
	
	
	References

