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Abstract: The compactification from the 11-dimensional Horava-Witten orbifold to 5-dimensional
heterotic M-theory on a Schoen Calabi-Yau threefold is reviewed, as is the specific SU(4) vector
bundle leading to the “heterotic standard model” in the observable sector. A generic formalism for a
consistent hidden sector gauge bundle, within the context of strongly coupled heterotic M-theory, is
presented. Anomaly cancellation and the associated bulk space 5-branes are discussed in this context.
The further compactification to a 4-dimensional effective field theory on a linearized BPS double
domain wall is then presented to order κ4/3

11 . Specifically, the generic constraints required for anomaly
cancellation and by the linearized domain wall solution, restrictions imposed by the vanishing of
the D-terms and, finally, the constraints imposed by the necessity for positive, perturbative squared
gauge couplings to this order are presented in detail.

Keywords: Realistic M-Theory

1. Introduction

One of the major prerogatives of the Large Hadron Collider (LHC) at CERN is to search for
low-energy N = 1 supersymmetry. It has long been known that specific vacua of both the weakly
coupled [1,2] and strongly coupled [3–5] E8 × E8 heterotic superstring can produce effective theories
with at least a quasi-realistic particle spectrum exhibiting N = 1 supersymmetry [6–10]. It has also
been shown that the various moduli associated with these theories can, in principle, be stabilized [11].
It is of considerable interest, therefore, to examine these low-energy theories in detail and to confront
them, and their predictions, with present and up-coming CERN data.

There are several important criterion that such theories should possess. First, they must exhibit
a low-energy spectrum in the observable sector that is not immediately in conflict with known
phenomenology. In this paper, we will choose the so-called “heterotic standard model” introduced
in [12–16]. The observable sector of this theory, associated with the first E8 gauge factor, contains exactly
the matter spectrum of the minimal supersymmetric standard model (MSSM) augmented by three
right-handed neutrino chiral superfields, one per family, and a single pair of Higgs-Higgs conjugate
superfields. There are no vector-like pairs of superfields or exotic matter of any kind. The low-energy
gauge group of this theory is the SU(3)C× SU(2)L×U(1)Y of the standard model enhanced by a single
additional gauged U(1) symmetry, which can be associated with B− L. Interestingly, the observable
sector of this model–derived from the “top down” in the E8× E8 heterotic superstring–is identical to the
minimal, anomaly free B− L extended MSSM, derived from the “bottom up” in [17,18]. The requisite
radiative breaking of both the B− L and electroweak symmetry, the associated mass hierarchy [19–23],
and various phenomenological [24,25] and cosmological [26–29] aspects of this low-energy theory have
been discussed. Their detailed predictions for LHC observations are currently being explored [30–33].
The reader is also referred to works on heterotic standard models in [34–37].

The second important criterion is that there be a hidden sector, associated with the second E8

gauge factor, that, prior to its spontaneous breaking, exhibits N = 1 supersymmetry. The original
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papers on the heterotic standard model, in analogy with the KKLT mechanism [38] in Type II
string theory, allowed the hidden sector to contain an anti-5-brane–thus explicitly breaking N = 1
supersymmetry [39,40]. This was done so that the potential energy could admit a meta-stable de
Sitter space vacuum. Such a vacuum was shown to exist, and its physical properties explored,
in [41]. Be this as it may, it is important to know whether or not completely N = 1 supersymmetric
hidden sectors can be constructed in this context. It was demonstrated in [15] that the hidden
sector of the heterotic standard model satisfies the Bogomolov inequality, a non-trivial necessary
condition for supersymmetry [42] (see also [43–45]). More recently, within weakly coupled E8 × E8

heterotic superstring theory, an N = 1 supersymmetric hidden sector was explicitly constructed using
holomorphic line bundles [46]. This vacuum satisfies all conditions required to have a consistent
compactification in the weakly coupled context–and is an explicit proof that completely N = 1
supersymmetric heterotic standard models exist. Be that as it may, it remains important to construct
a completely N = 1 supersymmetric vacuum state of strongly coupled heterotic string theory that
is totally consistent with all physical requirements. In this paper, we present the precise constraints
required by such a vacuum within the context of heterotic strongly coupled M-theory.

Specifically, we do the following. In Section 2, the focus is on the compactification from the
11-dimensional Horava-Witten orbifold to 5-dimensional heterotic M-theory–presenting the relevant
details of the explicit Calabi-Yau threefold and the observable sector SU(4) vector bundle of the
heterotic standard model. Following a formalism first presented in [47–52], we discuss the generic
structure of a large class of the hidden sector gauge bundles–a Whitney sum of a non-Abelian SU(N)

bundle and line bundles. Bulk space 5-branes [53–55] and the anomaly cancellation constraint
are presented in this context. The compactification of 5-dimensional heterotic M-theory to the
4-dimensional low-energy effective field theory on a BPS linearized double domain wall is then
described. In particular, we derive the constraints that must be satisfied in order for the linearized
approximation to be valid. Section 3 is devoted to discussing the 4-dimensional E8 × E8 effective
theory; first the lowest order κ2/3

11 Lagrangian [56]–along with the slope-stability criteria for the
observable sector SU(4) vector bundle–and then the exact form of the order κ4/3

11 corrections [57].
These corrections for both the Fayet-Iliopoulos D-terms and the observable and hidden sector gauge
couplings are presented in a unified formalism. They are shown to be of the same form as in the
weakly coupled string with the weak coupling constants replaced by a moduli-dependent expansion
parameter. The constraints required for there to be an N = 1 supersymmetric vacuum with positive
gauge coupling parameters are then specified. Finally, we consider a specific set of vacua for which the
hidden sector vector bundle is restricted to be the Whitney sum of one non-Abelian SU(N) bundle with
a single line bundle, while allowing only one five-brane in the bulk space. Under these circumstances,
the constraint equations greatly simplify and are explicitly presented. We demonstrate how the
parameters associated with these bundles are computed for a specific choice of these objects.

2. The Compactification Vacuum

N = 1 supersymmetric heterotic M-theory on four-dimensional Minkowski space M4 is obtained
from eleven-dimensional Horava-Witten theory via two sequential dimensional reductions: First
with respect to a Calabi-Yau threefold X whose radius is assumed to be smaller than that of the
S1/Z2 orbifold and second on a “linearized” BPS double domain wall solution of the effective
five-dimensional theory. Let us present the relevant information for each of these within the context of
the heterotic standard model.

2.1. The d = 11→ d = 5 Compactification

2.1.1. The Calabi-Yau Threefold

The Calabi-Yau manifold X is chosen to be a torus-fibered threefold with fundamental group
π1(X) = Z3 × Z3. Specifically, it is a fiber product of two rational elliptic dP9 surfaces, that is,
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a self-mirror Schoen threefold [13,58], quotiented with respect to a freely acting Z3 × Z3 isometry.
Its Hodge data is h1,1 = h1,2 = 3 and, hence, there are three Kähler and three complex structure moduli.
The complex structure moduli will play no role in the present paper. Relevant here is the degree-two
Dolbeault cohomology group

H1,1(X,C
)
= spanC{ω1, ω2, ω3} (1)

where ωi = ωiab̄ are harmonic (1, 1)-forms on X with the property

ω3 ∧ω3 = 0, ω1 ∧ω3 = 3 ω1 ∧ω1, ω2 ∧ω3 = 3 ω2 ∧ω2 . (2)

Defining the intersection numbers as

dijk =
1
v

∫
X

ωi ∧ωj ∧ωk, i, j, k = 1, 2, 3 (3)

where v is a reference volume of dimension (length)6, it follows from (2) that

(dijk) =


(

0, 1
3 , 0
) (

1
3 , 1

3 , 1
)

(0, 1, 0)(
1
3 , 1

3 , 1
) (

1
3 , 0, 0

)
(1, 0, 0)

(0, 1, 0) (1, 0, 0) (0, 0, 0)

 . (4)

The (i, j)-th entry in the matrix corresponds to the triplet (dijk)k=1,2,3.
Our analysis will require the Chern classes of the tangent bundle TX. Noting that the

associated structure group is SU(3) ⊂ SO(6), it follows that rank(TX) = 3 and c1(TX) = 0.
Furthermore, the self-mirror property of this specific threefold implies c3(TX) = 0. Finally, we find that

c2(TX) =
1

v2/3

(
12ω1 ∧ω1 + 12ω2 ∧ω2). (5)

We will use the fact that if one chooses the generators of SU(3) to be hermitian, then the second
Chern class of the tangent bundle can be written as

c2(TX) = − 1
16π2 trSO(6) R ∧ R, (6)

where R is the Lie algebra valued curvature two-form.
Please note that H2,0 = H0,2 = 0 on a Calabi-Yau threefold. It follows that H1,1(X,C) = H2(X,R)

and, hence, ωi, i = 1, 2, 3 span the real vector space H2(X,R). Furthermore, it was shown in [14]
that the curve Poincare dual to each two-form ωi is effective. It follows that the Kähler cone is the
positive octant

K = H2
+(X,R) ⊂ H2(X,R). (7)

The Kähler form, defined to be ωab̄ = igab̄ where gab̄ is the Calabi-Yau metric, can be any element
of K. That is, suppressing the Calabi-Yau indices, the Kähler form can be expanded as

ω = aiωi, ai > 0, i = 1, 2, 3. (8)

The real, positive coefficients ai are the three (1, 1) Kähler moduli of the Calabi-Yau threefold.
Here, and throughout this paper, upper and lower H1,1 indices are summed unless otherwise stated.
The dimensionless volume modulus is defined by

V =
1
v

∫
X

6
√

g (9)
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and, hence, the dimensionful Calabi-Yau volume is V = vV. Using the definition of the Kähler form
and (3), V can be written as

V =
1

6v

∫
X

ω ∧ω ∧ω =
1
6

dijkaiajak. (10)

It is useful to express the three (1, 1) moduli in terms of V and two additional independent moduli.
This can be accomplished by defining the scaled shape moduli

bi = V−1/3ai, i = 1, 2, 3 . (11)

It follows from (10) that they satisfy the constraint

dijkbibjbk = 6 (12)

and, hence, represent only two degrees of freedom. Finally, note that all moduli defined thus far,
that is, the ai, V and bi are functions of the five coordinates xα, α = 0, . . . , 3, 11 of M4 × S1/Z2, where
x11 ∈ [0, πρ].

2.1.2. The Observable Sector Gauge Bundle

On the observable orbifold plane, the vector bundle V(1) on X is chosen to be holomorphic with
structure group SU(4) ⊂ E8, thus breaking

E8 −→ Spin(10). (13)

To preserve N = 1 supersymmmetry in four-dimensions, V(1) must be both slope-stable and have
vanishing slope [14,15]. In the context of this paper, these constraints are most easily examined in the
d = 4 effective theory and, hence, will be discussed in Section 3 below. Finally, when two flat Wilson
lines are turned on, each generating a different Z3 factor of the Z3 ×Z3 holonomy of X, the observable
gauge group can be further broken to (As discussed in [17,18], the two U(1) factor groups depend on
the explicit choice of Wilson lines. For the renormalization group analysis of the low-energy d = 4
theory, it is more convenient to choose U(1)T3R ×U(1)B−L. However, since this is not our concern in
this paper, we present the more canonical choice U(1)Y ×U(1)B−L

Spin(10) −→ SU(3)C × SU(2)L ×U(1)Y ×U(1)B−L. (14)

Our analysis will require the Chern classes of V(1). Since the structure group is SU(4), it follows
immediately that rank(V(1)) = 4 and c1(V(1)) = 0. The heterotic standard model is constructed so as
to have the observed three chiral families of quarks/leptons and, hence, V(1) is constructed so that
c3(V(1)) = 3. Finally, we found in [12,14] that

c2(V(1)) =
1

v2/3

(
ω1 ∧ω1 + 4 ω2 ∧ω2 + 4 ω1 ∧ω2

)
. (15)

Here, and below, it will be useful to note the following. Let V be an arbitrary vector bundle on X
with structure group G, and FV the associated Lie algebra valued two-form gauge field strength. If the
generators of G are chosen to be hermitian, then

1
8π2 trG FV ∧ FV = ch2(V) =

1
2

c1(V) ∧ c1(V)− c2(V), (16)
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where ch2(V) is the second Chern character of V . Furthermore, we denote by trG the trace in the
fundamental representation of the structure group G of the bundle. When applied to the vector bundle
V(1) in the observable sector, it follows from c1(V(1)) = 0 that

c2(V(1)) = − 1
8π2 trSU(4) F(1) ∧ F(1) = − 1

16π2 trE8 F(1) ∧ F(1), (17)

where F(1) is the gauge field strength for the visible sector bundle V(1) and trE8 indicates the trace
is over the fundamental 248 representation of E8. Note that the conventional normalization of the
trace trE8 includes a factor of 1

30 , the inverse of the dual Coxeter number of E8. We have expressed
c2(V(1)) in terms of trE8 since the fundamental SU(4) representation must be embedded into the
adjoint representation of E8 in the observable sector.

For the visible sector bundle V(1) with structure group SU(4), the group-theoretic embedding is
simply the standard SU(4) ⊂ SU(9) ↪→ E8.

2.1.3. The Hidden Sector Gauge Bundle

On the hidden orbifold plane, we will consider more general vector bundles and group
embeddings. Specifically, in this paper, we will restrict any choice of hidden sector bundle to have the
generic form of a Whitney sum

V(2) = VN ⊕L , L =
R⊕

r=1

Lr (18)

where VN is a slope-stable, non-Abelian bundle and each Lr, r = 1, . . . , R is a holomorphic line
bundle with structure group U(1). Note that a subset of hidden sector vector bundles might have no
non-Abelian factor at all, being composed entirely of the sum of one or more line bundles. On the other
hand, one could choose the hidden sector bundle to be composed entirely of a non-Abelian vector
bundle, that is, with no line bundle factors. Should the hidden sector bundle contain a non-Abelian
factor, one could generically choose it to possess an arbitrary structure group. However, in this paper,
for specificity, we will assume that the structure group of the non-Abelian factor is SU(N) for some N.
The explicit embeddings of the SU(N) and individual U(1) structure groups into the hidden sector E8

gauge group will be discussed below. Finally, to preserve N = 1 supersymmmetry in four-dimensions,
V(2), being a Whitney sum of vector bundles, must be poly-stable. As with the observable sector
vector bundle, these constraints are most easily examined in the d = 4 effective theory and, hence, will
be discussed in Section 3 below. Let us first examine the non-Abelian factor.

• Hidden Sector SU(N) Factor

We first note that one can choose the hidden sector bundle Since the structure group of VN
is SU(N), it follows immediately that rank(VN) = N and c1(VN) = 0. The precise form of the
second Chern class depends on the type of VN bundle one chooses. Since this bundle is no longer
constrained to give any particular spectrum, it and its associated second Chern class can be quite
general. The generic form for the second Chern class is given by

c2(VN) =
1

v2/3 (c
ij
Nωi ∧ωj) (19)

where cij
N are, a priori, arbitrary real coefficients. Finally, note from (16) that since c1(VN) = 0,

ch2(VN) = −c2(VN) . (20)

Let us now consider the line bundle factors.
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• Hidden Sector Line Bundles

Let us briefly review the properties of holomorphic line bundles on our specific geometry.
Line bundles are classified by the divisors of X and, hence, equivalently by the elements of the
integral cohomology

H2(X,Z) = {aω1 + bω2 + cω3|a, b, c ∈ Z} . (21)

It is conventional to denote the line bundle associated with the element aω1 + bω2 + cω3 of
H2(X,Z) as

OX(a, b, c). (22)

Furthermore, in order for these bundles to arise from Z3 × Z3 equivariant line bundles on the
covering space of X, they must satisfy the additional constraint that

a + b = 0 mod 3. (23)

Finally, as discussed in [46], for the purposes of constructing a heterotic gauge bundle from
OX(a, b, c), (23) is the only constraint required on the integers a, b, c. Specifically, it is not necessary to
impose that these integers be even for there to exist a spin structure on V(2).

We will choose the Abelian factor of the hidden bundle to be

L =
R⊕

r=1

Lr, Lr = OX(`
1
r , `2

r , `3
r ) (24)

where
(`1

r + `2
r ) mod 3 = 0, r = 1, . . . , R (25)

for any positive integer R. The structure group is U(1)R, where each U(1) factor has a specific
embedding into the hidden sector E8 gauge group. It follows from the definition that rank(L) = R
and that the first Chern class is

c1(L) =
R

∑
r=1

c1(Lr), c1(Lr) =
1

v1/3 (`
1
r ω1 + `2

r ω2 + `3
r ω3). (26)

Please note that since L is a sum of holomorphic line bundles, c2(L) = c3(L) = 0.
However, the relevant quantity for the hidden sector vacuum is the second Chern character defined in
(16). For L this becomes

ch2(L) =
R

∑
r=1

ch2(Lr) (27)

Since c2(Lr) = 0, it follows that

ch2(Lr) = 2ar
1
2

c1(Lr) ∧ c1(Lr) (28)

where
ar =

1
4 · 30

trE8 Q2
r (29)

with Qr the generator of the r-th U(1) factor embedded into the 248 representation of the hidden
sector E8.

The relevant topological object in the analysis of this paper will be the second Chern character of
the complete hidden sector bundle

ch2(V(2)) = ch2(VN ⊕L) = ch2(VN) + ch2(L) . (30)
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Using (20) and (27),(28) this becomes

ch2(V(2)) = −c2(VN) +
R

∑
r=1

arc1(Lr) ∧ c1(Lr) (31)

with ar given in (29). Note from (16), the explicit embedding of the structure group of V(2) into E8

and (31) that
1

16π2 trE8 F(2) ∧ F(2) = −c2(VN) +
R

∑
r=1

arc1(Lr) ∧ c1(Lr) . (32)

2.1.4. Bulk Space Five-Branes

In addition to the holomorphic vector bundles on the observable and hidden orbifold planes,
the bulk space between these planes can contain five-branes wrapped on two-cycles C(n)2 , n = 1, . . . , N

in X. Cohomologically, each such five-brane is described by the (2, 2)-form Poincare dual to C(n)2 ,
which we denote by W(n). Note that to preserves N = 1 supersymmetry in the four-dimensional
theory, these curves must be holomorphic and, hence, each W(n) is an effective class.

2.1.5. Anomaly Cancellation

As discussed in [59,60], anomaly cancellation in heterotic M-theory requires that

N+1

∑
n=0

J(n) = 0, (33)

where

J(0) = − 1
16π2

(
trE8 F(1) ∧ F(1) − 1

2
trSO(6) R ∧ R

)
J(n) = W(n), n = 1, . . . , N,

J(N+1) = − 1
16π2

(
trE8 F(2) ∧ F(2) − 1

2
trSO(6) R ∧ R

) (34)

Using (6), (17) and (32), the anomaly cancellation condition can be expressed as

c2(TX)− c2(V(1))− c2(VN) +
R

∑
r=1

arc1(Lr) ∧ c1(Lr)−W = 0, (35)

where W = ∑N
n=1 W(n) is the total five-brane class.

Condition (35) is expressed in terms of four-forms in H4(X,R). We find it easier to analyze its
consequences by writing it in the dual homology space H2(X,R). In this case, the coefficient of the i-th
vector in the basis dual to (ω1, ω2, ω3) is given by wedging each term in (35) with ωi and integrating
over X. Using (5), (15) and the intersection numbers (3), (4) gives

1
v1/3

∫
X

(
c2(TX)− c2(V(1))

)
∧ωi =

( 4
3 , 7

3 ,−4
)

i, i = 1, 2, 3. (36)

For c2(VN), it follows from (3) and (19) that

1
v1/3

∫
X

(
− c2(VN)

)
∧ωi = −dijkcjk

N . (37)
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Similarly, (3),(4) and (26) imply

1
v1/3

∫
X

c1(Lr) ∧ c1(Lr) ∧ωi = dijk`
j
r`

k
r , i = 1, 2, 3. (38)

Defining

Wi =
1

v1/3

∫
X

W ∧ωi , (39)

it follows that the anomaly condition (35) can be expressed as

Wi =
( 4

3 , 7
3 ,−4

)∣∣
i − dijkcjk

N +
R

∑
r=1

ardijk`
j
r`

k
r ≥ 0 , i = 1, 2, 3. (40)

The positivity constraint on W follows from the requirement that it be an effective class to preserve
N = 1 supersymmetry.

Finally, it is useful to define the charges

β
(n)
i =

1
v1/3

∫
X

J(n) ∧ωi , i = 1, 2, 3. (41)

For example, it follows from (34), using (5), (6), (15), (17) and the intersection numbers (3), (4), that

β
(0)
i =

( 2
3 ,− 1

3 , 4
)∣∣

i . (42)

Please note that the anomaly condition (33) can now be expressed as

N+1

∑
n=0

β
(n)
i = 0 . (43)

2.2. The d = 5→ d = 4 Compactification

The Linearized Double Domain Wall

The five-dimensional effective theory of heterotic M-theory, obtained by dimensionally reducing
Horava-Witten theory on the above Calabi-Yau threefold, admits a BPS double domain wall solution
with five-branes in the bulk space [53,55,56,59,61,62]. This solution depends on the previously defined
moduli V and bi as well as the a, b functions of the five-dimensional metric

ds2
5 = a2dxµdxνηµν + b2dy2 , (44)

all of which are dependent on the five coordinates xα, α = 0, . . . , 3, 11 of M4 × S1/Z2. Denoting the
reference radius of S1 by ρ, then x11 ∈ [0, πρ]. These moduli can all be expressed in terms of functions
f i, i = 1, 2, 3 satisfying the equations

dijk f j f k = Hi , (45)

where each Hi is a linear function of z = x11

πρ with z ∈ [0, 1] and whose exact form depends on the
number and position of five-branes in the bulk space. As a simple, and relevant, example, let us
consider the case when there are no five-branes in the vacuum. Then

Hi = 4kε′Sβ
(0)
i

(
z− 1

2

)
+ ki, (46)

where

ε′S = π
(κ11

4π

)2/3 2πρ

v2/3 , (47)
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the charge β
(0)
i is given in (42) and k, ki are arbitrary constants.

We are unable to give an exact analytic solution of (45) and (46). However, one can obtain an
approximate solution by expanding to linear order in ε′Sβ

(0)
i
(
z − 1

2
)
. It is clear from (46) that this

approximation will be valid under the conditions that

2ε′S|kβ
(0)
i | � |ki| (48)

for each i = 1, 2, 3. This linearized solution was discussed in detail in [53,55,56]. Here we present only
the results required in this paper. For an arbitrary dimensionless function f of the five M4 × S1/Z2

coordinates, define its average over the S1/Z2 orbifold interval as

〈 f 〉11 =
1

πρ

∫ πρ

0
dx11 f , (49)

where ρ is a reference length. Then 〈 f 〉11 is a function of the four coordinates xµ, µ = 0, . . . , 3 of M4

only. The linearized solution is expressed in terms of orbifold average functions

V0 = 〈V〉11, bi
0 = 〈bi〉11,

R̂0

2
= 〈b〉11. (50)

We have defined R̂0
2 = 〈b〉11 to conform to specific normalization later in the paper. In terms of

these averaged moduli, the conditions (48) for the validity of the linearized approximation can be
written as

ε′S
R̂0

V0

∣∣∣β(0)
i

∣∣∣� ∣∣∣dijkbj
0bk

0

∣∣∣ (51)

or, equivalently,

ε′S
R̂0

V0
�
∣∣∣dijkbj

0bk
0(β

(0)
i )−1

∣∣∣ (52)

for each i = 1, 2, 3. Note that in the linear approximation the relations (10) and (11) remain unchanged
for the averaged moduli; that is,

V0 =
1
6

dijkai
0aj

0ak
0, bi

0 = V−1/3
0 ai

0. (53)

It follows that, when expressed in terms of the moduli ai
0, condition (52) becomes

ε′S
R̂0

V1/3
0

�
∣∣∣dijkaj

0ak
0(β

(0)
i )−1

∣∣∣ . (54)

Assuming that these conditions are fulfilled, the linearized solution for V, bi, a and b can be
determined in terms of the orbifold average functions. For example, assuming there are no five-branes
in the bulk space, the linearized solution for V is given by

V = V0

(
1 + ε′S

R̂0

V0
bi

0β
(0)
i
(
z− 1

2
))

. (55)

The linearized expressions for bi and a, b are similar expansions in the moduli dependent quantity

(ε′S
R̂0
V0
)bi

0β
(0)
i . It follows that another check on the validity of these expansions is that

1
2

ε′S
R̂0

V0

∣∣∣bi
0β

(0)
i

∣∣∣� 1 . (56)
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Thus far, we have considered the case when there are no five-branes in the bulk space. Including an
arbitrary number of five-branes in the linearized BPS solution is straightforward and was presented
in [59,61,62]. Here, it will suffice to generalize the above discussion to the case of one five-brane located
at z1 ∈ [0, 1]. The conditions for the validity of the linear approximation then break into two parts.
Written in terms of the averaged moduli, these are

2ε′S
R̂0

V0

∣∣∣∣β(0)
i
(
z− 1

2
)
− 1

2
β
(1)
i (1− z1)

2
∣∣∣∣� ∣∣∣dijkbj

0bk
0

∣∣∣ , z ∈ [0, z1] (57)

and

2ε′S
R̂0

V0

∣∣∣∣(β
(0)
i + β

(1)
i )
(
z− 1

2
)
− 1

2
β
(1)
i z2

1

∣∣∣∣� ∣∣∣dijkbj
0bk

0

∣∣∣ , z ∈ [z1, 1]. (58)

Assuming these conditions are satisfied, the linearized solution for V, bi and a, b can be determined
in each region. For example, the linearized solution for V is given by

V = V0

(
1 + ε′S

R̂0

V0
bi

0

[
β
(0)
i
(
z− 1

2
)
− 1

2
β
(1)
i (z1 − 1)2

])
, z ∈ [0, z1] (59)

and

V = V0

(
1 + ε′S

R̂0

V0
bi

0

[
(β

(0)
i + β

(1)
i )
(
z− 1

2
)
− 1

2
β
(1)
i z2

1

])
, z ∈ [z1, 1] (60)

Please note that if the five-brane is located near the hidden wall, that is, z1 → 1,
conditions (57) and (58) for the validity of the linear approximation both revert to (51), as they must
for consistency. Similarly, the solutions for V given in (59) and (60) simply reduce to (55).

When dimensionally reduced on this linearized BPS solution, the four-dimensional functions
ai

0, V0, bi
0 and R̂0 will become moduli of the d = 4 effective heterotic M-theory. The geometric role of

ai
0 and V0, bi

0 will remain the same as above—now, however, for the averaged Calabi-Yau threefold.
For example, the dimensionful volume of the averaged Calabi-Yau manifold will be given by vV0.
The new dimensionless quantity R̂0 will be the length modulus of the orbifold. The dimensionful
length of S1/Z2 is given by πρR̂0. Finally, since the remainder of this paper will be within the context
of the d = 4 effective theory, we will, for simplicity, drop the subscript “0” on all moduli henceforth.

3. The d = 4 E8 × E8 Effective Theory

When d = 5 heterotic M-theory is dimensionally reduced to four dimensions on the linearized BPS
double domain wall with five-branes, the result is an N = 1 supersymmetric effective four-dimensional
theory with spontaneously broken E8 × E8 gauge group. The Lagrangian will break into two distinct
parts. The first contains terms of order κ2/3

11 in the eleven-dimensional Planck constant κ11, while the
second consists of terms of order κ4/3

11 .

3.1. The κ2/3
11 Lagrangian

This Lagrangian is well-known and was presented in [56]. Here we discuss only those
properties required in this paper. In four dimensions, the moduli must be organized into the lowest
components of chiral supermultiplets. Here, we need only consider the real part of these components.
Additionally, one specifies that these chiral multiplets have canonical Kähler potentials in the effective
Lagrangian. The dilaton is simply given by

Re S = V . (61)

However, neither ai nor bi have canonical kinetic energy. To obtain this, one must define the
rescaled moduli

ti = R̂bi = R̂V−1/3ai , (62)



Symmetry 2018, 10, 723 11 of 22

where we have used (53), and choose the complex Kähler moduli Ti so that

Re Ti = ti . (63)

Denote the real modulus specifying the location of the n-th five-brane in the bulk space by zn = x11
n

πρ

where n = 1, . . . , N. As with the Kähler moduli, it is necessary to define the fields

Re Zn = β
(n)
i tizn . (64)

These rescaled Zn five-brane moduli have canonical kinetic energy.
The gauge group of the d = 4 theory has two E8 factors, the first associated with the observable

sector and the second with the hidden sector. As discussed previously, both vector bundles must be
chosen so as to preserve N = 1 supersymmetry in four-dimensions. We now explicitly discuss the
conditions under which this will be true. We begin with the observable sector.

• Stability of the Observable Sector Vector Bundle

To preserve N = 1 supersymmmetry in four-dimensions the holomorphic SU(4) vector bundle
V(1) associated with the observable E8 gauge group must be both slope-stable and have vanishing
slope [63–65]. The slope of any bundle or sub-bundle F is defined as

µ(F ) = 1
rank(F )v2/3

∫
X

c1(F ) ∧→∧→ , (65)

where ω is the Kähler form in (7)—now, however, written in terms of the ai moduli averaged over
S1/Z2. Since c1(V(1)) = 0, V(1) has vanishing slope. However, is it slope-stable? As proven in detail
in [15], this will be the case in a subspace of the Kähler cone defined by seven inequalities required for
all sub-bundles of V(1) to have negative slope. These can be slightly simplified into the statement that
the moduli ai, i = 1, 2, 3 must satisfy at least one of the two inequalities(√

2
5

a2 < a1 < a2 and a3 <
−(a1)2 − 3a1a2 + (a2)2

6a1 − 6a2

)
or(

a2

2
< a1 ≤

√
2
5

a2 and
2(a2)2 − 5(a1)2

30a1 − 12a2 < a3 <
−(a1)2 − 3a1a2 + (a2)2

6a1 − 6a2

) (66)

The subspace Ks satisfying (66) is a full-dimensional subcone of the Kähler cone K defined
in (7). It is a cone because the inequalities are homogeneous. In other words, only the angular part
of the Kähler moduli are constrained, but not the overall volume. Hence, it is best displayed as a
two-dimensional “star map” as seen by an observer at the origin. This is shown in Figure 1. For Kähler
moduli restricted to this subcone, the four-dimensional low energy theory in the observable sector is
N = 1 supersymmetric.
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ω1

(a
1,
a

2,
a

3
)
=

(1,0
,0)

ω2

(a
1 ,
a

2 ,
a

3
)
=

(0
,1
,0

)

ω3 (a1, a2, a3 ) =(0,0,1)

Ks

Figure 1. The visible sector stability region in the Kähler cone.

• Poly-Stability of the Hidden Sector Vector Bundle

To preserve N = 1 supersymmmetry in four-dimensions, the hidden sector vector bundle, since it
is generically a Whitney sum, must be poly-stable. That is, each factor of the Whitney sum must be
slope-stable and, in addition, all factors in the sum must have the same slope. In order to make this
more concrete, we now present three non-trivial examples to illustrate the property of poly-stability.
As a first example, let us choose

1. V(2) = VN :
In this case, since for a single vector bundle slope-stability implies poly-stability, one need only
check that VN is slope-stable. For example, one could choose VN to be identical to the SU(4)
bundle in the observable sector, V(1), presented above. Note that, since we are restricting all
hidden sector non-Abelian bundles to have structure group SU(N), it follows that µ(VN) must
vanish. As with the observable sector bundle SU(4) bundle, stability of a generic non-Abelian
vector bundle will only occur within a specific region of Kähler moduli space.

2. V(2) = L:
In this case, one need only check that the line bundle L is slope-stable, which will imply
poly-stability. Fortunately, every line bundle is trivially slope-stable, so any line bundle can
be used. It is important to note that the slope of a line bundle which appears as a lone factor in
the Whitney sum has–a priori–no further constraints. Using (65), (26) and (4), it follows that the
slope of an arbitrary line bundle specified by L = OX(`

1, `2, `3) is given by

µ(L) = dijk`
iajak =

1
3

(
a2(a2 + 6a3)`1 + (a1)2`2 + 6a1a3`2 + 2a1a2(2`1 + `2 + 6`3)

)
. (67)

That is, its value is a highly specific function of the Kähler moduli.
3. V(2) = VN ⊕ L :

As specified above, the non-Abelian vector bundle VN must be slope-stable in a region of Kähler
moduli space. Furthermore, since we are restricting the structure group in our discussion to be
SU(N), it follows that µ(VN) = 0. As we just indicated, any line bundle L will be slope-stable
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everywhere in Kähler moduli space. However, the full Whitney sum V(2) = VN ⊕ L will be
poly-stable–and, hence, preserve N = 1 supersymmetry–if and only if µ(L) = µ(VN) = 0. That is,
because of the existence of a non-Abelian SU(N) factor, the line bundle L now has the additional
constraint that its slope vanish identically. It is clear from (67) that this will be the case only in
a restricted region of Kähler moduli space. It follows that the full Whitney sum V(2) = VN ⊕ L
will only be a viable hidden sector bundle if the region of stability of VN has a non-vanishing
intersection with the region where the slope of L vanishes. This is a very non-trivial requirement.
To give a concrete example, let us choose VN = V(1), where V(1) is the SU(4) observable sector
bundle specified above. Recall that the region of slope-stability of this bundle in Kähler moduli
space is delineated by the inequalities in (66) and shown in Figure 1. Plotted in 3-dimensions,
this region of slope-stability over a limited region of Kähler moduli space is shown in Figure 2a.
Furthermore, let us specify that L = OX(1, 2,−3). Note that L satisfies condition (23), as it must.
It follows from (67) that the region of moduli space in which µ(L) = 0 is given by the equation

2
3
(a1)2 − 4a1a2 +

1
3
(a2)2 + 4a1a3 +

3
2

a2a3 = 0 . (68)

Plotted over a limited region of Kähler moduli space in 3-dimensions, the region where µ(L) = 0
is shown in Figure 2b. Figure 2c then shows that these two regions have a substantial overlap
in Kähler moduli space. Furthermore, since VN was chosen to be V(1), it follows that Figure 2c
also represents the overlap with the stability region of the observable sector vector bundle.
We conclude that the specific choice of V(2) = V(1) ⊕ OX(1, 2,−3) is a suitable choice for a
poly-stable hidden sector vector bundle.

(a) (b) (c)

Figure 2. The region of poly-stability for the hidden sector vector bundle V(2) = V(1) ⊕OX(1, 2,−3).
The red volume in Figure 2a is the sub-region of Kähler moduli space where the bundle V(1) is slope
stable, whereas the green volume of Figure 2b is a sub-region of where µ(OX(1, 2,−3)) = 0. They have
a substantial region of overlap in Kähler moduli space, indicated by the yellow volume in Figure 2c.

These three examples give the rules for constructing specific poly-stable vector bundles. They can
easily be generalized to construct generic poly-stable Whitney sum hidden sector vector bundles.

3.2. The κ4/3
11 Lagrangian

The terms in the BPS double domain wall solution proportional to ε′S lead to order κ4/3
11 additions

to the d = 4 Lagrangian. These have several effects. The simplest is that the five-brane location moduli
now contribute to the definition of the dilaton, which becomes

Re S = V + ε′S

N

∑
n=1

β
(n)
i tiz2

n. (69)
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More profoundly, these κ4/3
11 terms lead to, first, additions to the Fayet-Iliopoulos (FI) term

associated with any anomalous U(1) factor in the low energy gauge group and, second, threshold
corrections to the gauge coupling parameters. Let us analyze these in turn.

3.2.1. Corrections to a Fayet-Iliopoulos Term

In the heterotic standard model vacuum, the observable sector vector bundle V(1) has structure
group SU(4). Hence, it does not lead to an anomalous U(1) gauge factor in the observable sector of
the low energy theory. However, the hidden sector bundle V(2) introduced above, in addition to a
possible non-Abelian bundle VN , consists of a sum of line bundles with the additional structure group
U(1)R. Each U(1) factor leads to an anomalous U(1) gauge group in the four-dimensional effective
field theory and, hence, an associated D-term. Let Lr be any one of the irreducible line bundles of V(2).
The string one-loop corrected Fayet-Iliopoulos (FI) term for Lr was computed in [47] within the context
of the weakly coupled heterotic string. Comparing various results in the literature, it is straightforward
to show that strong coupling results to order κ4/3

11 can be obtained from string one-loop weak coupling
expressions if one replaces

g2
s `

4
s −→ ε′S

R̂
V1/3 v2/3 (70)

in the weak coupling formulas, where gs and ls = 2π
√

α′ are the weak coupling parameter and string
length respectively and ε′S is defined in (47). Using (70), we find that the expression for the FI term
associated with Lr in strongly coupled heterotic M-theory to order κ4/3

11 is given by

FIr = −
π2

v1/3V

(
µ(Lr) + ε′S

R̂
V1/3

∫
X

c1(Lr) ∧
(

J(N+1) +
N

∑
n=1

z2
n J(n)

))
, (71)

where µ(Lr) is given in (65). Inserting (34), (6), (32) and, following the conventions of [47,50], redefining
the five-brane moduli to be

λn = zn −
1
2

, λn ∈
[
− 1

2 , 1
2

]
, (72)

we find that

FIr = −
π2

v1/3V

(
µ(Lr)− ε′S

R̂
V1/3∫

X
c1(Lr) ∧

(
− c2(VN) +

R

∑
s=1

asc1(Ls) ∧ c1(Ls) +
1
2

c2(TX)−
N

∑
n=1

( 1
2 + λn)

2W(n))) , (73)

where as is given in (29). The first term on the right-hand side, that is, the slope of Lr defined
in (65), is the order κ2/3

11 result. The remaining terms are the κ4/3
11 M-theory corrections first presented

in [53]. Please note that the dimensionless parameter ε′S
R̂

V1/3 of the κ4/3
11 term is identical to the

expansion coefficient of the linearized solution—when expressed in term of the ai moduli—discussed
in Section 2.2. See, for example, (54). Finally, recalling definition (65) of the slope, using (3), (4), (8),
(26), (39) and noting from (5) that

1
v1/3

∫
X

1
2

c2(TX) ∧ωi = (2, 2, 0)i, i = 1, 2, 3, (74)

it follows that for each Lr the associated Fayet-Iliopoulos factor FIr in (73) can be written as

FIr = −
π2

v1/3V

(
dijk`

i
rajak − ε′S

R̂
V1/3(

− dijk`
i
rcjk

N + dijk`
i
r

R

∑
s=1

as`
j
s`

k
s + `i

r(2, 2, 0)|i −
N

∑
n=1

(
1
2
+ λn)

2`i
rW

(n)
i
))

(75)
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where
V =

1
6

dijkaiajak. (76)

As discussed in [53], the general form of each D-term in the low energy four-dimensional theory is
the sum of (1) the moduli dependent FI parameter (75) and (2) terms quadratic in the four-dimensional
scalar fields charged under the associated U(1) gauge symmetry weighted by their specific charge.
For each line bundle Lr, r = 1, . . . , R on the Calabi-Yau threefold, there is an anomalous U(1)r

symmetry in the four-dimensional low energy theory on the hidden sector. The associated D-term is
given by

Dr = FIr + ∑
α

qr
α|φr

α|2, (77)

where the φr
α denote scalar fields of mass dimension one with charge qr

α under this U(1)r Abelian gauge
symmetry. Note from (75) that FIr has mass dimension two–consistent with expression (77). As is
well-known, a necessary condition for a static vacuum state of the theory to be N = 1 supersymmetric
is that the D term associated with each line bundle Lr must identically vanish. Generically, this will be
the case if

∑
α

qr
α|〈φr

α〉|2 = −FIr . (78)

These φr
α scalars break into two distinct types—(1) those that transform only under the Abelian

group U(1)r and (2) those which, in addition, transform non-trivially under the non-Abelian gauge
factor of the hidden sector low energy theory. This second type of scalar field will also appear in the
D-term associated with the non-Abelian group–which cannot contain a FI term. Hence, the demand
that the vacuum be supersymmetric generically sets their vacuum expectation values to zero. It follow
that one can, henceforth, ignore such fields and restrict the scalars in (78) to those that transform under
the Abelian U(1)r symmetry only.

In the weakly coupled heterotic case discussed in [46], it was assumed, for simplicity, that the
vacuum expectation values 〈φr

α〉 all vanish, even for the scalars not transforming under the low energy
non-Abelian gauge factor. In that case, each Dr will vanish if and only if FIr = 0. This restriction
puts very strong constraints on the choice of the hidden sector vector bundle. Be that as it may, the
assumption that all 〈φr

α〉 vanish and that FIr = 0 remains a valid constraint for strongly coupled vacua.
However, in the strongly coupled case we are now considering, an alternative set of constraints can be
also be adopted. That is, one can assume that the scalar fields that only transform under the low energy
U(1)r groups are, in general, non-vanishing and that each Dr is set to zero by the associated vacuum
expectation values 〈φr

α〉 becoming non-zero. For this to be the case, it is essential to specify the hidden
sector vector bundle and to compute the pure U(1)r low energy scalar fields φr

α and their associated
charges qr

α. This is essential because, should the U(1)r charge be positive, then the associated Dr term
can vanish if and only if FIr < 0. On the other hand, if the associated charge is negative, then Dr can
vanish if and only if FIr > 0. That is, the condition one needs to impose on the Fayet-Iliopoulos terms
will depend on the sign of the charge of the scalar spectrum.

3.2.2. Gauge Threshold Corrections

The gauge couplings of the non-anomalous components of the d = 4 gauge group, in both the
observable and hidden sectors, have been computed to order κ4/3

11 in [53]. Including five-branes in the
bulk space, these are given by

4π

(g(1))2
= V + ε′S

R̂
2V1/3

N+1

∑
n=0

(1− zn)
2aiβ

(n)
i (79)

and
4π

(g(2))2
= V + ε′S

R̂
2V1/3

N+1

∑
n=1

z2
naiβ

(n)
i (80)
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respectively. Using (34), (41) and (6), (10), (27), (28), (72), it follows that

4π

(g(1))2
=

1
6v

∫
X

ω ∧ω ∧ω− ε′S
R̂

2V1/3
1

v1/3

×
∫

X
ω ∧

(
−c2(V(1)) +

1
2

c2(TX)−
N

∑
n=1

( 1
2 − λn)

2W(n)

) (81)

and

4π

(g(2))2
=

1
6v

∫
X

ω ∧ω ∧ω− ε′S
R̂

2V1/3
1

v1/3

×
∫

X
ω ∧

(
−c2(VN) +

R

∑
r=1

arc1(Lr) ∧ c1(Lr) +
1
2

c2(TX)−
N

∑
n=1

( 1
2 + λn)

2W(n)

) (82)

where ar is given in (29). The first term on the right-hand side, that is, the volume V defined in (10),
is the order κ2/3

11 result. The remaining terms are the κ4/3
11 M-theory corrections first presented in [53].

Clearly, consistency of the d = 4 effective theory requires both (g(1))2 and (g(2))2 to be positive.
It follows that the moduli of the four-dimensional theory are constrained to satisfy

1
v

∫
X

ω ∧ ω ∧ ω − 3ε′S
R̂

V1/3
1

v1/3

∫
X

ω ∧
(
− c2(V(1)) +

1
2

c2(TX) −
N

∑
n=1

( 1
2 − λn)

2W(n)) > 0 (83)

and

1
v

∫
X

ω ∧ω ∧ω− 3ε′S
R̂

V1/3
1

v1/3

∫
X

ω ∧
(
− c2(VN) +

R

∑
r=1

arc1(Lr) ∧ c1(Lr)

+
1
2

c2(TX)−
N

∑
n=1

( 1
2 + λn)

2W(n)) > 0. (84)

Please note that the dimensionless parameter ε′S
R̂

V1/3 of the κ4/3
11 term is identical to the expansion

coefficient of both the FI condition (75) and the linearized solution discussed in Section 2.2. As in the
previous subsections, one can use (3), (4), (5), (8), (15), (19), (26) and (39) to rewrite these expressions as

dijkaiajak − 3ε′S
R̂

V1/3

(
− (

8
3

a1 +
5
3

a2 + 4a3)+

+2(a1 + a2)−
N

∑
n=1

( 1
2 − λn)

2ai W(n)
i

)
> 0

(85)

and

dijkaiajak − 3ε′S
R̂

V1/3

(
− dijkaicjk

N + dijkai
R

∑
r=1

ar`
j
r`

k
r+

+2(a1 + a2)−
N

∑
n=1

( 1
2 + λn)

2ai W(n)
i

)
> 0

(86)

respectively.
Again, it is of interest to compare the (g(1))2, (g(2))2 > 0 conditions calculated to order κ4/3

11
in strongly coupled heterotic M-theory, that is, (83) and (84), to the one-loop corrected conditions
computed in the weakly coupled heterotic string [50]. Assuming the same observable and hidden
sector vector bundles used in this paper, we find that the weakly coupled conditions for (g(1))2,
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(g(2))2 > 0, derived using (3.103) in [50], are identical to (83) and (84) if one again uses the replacement
g2

s `
4
s −→ ε′S

R̂
V1/3 v2/3 given in (70).

3.3. A Specific Class of Examples

The constraint equations listed above are technically rather complicated. Therefore, as we did
when discussing poly-stability in Section 3.1, we now analyze the constraint equations within the
context of a specific class of N = 1 supersymmetric hidden sector vector bundles. To do this, one must
specify the non-Abelian bundle VN with structure group SU(N), the number of line bundles Lr and
their exact embeddings into the hidden E8 vector bundle. We will, henceforth, consider hidden sector
bundles that may, or may not, contain a non-Abelian factor and, for simplicity, are restricted to contain
at most a single line bundle

L = OX(`
1, `2, `3) (87)

where
`1, `2, `3 ∈ Z, (`1 + `2) mod 3 = 0 . (88)

In this case, there is only a single ar coefficient–which we denote simply by a. In addition,
one must specify the number of five-branes in the bulk space. Again, for simplicity, we assume that
there is only one five-brane in this example. It then follows from (40), (75), (85), and (86) that the
constraints for this restricted class of examples are given by

Wi =
( 4

3 , 7
3 ,−4

)∣∣
i − dijkcjk

N + adijk`
j`k ≥ 0, i = 1, 2, 3, (89)

dijk`
iajak − ε′S

R̂
V1/3

(
− dijk`

icjk
N + adijk`

i`j`k

+`i(2, 2, 0)|i − ( 1
2 + λ)2`iWi

)
≶ 0 ,= 0 (90)

dijkaiajak − 3ε′S
R̂

V1/3

(
−
( 8

3 a1 + 5
3 a2 + 4a3)

+2(a1 + a2)−
( 1

2 − λ
)2aiWi

)
> 0 (91)

dijkaiajak − 3ε′S
R̂

V1/3

(
− dijkaicjk

N + adijkai`j`k

+2(a1 + a2)− ( 1
2 + λ)2aiWi

)
> 0 (92)

where R̂ is an independent modulus and V satisfies relation (76). Note that the expression on the
left-hand side of the (90) is a) > 0 or < 0 if one assumes that some 〈φα〉 6= 0 and that the associated
scalar charge qα is positive or negative respectively or b) = 0 if, alternatively, one assumes that all
〈φα〉 = 0.

To proceed, one must specify the the coefficient a, as well as the coefficients cjk
N of the second

Chern class of VN . We begin with the coefficient a. Recall from (29) that

a =
1

4 · 30
trE8 Q2 , (93)

where Q is the generator of the U(1) structure group of the line bundle. Hence, the value of coefficient
a will depend entirely on the explicit embedding of this U(1) into the 248 representation of the hidden
sector E8. This will be specified as follows. Choose the structure group SU(N) of VN and embed

SU(N)×U(1) ⊂ SU(N + 1) . (94)
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The structure group of the line bundle L is identified with the specific U(1) generator in SU(N + 1)
which commutes with the generators of the chosen SU(N). In the fundamental representation of
SU(N + 1), the generator of U(1) can then be written as

diag
(

1, . . . , 1︸ ︷︷ ︸
N

,−N
)

. (95)

This specifies the exact embedding of U(1) into SU(N + 1). Now choose SU(N + 1) to be a
factor of a maximal subgroup of E8. The decomposition of the 248 of E8 with respect to this maximal
subgroup, together with (95), then determines the generator Q.

This is most easily explained by giving a simple explicit example. Let us assume there is no
non-Abelian bundle–only a single line bundle. That is,

V(2) = L . (96)

The explicit embedding of L into E8 is chosen as follows. First, recall that

SU(2)× E7 ⊂ E8 (97)

is a maximal subgroup. With respect to SU(2)× E7, the 248 representation of E8 decomposes as

248 −→ (1, 133)⊕ (2, 56)⊕ (3, 1). (98)

Now choose the generator of the U(1) structure group in the fundamental representation of SU(2)
to be (1,−1). It follows that under SU(2)→ U(1)

2 −→ 1⊕−1 (99)

and, hence, under U(1)× E7

248 −→ (0, 133)⊕
(
(1, 56)⊕ (−1, 56)

)
⊕
(
(2, 1)⊕ (0, 1)⊕ (−2, 1)

)
. (100)

The generator Q of this embedding of the line bundle can be read off from expression (100).
Inserting this into (93), we find that

a = 1. (101)

For the choice of a non-Abelian bundle VN with structure group SU(N), similar calculations give

N = 2⇒ a = 3, N = 3⇒ a = 6, N = 4⇒ a = 10, N = 5⇒ a = 15 (102)

As discussed previously, one may or may not include a non-Abelian factor in the hidden
sector vector bundle. If a non-Abelian factor VN is to be included, one must specify it exactly.
Generically, there are many possibilities for such a bundle. As an explicit example, let us choose
this to be precisely the same SU(4) bundle as in the observable sector described in Section 2.1.2.
Doing this greatly simplifies the analysis since this V4 bundle is slope-stable with vanishing slope
in the same region of Kähler moduli space as the observable sector bundle V(1)—that is, when the
inequalities (66) are satisfied. Since N = 4, it follows from (102) that coefficient

a = 10 (103)

and, since V4 is identical to V(1), it follows from (15) that

c2(V4) =
1

v2/3

(
ω1 ∧ω1 + 4 ω2 ∧ω2 + 4 ω1 ∧ω2

)
. (104)
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Hence, from (19) the only non-vanishing cjk
N coefficients are

c11
4 = 1, c22

4 = 4, c12
4 = c21

4 = 2 . (105)

Inserting these coefficients, along with a = 10, into (89), (90), (91), (92) give the appropriate
constraint equations for this class of vacua. As discussed above, if one assumes the VEVs of all scalar
fields vanish, then the left-hand side of (90) must be zero. However, if not all 〈φα〉 vanish, then to
determine whether the left-hand side of the FI inequality (90) is > 0 or < 0 depends on the sign of
the charge of the associated low energy U(1) charged scalars. Since the charge can be different for
different choices of the hidden sector bundle, this can only be determined within the context of an
explicit example. This will be presented elsewhere.

Of course, these constraints have to be solved simultaneously with the condition (66) for the
slope-stability of both the observable and hidden sector non-Abelian vector bundles; that is(

a1 < a2 ≤
√

5
2 a1 and a3 <

−(a1)2 − 3a1a2 + (a2)2

6a1 − 6a2

)
or(√

5
2 a1 < a2 < 2a1 and

2(a2)2 − 5(a1)2

30a1 − 12a2 < a3 <
−(a1)2 − 3a1a2 + (a2)2

6a1 − 6a2

) (106)

Finally, it is essential to implement Equations (57) and (58) for the validity of the linear
approximation. These equations depend sensitively on the sign of each component of β

(0)
i , the value

of β
(1)
i = Wi and the five-brane location z1. For the specific class of models presented in this section,

(57) and (58) become

2ε′S
R̂

V1/3

∣∣∣∣β(0)
i
(
z− 1

2
)
− 1

2
Wi(

1
2 − λ)2

∣∣∣∣� ∣∣∣dijkajak
∣∣∣ , z ∈ [0, λ + 1

2 ] (107)

and

2ε′S
R̂

V1/3

∣∣∣∣(β
(0)
i + Wi)

(
z− 1

2
)
− 1

2
Wi(

1
2 + λ)2

∣∣∣∣� ∣∣∣dijkajak
∣∣∣ , z ∈ [λ + 1

2 , 1] . (108)
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