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Abstract: Semilinear substructural logics ULω and IULω are logics for finite UL and IUL-algebras,
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1. Introduction

In [1], we constructed three semilinear substructural logics ULω , IULω , and HpsUL∗ω by adding
one simple axiom:

(FIN) (A → e)↔ (A⊙ A → e)

to Metcalfe and Montagna’s uninorm logic UL, involutive uninorm logic IUL [2], and a suitable
extension HpsUL∗ [3] of Metcalfe, Olivetti, and Gabbay’s pseudo-uninorm logic HpsUL [4],
respectively. Especially, we show that ULω and IULω are complete with respect to finite UL and
IUL-algebras, respectively. That is, they are logics for finite UL and IUL-algebras, respectively.

In this paper, we prove that ULω and IULω are standard complete by Wang’s constructions in [5]
and [6], which are some generalizations of the Jenei and Montagna-style approach for proving standard
completeness for monoidal t-norm-based logic MTL [7] and the proof of the standard completeness for
IMTL given by Esteva, Gispert, Godo, and Montagna in [8]. These constructions have been extended
by Yang in [9–12].

Substructural logics are logics that lack some of the three basic structural rules of contraction,
weakening, and exchange. For a survey, see [13]. Substructural fuzzy logics are substructural logics
that are complete with respect to algebras whose lattice reduct is the real unit interval [0, 1], i.e.,
logics that are standard complete [2]. Our result in this paper thus shows that ULω and IULω are
substructural fuzzy logics.

As pointed out in [6], our construction in Lemma 5 also presents a method to construct
uninorms and involutive uninorms. Then, the standard completeness for ULω and IULω gives
a characterization of uninorms and involutive uninorms and their residua constructed by finite UL
and IUL-algebras from our constructions. That is, the identity (Fin) holds in all these standard UL
and IUL-algebras; see Definition 5. These new classes of uninorms and involutive uninorms may be
used in the theory of evaluation as the aggregation operators or combining functions [14,15].

We have proven that HpsUL∗ is standard complete in [16]. However, we are unable to prove
whether HpsUL∗ω is standard complete or complete with respect to finite HpsUL∗-algebras and left
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them as open problems. In addition, we have proven that IUL is standard complete in [17], which is
a longstanding open problem in the circle of fuzzy logic. Unfortunately, such a great work has not
been accepted by our community since 2015, although one referee thought that the central ideas in our
proof are reasonable and could find no significant flaws in the reasoning. The referee also said that he
would also not be confident that the proof is correct if the proof were his own and he had spent many
months laboring over it.

2. HpsUL∗ω, ULω, IULω and Algebras Involved

The Hilbert system HpsUL is the logic of bounded representable residuated lattices,
which is based on a countable propositional language with formulas built inductively as usual
from a set of propositional variables, binary connectives ⊙,→,↝,∧,∨, and constants e, f ,�,⊺,
with definable connectives:

¬ϕ ∶= ϕ → f ,

ϕ↔ ψ ∶= (ϕ → ψ)∧ (ψ → ϕ),

λχ(ϕ) ∶= (χ → ϕ⊙ χ)∧ e,

ρχ(ϕ) ∶= (χ ↝ χ⊙ ϕ)∧ e.

Definition 1. HpsUL consists of the following axioms and rules [4]:
(A1) ⊢ ϕ → ϕ

(A2) ⊢ (ϕ → ψ)→ ((χ → ϕ)→ (χ → ψ))
(A3) ⊢ ϕ → ((ϕ ↝ ψ)→ ψ)
(A4) ⊢ (ϕ ↝ (ψ → χ))→ (ψ → (ϕ ↝ χ))
(A5) ⊢ ψ → (ϕ → ϕ⊙ψ)
(A6) ⊢ (ψ → (ϕ → χ))→ (ϕ⊙ψ → χ)
(A7) ⊢ (ψ ↝ ψ⊙ (ψ → ϕ))→ (ψ ↝ ϕ)
(A8) ⊢ (ϕ ∧ t)⊙ (ψ ∧ t)→ ϕ ∧ψ

(A9) ⊢ ϕ ∧ψ → ψ

(A10) ⊢ ϕ ∧ψ → ϕ

(A11) ⊢ (χ → ϕ)∧ (χ → ψ)→ (χ → ϕ ∧ψ)
(A12) ⊢ ϕ → ϕ ∨ψ

(A13) ⊢ ψ → ϕ ∨ψ

(A14) ⊢ (ϕ → χ)∧ (ψ → χ)→ (ϕ ∨ψ → χ)
(A15) ⊢ e
(A16) ⊢ ϕ → (e → ϕ)
(A17) ⊢ ϕ → ⊺
(A18) ⊢ �→ ϕ

(PRL) ⊢ (λχ(ϕ ∨ψ → ϕ))∨ (ρχ(ϕ ∨ψ → ψ))
(MP) ϕ, ϕ → ψ ⊢ ψ

(ADJU) ϕ ⊢ ϕ ∧ e
(PN→) ϕ ⊢ ψ → ϕ⊙ψ

(PN↝) ϕ ⊢ ψ ↝ ψ⊙ ϕ

Definition 2 ([2,3]). A logic is a schematic extension (extension for short) of HpsUL if it results from HpsUL
by adding axioms in the same language. In particular,

● HpsUL∗ is HpsUL plus (WCM) ⊢ (ϕ ↝ e)→ (ϕ → e);
● UL is HpsUL plus ⊢ ϕ⊙ψ → ψ⊙ ϕ;
● IUL is UL plus ⊢ ¬¬ϕ → ϕ.

Definition 3. New extensions of HpsUL are defined as follows.
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● HpsUL∗ω is HpsUL∗ plus (FIN) ⊢ (ϕ → e)↔ (ϕ⊙ ϕ → e);
● ULω and IULω are UL and IUL plus (FIN), respectively.

Let L ∈ {HpsUL∗, UL, IUL, HpsUL∗ω, ULω, IULω} in the remainder of this section. A proof in
L of a formula ϕ from a set Γ of formulas is defined as usual. We write Γ ⊢L ϕ if such a proof exists.

Definition 4 ([4]). An HpsUL-algebra is a bounded residuated lattice A = ⟨A,∧,∨, ⋅,→,↝, e, f ,�,⊺⟩ with
universe A, binary operations ∧,∨, ⋅,→,↝, and constants e, f ,�,⊺ such that:

(i) ⟨A,∧,∨,�,⊺⟩ is a bounded lattice with top element ⊺ and bottom element �;
(ii) ⟨A, ⋅, e⟩ is a monoid;
(iii) ∀x, y, z ∈ A, x ⋅ y ⩽ z iff x ⩽ y ↝ z iff y ⩽ x → z;
(iv) ∀x, y, u, v ∈ A, (λu(x ∨ y → x)) ∨ (ρv(x ∨ y → y)) = e, where, for any a, b ∈ A,

λa(b) ∶= (a → b ⋅ a)∧ e, ρa(b) ∶= (a ↝ a ⋅ b)∧ e.

We use the convention that ⋅ binds stronger than other binary operations, and we shall often
omit ⋅; we will thus write xy instead of x ⋅ y, for example. Suitable classes of algebras of extensions of
HpsUL are defined as follows.

Definition 5 ([1,3,4]). Let A = ⟨A,∧,∨, ⋅,→,↝, e, f ,�,⊺⟩ be an HpsUL-algebra. For L, an extension of
HpsUL, A is an L-algebra if all axioms of L are valid in A. An L-chain is an L-algebra that is linearly ordered.
In particular:

● A is an HpsUL∗-algebra if the weak commutativity (Wcm) holds: xy ≤ e iff yx ≤ e for all x, y ∈ A;
● A is a UL-algebra if xy = yx for all x, y ∈ A;
● A is an IUL-algebra if it is a UL-algebra such that ¬¬x = x for all x ∈ A;
● A is an HpsUL∗ω-algebra (ULω or IULω-algebra) if it is an HpsUL∗-algebra (UL or IUL-algebra)

such that the following identity (Fin) holds: x → e = x2 → e for all x ∈ A.

Definition 6 ([4]). LetA = ⟨A,∧,∨, ⋅,→,↝, e, f ,�,⊺⟩ be an L-algebra. (i) AnA-valuation v is a homomorphism
from the term algebra determined by formulas in L to A; (ii) A formula ϕ is valid in A if v(ϕ) ⩾ e holds for any
A-valuation v; (iii) The relation of semantic consequence Γ ⊧A ϕ holds if each A-evaluation that validates all
formulae in a theory Γ validates ϕ as well.

Theorem 1 ([4,18]). Γ ⊢L ϕ iff Γ ⊧A ϕ for every L-chain A, i.e., L is a semilinear substructural logic.

Proposition 1. Let A = ⟨A,∧,∨, ⋅,→,↝, e, f ,�,⊺⟩ be an HpsUL∗-algebra. Then, A is an HpsUL∗ω-algebra if
and only if xy ⩽ e iff xy2 ⩽ e for all x, y ∈ A.

Proof. For the proof of the necessity part, see Lemma 2.4(i) of [1]. For the sufficiency part, assume that
xy ⩽ e iff xy2 ⩽ e for all x, y ∈ A. Suppose that x → e > x2 → e. Then, x2(x → e) > e by Definition 4 (iii),
and hence, (x → e)x2 > e by (Wcm). Therefore, (x → e)x > e by the assumption. Then, x → e > x → e, a
contradiction, and thus, x → e ≤ x2 → e. x2 → e ≤ x → e is proven by a similar way. Hence, x → e = x2 → e
for all x ∈ A, i.e., A is an HpsUL∗ω-algebra.

Lemma 1. Let A be an HpsUL∗ω-chain and s, t, u ∈ A. Then:

(1) stu = s implies st = s and su = s;
(2) stu = u implies su = u and tu = u;
(3) st = e implies s = t = e.

Proof. Only (1) is proven as follows; for the others, see [1]. If tu ⩽ e, then tut ⩽ e and utu ⩽ e by
Proposition 1 and (Wcm). Thus, stut ⩽ s and stutu ⩽ st. Hence, st ⩽ s and s ⩽ st. Therefore, s t = s.
The case of tu > e is proven in the same way.
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Clearly, Lemma 1 holds for all ULω and IULω-chains.

3. Wang’s Construction and Standard Completeness

In this section, let Lω ∈ {ULω, IULω}, A = ⟨A,∧,∨, ⋅,→,↝, e, f ,�,⊺⟩ be a finite or countable
Lω-chain and s, t, u be arbitrary elements of A.

Definition 7 ([3,5]). Let A be an ULω-chain. For each s ∈ A, t is the immediate predecessor of s in A if:
(i) t ∈ A, t < s; (ii) ∀u ∈ A, u < s implies u ⩽ t. For each s ∈ A, let s− denote the immediate predecessor of s in A
if it exists, otherwise take s− = s.

Let X = {(s, 1) ∶ s ∈ A}∪ {(s, q) ∶ s ∈ A, s > s−, q ∈ Q ∩ (0, 1)}; we define:
(s, q) ⩽ (t, r) iff either s <S t, or s = t and q ⩽ r and,

I1 ∶= {(s, t) ∶ s, t ∈ A, st = s ≠ t, s > s−t}
I2 ∶= {(s, t) ∶ s, t ∈ A, st = t ≠ s, t > st−}
I3 ∶= {(s, t) ∶ s, t ∈ A, st = t = s, s > st−}
I4 ∶= {(s, t) ∶ s, t ∈ A, (st ≠ t and st ≠ s) or

(st = s−t = s) or (st = st− = t)}.

Now define, for (s, q), (t, r) ∈ X:

(s, q) ○ (t, r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(s, q) (s, t) ∈ I1,
(t, r) (s, t) ∈ I2,
(s, q)∧X (t, r) (s, t) ∈ I3,
(st, 1) (s, t) ∈ I4,

where by ∧X and ∨X are meant minX and maxX with respect to ⩽X, respectively. We will omit the index if it
does not cause confusion.

Lemma 2. Let A be an ULω-chain. Then, (s, q) ○ (t, r) ⩽ (e, 1) iff (s, q) ○ (t, r) ○ (t, r) ⩽ (e, 1) for all
(s, q), (t, r) in X.

Proof. Let (s, q) ○ (t, r) ⩽ (e, 1). Since (s, q) ○ (t, r) = (st,♢) for some ♢ ∈ {q, r, 1} by Definition 7,
then st ⩽ e. Thus, stt ⩽ e by (Fin). Hence, (s, q) ○ (t, r) ○ (t, r) ⩽ (e, 1). The sufficiency part of the lemma
is proven in the same way.

Definition 8 ([6,8]). Let A be an IULω-algebra. Let:

I∗ ∶= {(s, t) ∶ s, t ∈ A, s− < s, t− < t, t = ¬s−},

I∗∗ ∶= {(s, t) ∶ s, t ∈ A, ss = s−s = s = t}.

∀(s, q), (t, r) ∈ X, define:

(s, q)△ (t, r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(s, q) ○ (t−, 1)∨ (s−, 1) ○ (t, r) i f (s, t) ∈ I∗, q + r ⩽ 1,
(s, q ∨ r) ○ (s−, 1) i f (s, t) ∈ I∗∗,
(s, q) ○ (t, r) otherwise.

Lemma 3. Let A be an IULω-chain and s, t ∈ A. (i) If st− ≠ s, st− ⩽ e, s−t ⩽ e, then st−t ⩽ e; (ii) if st− = s−t−

and s−t ⩽ e, then st−t ⩽ e; (iii) (s, q)△ (t, r) ⩽ (s, q) ○ (t, r).

Proof. (i) If st ⩽ e, then stt ⩽ e by Proposition 1, and thus, st−t ⩽ stt ⩽ e. If t ⩽ e, then st−t ⩽ t ⩽ e by
st− ⩽ e. Thus, let st > e and t > e in the following.
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t− ≥ e by t > e. t− ≠ e by st− ≠ s. Then, t− > e. Thus, st− ≥ s. Hence, st− > s by st− ≠ s. st− ≠ e by
Lemma 1(3) and t− > e. Therefore, st− < e by st− ⩽ e. Then, st− < e < t−. Thus, st− < t−. Hence, s < e.

Suppose that st ⩽ t−. Then, sst ⩽ st− ⩽ e. Thus, st ⩽ e by Proposition 1, a contradiction, and,
hence st > t−. Therefore, st ⩾ t. st ⩽ t by s < e. Then, st = t.

Suppose that s−t ⩾ s, then s−tt ⩾ st > e. Thus, s−t > e by Proposition 1, a contradiction, and hence,
s−t < s.

Therefore, s−t ⩽ s−. s−t ⩾ s− by t > e. Then, s−t = s−. Then, s−st = s− by st = t. Thus, s−s = s− by
Lemma 1(1).

Suppose that ss = s, then st− = sst− ⩽ s, a contradiction with st− > s, and hence, ss < s by ss ⩽ s.
Then, ss ⩽ s−.

Thus, s− = s−s ⩽ ss ⩽ s−. Hence, ss = s−. Then, (ss)t = s−t = s− and s(st) = st = t. Thus, s− = t
by (ss)t = s(st), a contradiction with s− < e < t. Thus, the case of st > e and t > e does not exist.
This completes the proof of (i).

(ii) It follows from s−t ⩽ e that s−tt ⩽ e by Proposition 1. Then, st−t = s−t−t ⩽ s−tt ⩽ e by st− = s−t−,
and thus, st−t ⩽ e.

(iii) See Proposition 3.7 (2) of [6].

Lemma 4. Let A be a finite IULω-chain. Then, (s, q)△ (t, r) ⩽ (e, 1) if and only if (s, q)△ (t, r)△ (t, r) ⩽
(e, 1) for all (s, q), (t, r) in X.

Proof. Let (s, q)△ (t, r) ⩽ (e, 1). There are three cases to be considered.
Case 1. (s, t) ∈ I∗ and q + r ⩽ 1. Then, (s, q)△ (t, r) = (s, q) ○ (t−, 1) ∨ (s−, 1) ○ (t, r) ⩽ (e, 1).

Thus, st− ⩽ e, s−t ⩽ e. Then, s−tt ⩽ e by Proposition 1. If (s, q)△ (t, r) = (s−, 1) ○ (t, r), then (s, q)△
(t, r)△ (t, r) = ((s−, 1) ○ (t, r))△ (t, r) ⩽ ((s−, 1) ○ (t, r)) ○ (t, r) ⩽ (s−tt, 1) ⩽ (e, 1) by Lemma 3(iii). Let
(s, q)△ (t, r) = (s, q) ○ (t−, 1) in the following. If (s, q) ○ (t−, 1) = (s, q), then (s, q)△ (t, r)△ (t, r) =
(s, q)△ (t, r) ⩽ (e, 1). Otherwise, st− ≠ s or st− = s−t−. Then, st−t ⩽ e by Lemmas 3(i) and 3(ii).
Thus, (s, q)△ (t, r)△ (t, r) = ((s, q) ○ (t−, 1))△ (t, r) ⩽ ((s, q) ○ (t−, 1)) ○ (t, r) ⩽ (st−t, 1) ⩽ (e, 1).

Case 2. (s, t) ∈ I∗∗, then ss = s−s = s = t and (s, q)△ (t, r) = (s, q ∨ r) ○ (s−, 1) ⩽ (e, 1). Thus, ss− ⩽ e.
Hence, ss−s ⩽ e by Proposition 1 and (Wcm). Therefore, (s, q)△ (t, r)△ (t, r) = ((s, q ∨ r) ○ (s−, 1))△
(s, r) ⩽ ((s, q ∨ r) ○ (s−, 1)) ○ (s, r) ⩽ (ss−s, 1) ⩽ (e, 1).

Case 3. (s, q)△ (t, r) = (s, q) ○ (t, r) ⩽ (e, 1), then st ⩽ e. Thus, stt ⩽ e by Proposition 1. Hence,
by Lemma 3(iii), (s, q)△ (t, r)△ (t, r) ⩽ (s, q) ○ (t, r) ○ (t, r) ⩽ (stt, 1) ⩽ (e, 1).

By a similar procedure, we prove that (s, q)△ (t, r) ⩽ (e, 1) if (s, q)△ (t, r)△ (t, r) ⩽ (e, 1).

Lemma 5. LetA be an HpsUL∗ω-chain, X, and the binary operation ○ on X be as in Definition 7. The following
conditions hold:

(a) X is densely ordered and has a maximum ⊺X = (⊺, 1) and a minimum �X = (�, 1).
(b) ⟨X, ○,⩽X , eX⟩ is a linearly-ordered monoid, where eX = (e, 1).
(c) ○ is left-continuous with respect to the order topology on ⟨X,⩽X⟩.
(d) There is a map Φ from A into X such that Φ is an embedding of the structure ⟨A,∧,∨, ⋅, e,�,⊺⟩

into ⟨X,∧X,∨X, ○, eX,�X,⊺X⟩, and for all s, t ∈ A, Φ(s → t) is the residuum of Φ(s) and Φ(t) in
⟨X,∧X ,∨X , ○, eX ,�X ,⊺X⟩, respectively.

(e) ∀(s, q), (t, r) ∈ X, (s, q) ○ (t, r) ≤ (e, 1) iff (s, q) ○ (t, r) ○ (t, r) ≤ (e, 1).

Proof. Claim (e) has been proven by Lemma 2. As pointed out in [3], the associativity of ○ is mainly
dependent on Lemma 1(1)∼(2). Other claims are proven in the same way as that of Theorem 4.5
in [3].

Lemma 6. Every countable UL∗ω-chain can be embedded into a standard UL∗ω-algebra.
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Proof. Let X,A, etc., be as in Definition 7. We can assume, without loss of generality,
that X = Q∩ [0, 1]. Now, define for α, β ∈ [0, 1], α ∗ β = sup{x ○ y ∶ x, y ∈ X, x ≤ α, y ≤ β}. The proof of
the weak commutativity, the monotonicity, associativity, left-continuity, etc., of ∗ is the same as that of
Theorem 4.6 in [3]. The neutral element of ∗ is eX in Q∩ [0, 1]. By the left-continuity of ∗, the following
property holds.

(P) α, β, γ ∈ [0, 1], α ∗ β ∗ γ = sup{x ○ y ○ z ∶ x, y, z ∈ X, x ≤ α, y ≤ β, z ≤ γ}.
We prove that α∗ β ≤ eX iff α∗ β∗ β ≤ eX for any α, β in [0, 1]. Given α∗ β ≤ eX , then x ○ y ≤ eX for all

x, y ∈ X, x ≤ α, y ≤ β. Let x, y, z ∈ X, x ≤ α, y ≤ β, z ≤ β. Then, x ○ y ≤ eX, x ○ z ≤ eX. Thus, x ○ y ○ y ≤ eX ,x ○
z ○ z ≤ eX by Lemma 5(e). Hence, x ○ y ○ z ≤ max{x ○ y ○ y, x ○ z ○ z} ≤ eX . Therefore, α ∗ β ∗ β ≤ eX by (P).
The sufficient part of the claim is proven in a similar way.

By Lemma 1, Definition 8, Lemma 4, we can prove the claims similar to Lemma 5 and 6 for
IULω-algebras. As a consequence of these lemmas, and extending Theorem 3.3 of [7] in the obvious
way, we obtain the following standard completeness.

Theorem 2. ULω and IULω are complete with respect to the class of standard algebras involved.

4. Concluding Remarks

Roughly speaking, the methodological significance of Jenei and Montagna’s proof is that it
does not require a complete understanding of the structure of the MTL-algebras by embedding a
countable MTL-algebra into a dense one. It is indeed different from the proof of the BL’s standard
completeness given by Hajek, Cignoli, Esteva, Godo, Torrens et al. in [19,20]. The validation of the
structure X in Definitions 7, 8 and Lemmas 5, 6 is dependent on Lemma 1(1), which claims that stu = s
implies st = s. However, we are unable to prove the condition that stu = t implies st = t in HpsUL∗ω.
It seems that we need to introduce some stronger axioms into HpsUL∗ω to guarantee its completeness
with respect to finite (or standard) HpsUL∗-algebras.
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