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Abstract: Khovanov homology is a categorication of the Jones polynomial. It consists of graded chain
complexes which, up to chain homotopy, are link invariants, and whose graded Euler characteristic is
equal to the Jones polynomial of the link. In this article we give some Khovanov homology groups of
3-strand braid links ∆2k+1 = x2k+2

1 x2x2
1x2

2x2
1 · · · x2

2x2
1x2

1, ∆2k+1x2, and ∆2k+1x1, where ∆ is the Garside
element x1x2x1, and which are three out of all six classes of the general braid x1x2x1x2 · · · with
n factors.
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1. Introduction

Khovanov homology was introduced by Mikhail Khovanov in 2000 in Reference [1] as a
categorification of the Jones polynomial, which was introduced by Jones in [2]. His construction,
using geometrical and topological objects instead of polynomials, was so interesting that it offered a
completely new approach to tackle problems in low-dimensional topology.

Khovanov homology plays a vital role in developing several important results in the field of
knot theory. Soon after the discovery of Khovanov homology, Bar-Natan proved in Reference [3]
that Khovanov’s invariant is stronger than the Jones polynomial. He also proved that the graded
Euler characteristic of the chain complex of a link L is the un-normalized Jones polynomial of that
link. In 2005, Bar-Natan extended the Khovanov homology of links to tangles, cobordisms, and
two-knots [4]. In [5] Bar-Natan gave a fast way of computing the Khovanov homology. In 2013,
Ozsvath, Rasmussen, and Szabo introduced the odd Khovanov homology by using exterior algebra
instead of symmetric algebra [6]. Gorsky, Oblomkov, and Rasmussen gave some results on stable
Khovanov homology of torus links in Reference [7]. Putyra introduced a triply graded Khovanov
homology and used it to prove that odd Khovanov homology is multiplicative with respect to disjoint
unions and connected sums of links Reference [8]. Manion gave rational Khovanov homology of
three-strand pretzel links in 2011 [9]. Nizami, Mobeen, and Ammara gave Khovanov homology of
some families of braid links in Reference [10]. Nizami, Mobeen, Sohail, and Usman gave Khovanov
homology and graded Euler characteristic of 2-strand braid links in [11].
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In Reference [12], Marko used a long exact sequence to prove that the Khovanov homology
groups of the torus link T(n; m) stabilize as m→ ∞. A generalization of this result to the context of
tangles came in the form of Reference [13], where Lev Rozansky showed that the Khovanov chain
complexes for torus braids also stabilize (up to chain homotopy) in a suitable sense to categorify the
Jones–Wenzl projectors. At roughly the same time, Benjamin Cooper and Slava Krushkal gave an
alternative construction for the categorified projectors in Reference [14]. These results, along with
connections between Khovanov homology, HOMFLYPT homology, Khovanov–Rozansky homology,
and the representation theory of rational Cherednik algebra (see [15]) have led to conjectures about
the structure of stable Khovanov homology groups in limit Kh(T(n; 1)) (see [15], and results along
these lines in Reference [16]). More recently, in Reference [17], Robert Lipshitz and Sucharit Sarkar
introduced the Khovanov homotopy type of a link L. This is a link invariant taking the form of a
spectrum whose reduced cohomology is the Khovanov homology of L.

Although computing the Khovanov homology of links is common in the literature, no general
formulae have been given for all families of knots and links. In this paper, we give Khovanov homology
of the three-strand braid links ∆2k+1, ∆2k+1x2, and ∆2k+1x1, where ∆ is the Garside element x1x2x1.
Particularly, we focus on the top homology groups.

2. Braid Links

Definition 1. A knot is a simple, closed curve in the three-space. More precisely, it is the image of an injective,
smooth function from the unit circle to R3 with a nonvanishing derivative [18]. You can see some knots in
Figure 1:

Trivial knot Trefoil knot Figure-eight knot

Figure 1. Knots.

Definition 2. An m-component link is a collection of m nonintersecting knots [18]. A trivial two-component
link and the Hopf link are given in Figure 2:

Trivial two-component link Hopf link

Figure 2. Links.

Definition 3. Two links L1 and L2 are said to be isotopic or equivalent if there is a smooth map F:
[0, 1]× S1 → R3, which confirms that Ft is a link for all t ∈ [0, 1] and that that F0 = L1 and F1 = L2. Map F
is called isotopy. By the isotopy class of a link L, denoted [L], we mean the collection of all links that are isotopic
to L.

Since it is hard to work with links in R3, people usually prefer working with their projections on a
plane. These projections should be generic, which means that all multiple points are double points
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with a clear information of over- and undercrossing, as you can see in Figure 3. Such a projection of a
link is called the diagram of the link.

undercrossing

overcrossing

Figure 3. Crossing.

Theorem 1. (Reidemeister, [19]). Let D1 and D2 be two diagrams of links L1 and L2. Then, links L1 and L2

are isotopic if and only if D1 is transformed into D2 by planar isotopies and by a finite sequence of three local
moves represented in Figure 4:

R1 R2

R3

Figure 4. Reidemeister moves.

Definition 4. A link invariant is a function that remains constant on all elements in an isotopy class of a link.

Remark 1. A function to qualify as a link invariant should be invariant under the Reidemeister moves.

Definition 5. An n-strand braid is a collection of n nonintersecting, smooth curves joining n points on a plane
to n points on another parallel plane in an arbitrary order such that any plane parallel to the given planes
intersects exactly n number of curves [20]. The smooth curves are called the strands of the braid. You can see a
2-strand braid in Figure 5:

Figure 5. 2-strand braid.
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Definition 6. The product of two n-strand braids α and β, denoted by αβ, is defined by putting β below α and
then gluing their common endpoints.

Definition 7. A braid is said to be elementary if it consists of just one crossing. The ith elementary braid,
denoted by xi, is given in Figure 6:

. . .. . .

i i+1

Figure 6. Elementary braid xi.

Remark 2. Each braid is a product of elementary braids.

Definition 8. The closure of a braid β, denoted by β̂, is defined by connecting its lower endpoints to its
corresponding upper endpoints with smooth curves, as you can see in Figure 7.

β β̂

Figure 7. Braid closure.

Remark 3.

1 All braids are oriented from top to bottom.
2 From now onward, by braid β we mean its closure β̂, which is actually a link.

An important result by Alexander, connecting links and braids, is:
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Theorem 2. (Alexander [21]). Each link is a closure of some braid.

Definition 9. The 0- and 1-smoothings of crossing are defined, respectively, by and .

Definition 10. A collection of disjoint circles obtained by smoothing out all the crossings of a link L is called the
Kauffman state of the link [22].

3. Homology

Definition 11. Let V =
⊕

n Vn, be a graded vector space with homogeneous components {Vn} of degree n. The
graded dimension of V is the power series q dim V: = ∑n qn dim Vn.

Definition 12. The degree of the tensor product of graded vector space V1 ⊗V2 is the sum of the degrees of the
homogeneous components of graded vector spaces V1 and V2.

Remark 4. In our case, the graded vector space V has the basis < v+, v− > with degree p(v±) = ±1 and the
q-dimension q + q−1.

Definition 13. The degree shift .{l} operation on a graded vector space V =
⊕

Vn is defined by(
V.{l}

)
n
= Vn−l .

Construction of Chain Groups: Let L be a link with n crossings, and let all crossings be labeled from
1 to n. Arrange all its 2n Kauffman states into columns 1, 2, . . . , n so that the rth column contains all
states having r number of 1-smoothings in it. To every stat α in the rth column we assign graded
vector space Vα(L) := V⊗m{r}, where m is the number of circles in α. The rth chain group, denoted by
[[L]]r :=

⊕
α:r=|α| Vα(L), is the direct sum of all vector spaces corresponding to all states in the

rth column.

Definition 14. The chain complex C of graded vector spaces Cr is defined as:

. . . −→ Cr+1 dr+1
−−→ Cr dr

−→ Cr−1 dr−1
−−→ . . .

such that dr ◦ dr+1 = 0 for each r.

In a system of converting the chain group into a complex, we use the maps between graded vector
spaces to satisfy d ◦ d. For this purpose we can label the edges of the cube {0, 1}χ by the sequence ξ

ε{0, 1, ?}χ, where ξ contains only one ? at a time. Here, ? indicates that we change a 1-smoothing to
a 0-smoothing. The maps on the edges is denoted by dξ , the height of edges |ξ|. The direct sum of
differentials in the cube along the column is

dr := ∑
|ξ|=r

(−1)ξ dξ .

Now, we discuss the reason behind the sign of (−1)ξ . As we want from the differentials to satisfy
d ◦ d = 0, the maps dξ have to anticommute on each of the vertex of the cube. A way to do this is by
multiplying edges dξ by (−1)ξ := (−1)∑i<j ξi , where j is the location of ? in ξ.

For better understanding, please see the n-cube of trefoil knot x−3
1 in Figure 8.
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x−3
1

1

2

3

V{1}

001

d0?1←−−
V⊗2{2}

011

V⊗2

000

d0?0←−−
V{1}

010

V⊗2{2}

101

d1?1←−−
V⊗3{3}

111

V{1}

100

d1?0←−−
V⊗2{2}

110

Figure 8. n-cube of x−3
1 .

It is useful to note that the ordered basis of V is
〈
v+, v−

〉
and the ordered basis of V ⊗ V is〈

v+ ⊗ v+, v− ⊗ v+, v+ ⊗ v−, v− ⊗ v−
〉
.

Definition 15. Linear map m : V ⊗ V → V that merges two circles into a single circle is defined as
m(v+ ⊗ v+) = v+, m(v+ ⊗ v−) = v−, m(v− ⊗ v+) = v− and m(v− ⊗ v−) = 0.

Map ∆ : V → V ⊗ V that divides a circle into two circles is defined as ∆(v+) = v+ ⊗ v− + v− ⊗ v+ and
∆(v−) = v− ⊗ v−; see Figure 9.

m

Figure 9. m and ∆ maps.

Definition 16. The homology group associated with the chain complex of a link L is defined asHr(L) = ker dr

im dr+1 .

Definition 17. The kernel of the map dr : V⊗r−1 → V⊗r, denoted by ker dr, is the set of all elements of V⊗r−1

that go to the zero element of V⊗r. The elements of the kernel are called cycles, while the elements of im dr+1 are
called boundaries.

Remark 5. Note that the image of the chain complex of dr+1 is a subset of kernel dr as, in general, dr ◦ dr+1 = 0.

Definition 18. The graded Poincaré polynomial Kh(L) in variables q and t of the complex is defined as

Kh(L) := ∑
r

trqdimHr(L).
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Theorem 3. (Khovanov [1]). The graded dimension of homology groupsHr(L) are link invariants. The graded
Poincaré polynomial Kh(L) is also a link invariant and Kh(L)

∣∣
t=−1 = Ĵ(L).

3.1. Homology of x−3
1

Now, we give the Khovanov homology of link x−3
1 =

1

2

3

:

1. The n-cube: The 3-cube of x−3
1 is given in Figure 10:

V{1}

001

←
V⊗2{2}

011

V⊗2

000

←
V{1}

010

V⊗2{2}

101

←
V⊗3{3}

111

V{1}

100

←
V⊗2{2}

110

Figure 10. The 3-cube of x−3
1 .

2. Chain complex: The chain complex of x̂3
1 is

0 d4
−→ V⊗3 d3

−→ ⊕3V⊗2 d2
−→ ⊕3V d1

−→ V⊗2 d0
−→ 0.

3. Ordered basis of the chain complex: The following are the vector spaces of the chain complex
along with their ordered bases:

V ⊗ V ⊗ V =
〈
v+ ⊗ v+ ⊗ v+, v− ⊗ v+ ⊗ v+, v+ ⊗ v− ⊗ v+, v+ ⊗ v+ ⊗ v−, v− ⊗ v− ⊗ v+, v− ⊗

v+ ⊗ v−, v+ ⊗ v− ⊗ v−, v− ⊗ v− ⊗ v−
〉

(V ⊗ V) ⊕ (V ⊗ V) ⊕ (V ⊗ V) =
〈
(v+ ⊗ v+, 0, 0), (0, v+ ⊗ v+, 0), (0, 0, v+ ⊗ v+), (v− ⊗

v+, 0, 0), (0, v− ⊗ v+, 0), (0, 0, v− ⊗ v+), (v+ ⊗ v−, 0, 0), (0, v+ ⊗ v−, 0), (0, 0, v+ ⊗ v−), (v− ⊗
v−, 0, 0)(0, v− ⊗ v−, 0), (0, 0, v− ⊗ v−)

〉
V ⊕V ⊕V =

〈
(v+, 0, 0), (0, v+, 0), (0, 0, v+), (v−, 0, 0), (0, v−, 0), (0, 0, v−)

〉
V ⊗V =

〈
v+ ⊗ v+, v− ⊗ v+, v+ ⊗ v−, v− ⊗ v−

〉
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4. Differential maps in matrix form: Differential map d3
(

V1 ⊗V2 ⊗V3

)
=
(

m(v1 ⊗ v2)⊗ v3, v1 ⊗

m(v2 ⊗ v3), v2 ⊗m(v1 ⊗ v3)
)

in terms of a matrix is:

d3 =



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0



,

and map d2
(

V1 ⊗ V2, V3 ⊗ V4, V5 ⊗ V6

)
=
(

m(v3 ⊗ v4) − m(v1 ⊗ v2), m(v5 ⊗ v6) − m(v1 ⊗

v2), m(v5 ⊗ v6)−m(v3 ⊗ v4)
)

is d2 =

(
A 0 0 0
0 A A 0

)
, where A =

 −1 1 0
−1 0 1
0 −1 1

 . Also,

d1
(

V1, V2, V3

)
= ∆(v1)− ∆(v2) + ∆(v3) is d1 =


0 0 0 0 0 0
1 −1 1 0 0 0
1 −1 1 0 0 0
0 0 0 1 −1 1

 .

5. Khovanov Homology: On solving d3x = 0 or

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0





x1

x2

x3

x4

x5

x6

x7

x8


= 0,
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we receive x1 = x2 = x3 = x4 = 0, x2 + x3 = 0, x3 + x4 = 0, x2 + x4 = 0, x6 + x7 = 0, x5 + x6 = 0,

and x5 + x7 = 0. So the kernel of d3 =
〈


0
0
0
0
0
0
0
1


〉

. Similarly, the image of d3 is

〈



1
1
1
0
0
0
0
0
0
0
0
0



,



0
0
0
1
1
0
0
0
1
0
0
0



,



0
0
0
1
0
1
0
1
0
0
0
0



,



0
0
0
0
0
0
1
1
1
0
0
0



,



0
0
0
0
0
0
0
0
0
0
1
1



,



0
0
0
0
0
0
0
0
0
1
1
0



,



0
0
0
0
0
0
0
0
0
1
0
1



〉
.

Thus,

H3(x̂3
1) =

ker d3

im d4 =
Z(v−⊗v−⊗v−)

0
= Z(v−⊗v−⊗v−).

To compute the homology of the next level, we first cancel out the terms that appear in both ker d2

and im d3, and then use a special trick: Note that the last three summands of ker d2 make up all
of Z3

(v−⊗v−)
, where the last three summands of im d3 span the subspace of Z3

(v−⊗v−)
generated by

vectors (0, 1, 1), (1, 1, 0) and (1, 0, 1). Now, form a matrix whose columns are these vectors. Since
the eigenvalues of this matrix are −1, 1, and 2, we can write:

Z3

〈(0, 1, 1), (1, 1, 0), (1, 0, 1)〉 =
Z

2Z ⊕
Z
Z1
⊕ Z

Z−1
= Z2.

Reducing the remaining matrices of kernel of d2 and image of d3 into reduced row echelon form,
quotient ker d2

im d3 becomes isomorphic to Z. Hence,

H2(x̂3
1) =

ker d2

im d3 = Z⊕Z2.

The range of d2 is Z(v+ ,v+ ,0) ⊕ Z(v+ ,0,−v+) ⊕ Z(0,v+ ,v+) ⊕ Z(v− ,v− ,0) ⊕ Z(v− ,0,−v−) ⊕ Z(0,v− ,v−) and
the kernel of d1 is Z(v+ ,v+ ,0) ⊕ Z(0,v+ ,v+) ⊕ Z(v+ ,0,−v+) ⊕ Z(v− ,v− ,0) ⊕ Z(0,v− ,v−) ⊕ Z(v− ,0,−v−).
Since ker d1 = im d2,

H1(x̂3
1) = 0.

It is clear from the chain complex that the kernel of d0 is the full space V ⊗V.

H0(x̂3
1) =

Z(v+⊗v+) ⊕Z(v−⊗v+) ⊕Z(v+⊗v−) ⊕Z(v−⊗v−)

Z(v−⊗v++v+⊗v−) ⊕Z(v−⊗v−)
= Z(v+⊗v+) ⊕Z.
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3.2. Homology of ∆2k+1

We now compute the homology of braid link ∆2k+1, where ∆ = x1x2x1. The canonical form of
this braid is ∆2k+1 = x2k+2

1 x2x2
1x2

2x2
1 · · · x2

2x2
1x2

1, having 2k + 2 factors; you can see ∆3 in Figure 11.

∆3

Figure 11. ∆3.

The co-chain complex of the link ∆2k+1 is 0 d−1
−−→ V⊗3 d0

−→ ⊕6k+3V⊗2 d1
−→

⊕
(2k+1

1 )(4k+2
1 )

V⊗1 ⊕
(2k+1

1 )+(4k+2
2 )

V⊗3 d3
−→ ⊕

(2k+1
1 )(4k+2

2 )+(2k+1
2 )(4k+2

1 )
V⊗1 ⊕

(2k+1
1 )+(4k+2

2 )
V⊗3 d4

−→ . . .

d6k+1
−−−→ ⊕

(4k+2
1 )

V⊗2k+1 ⊕
(2k+1

1 )
V⊗2k+3 d6k+2

−−−→ V⊗2k+2 d6k+3
−−−→ 0.

We now represent the differential maps in terms of matrices. The matrix representing differential
d0 has order 24k + 12× 8 and is

d0 =


A 0 0 0 0 0 0 0
0 A B 0 0 0 0 0
0 0 C A 0 0 0 0
0 0 0 0 C A B 0

 .

Here, each matrix A, B, and C has a (6k + 3)× 1 order:

A =
(

1 1 1 1 1 1 1 · · · 1
)t

B =
(

0 1 0 0 1 0 0 · · · 1 0
)t

C =
(

1 0 1 1 0 1 1 · · · 0 1
)t

Since ker d0 = Zv−⊗v−⊗v− ⊕ Zv+⊗v−⊗v−−v−⊗v+⊗v−+v+⊗v−⊗v− and im d−1 = 0, the homology at
this level is

H0(∆2k+1) = Zv−⊗v−⊗v− ⊕Zv+⊗v−⊗v−−v−⊗v+⊗v−+v+⊗v−⊗v− .
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Now, we go for differential map d1. The matrix that represents it has an order of 20(6k2 + 3)×
4(6k + 3) and is

d1 =



R1 0 0 0
0 R1 R1 0
0 0 0 0
0 0 0 0
0 0 0 0

R2 0 0 0
R2 0 0 0
0 R2 0 0
0 0 R2 0
0 0 0 R2

0 R3 R4 0
...

...
. . .

...
0 0 Rn−1 Rn



.

The order of each of the matrix Ri is (12k + 6)× (6k + 3):

R1 =



1 −1 0 0 0 . . . 0 0
1 0 0 0 −1 0 . . . 0
1 0 0 0 0 0 . . . −1
0 1 −1 0 0 0 . . . 0
0 1 0 −1 0 0 . . . 0
0 1 0 0 0 −1 . . . 0
0 1 0 0 0 0 . . . −1
...

...
...

...
...

...
...

...
0 0 0 0 0 . . . 1 −1


,

R2 =



1 0 −1 0 0 . . . 0 0
1 0 . . . −1 0 0 0 0
1 0 . . . 0 0 −1 0 0
1 0 . . . 0 0 0 −1 0
1 0 . . . 0 0 0 0 −1
0 1 0 0 −1 0 . . . 0
0 1 . . . 0 0 −1 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 1 0 −1


,

R3 =



1 0 −1 0 0 . . . 0 0
1 0 . . . −1 0 0 0 0
1 0 . . . 0 0 −1 0 0
1 0 . . . 0 0 0 −1 0
1 0 . . . 0 0 0 0 −1
0 0 1 −1 0 0 . . . 0
0 0 1 0 0 −1 . . . 0
0 0 1 0 . . . −1 0 0
0 0 1 0 . . . 0 0 −1
...

...
...

...
...

...
...

...
0 0 0 0 . . . 1 0 −1



,
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R4 =



0 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
0 1 0 0 −1 0 . . . 0
0 1 . . . 0 0 −1 0 0
...

...
...

...
...

...
...

...
0 0 0 0 1 0 . . . −1


,

and, at the end, all rows of matrix Rn are zero except for the last row, which is(
0 . . . 0 0 1 0 . . . −1

)
.

Here, ker d1 = Z(v+⊗v++v+⊗v++v+⊗v++v+⊗v++v+⊗v++v+⊗v++v+⊗v++v+⊗v+)
⊕Z(v+⊗v−+v+⊗v−+v+⊗v−+v+⊗v−+v+⊗v−+v+⊗v−+v+⊗v−+v+⊗v−)
⊕Z(v−⊗v++v−⊗v+−v+⊗v−−v+⊗v−−v+⊗v−)
⊕Z(v+⊗v−+v+⊗v−+v+⊗v−+v−⊗v++v−⊗v++v−⊗v++v−⊗v++v−⊗v+)
⊕Z(v−⊗v−+v−⊗v−) ⊕Z(v−⊗v−+v−⊗v−+v−⊗v−+v−⊗v−+v−⊗v−)
and
im d0 = Z(v+⊗v+) ⊕Z(v+⊗v−) ⊕Z(v−⊗v+) ⊕Z(v−⊗v−) ⊕Z(v+⊗v+) ⊕Z(v+⊗v−) ⊕Z(v−⊗v+).
Since the number of Z spaces appear in the kernel of d1, it is exactly the same as the image of d0,
H1(∆2k+1) = 0.
The image of d1 is obvious. We just need the kernel of d2. The matrix that represents d2 has an order of
(26k+3 + 22k+2)(6k + 5)× 20(6k2 + 3) and is

S1 S2 S3 S4 S5 S6 S7 S8 S9 . . . S20

S21 S21 S22 S23 S24 S25 S26 S27 S28 . . . S40

...
...

...
...

...
...

...
...

...
...

...
Sn−19 Sn−18 Sn−17 Sn−16 Sn−15 Sn−14 Sn−13 Sn−12 Sn−11 . . . Sn

 .

Here, the order of each Si is (4k2 + 3)× (6k2 + 3), and is:

S1 =



0 −1 0 0 0 0 . . . 0
1 0 0 0 0 0 . . . 1
1 0 0 0 0 0 . . . 1
0 0 0 0 0 0 . . . 0
0 0 −1 0 0 0 . . . 0
1 0 0 0 0 0 . . . 0
1 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0


, S2 =



0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
1 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
1 0 0 0 0 0 . . . 0


,

S3 =



0 0 0 0 0 0 . . . 0
0 −1 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
1 0 0 0 0 0 . . . 1
0 0 −1 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0


, S4 =



0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
−1 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 −1 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0


,

...
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Sn−2 =



0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 −1 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0


,

Sn−1 =



0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
−1 0 0 0 0 0 . . . −1
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 −1 0 0 0 0 . . . 0


,

Sn =



0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
−1 0 0 0 0 0 . . . 0


.

Thus,H2(∆2k+1) = Z⊕Z. Differential d6k+2 of order (22k+2)× (2k + 1)(22k+2 + 22k+3) is

d6k+2 =
(

Y1 Y2 Y3 Y4 Y5 . . . Y6k+3

)
,

where Yi are matrices, each having an order of 22k+2 × 22k+2 :

Y1 =



0 −1 0 0 1 0 · · · 0
0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 1 −1 0 −1 · · · 0
1 0 1 −1 0 −1 · · · 0
1 0 0 0 0 0 · · · −1
0 0 0 0 0 0 · · · −1
...

...
...

...
...

...
...

...
0 0 0 0 0 0 · · · 0


,

Y2 =



0 0 · · · 0 0 0 0 0 0
−1 0 · · · 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
0 1 · · · 1 0 −1 0 0 1
0 1 · · · 1 0 0 1 −1 0
0 0 · · · 0 1 0 1 −1 0


,
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Y3 =



0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 −1 0 0 0 0 0 · · ·
0 0 0 0 0 −1 0 0 · · ·
...

...
...

...
...

...
...

...
...

−1 1 0 0 0 0 0 0 · · ·
−1 1 0 1 0 0 1 −1 · · ·


,

Y4 =



0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
0 1 0 0 −1 0 0 · · ·
0 0 0 0 0 0 0 · · ·
−1 0 −1 1 0 0 0 · · ·
−1 0 −1 1 0 0 0 · · ·

...
...

...
...

...
...

...
...

0 0 0 0 0 0 1 · · ·


,

...

Yi =



0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

0 −1 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 0 0 −1 1 −1 0 · · ·
0 0 1 −1 0 0 0 −1 · · ·
−1 0 0 0 0 0 0 0 · · ·

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 · · ·



,

...

Y6k+3 =



0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

0 −1 1 −1 0 0 0 · · · 0


.

Here ker d6k+3 is the full space V⊗2k+1 and the im d6k+2 is

Z(v+⊗v+⊗v+⊗v+) ⊕Z(v+⊗v−⊗v+⊗v++v−⊗v+⊗v+⊗v+)
⊕Z(v+⊗v+⊗v−⊗v++v+⊗v−⊗v+⊗v+)Z(v+⊗v−⊗v+⊗v+)
⊕Z(v+⊗v−⊗v+⊗v−+v−⊗v+⊗v+⊗v−) ⊕Z(v+⊗v+⊗v−⊗v−+v+⊗v−⊗v+⊗v−)
⊕Z(v+⊗v+⊗v+⊗v−) ⊕Z(v+⊗v−⊗v−⊗v++v−⊗v+⊗v−⊗v+)
⊕Z(v+⊗v−⊗v+⊗v−+v−⊗v+⊗v+⊗v−) ⊕Z(v+⊗v−⊗v−⊗v+) ⊕Z(v−⊗v−⊗v+⊗v+)

⊕Z(v+⊗v+⊗v−⊗v+) ⊕Z(v−⊗v+⊗v−⊗v++v−⊗v−⊗v+⊗v+)
⊕Z(v+⊗v−⊗v−⊗v−+v−⊗v+⊗v−⊗v−) ⊕Z(v+⊗v−⊗v−⊗v−) ⊕Z(v−⊗v−⊗v+⊗v−)
⊕Z(v−⊗v−⊗v−⊗v+) ⊕Z(v+⊗v−⊗v+⊗v−) ⊕Z(v−⊗v−⊗v−⊗v−)
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⊕Z(v+⊗v+⊗v−⊗v−) ⊕Z(v−⊗v+⊗v+⊗v−)
⊕Z(v−⊗v+⊗v−⊗v+) ⊕Z(v−⊗v+⊗v−⊗v−).

Thus,H6k+3(∆3) = 0, and we finally obtain the result:

Theorem 4. The Khovanov homology of the link ∆2k+1 is

Hi(∆2k+1) =


0 6k ≤ i ≤ 3
Z⊕Z i = 2
0 i = 1
Z⊕Z i = 0

The following result gives some homology groups of ∆2k+1x2 = x2k+3
1 x2x2

1x2
2x2

1 · · · x2
2x2

1x2
1.

Theorem 5.

Hi(∆2k+1x2) =


Z⊕Z i = 0
0 i = 1
0 i = 6k + 4

Proof. The cochain complex of link ∆2k+1x2 is

0 d−1
−−→ V⊗3 d0

−→ ⊕6k+4V⊗2 d1
−→ ⊕

(2k+2
1 )(4k+2

1 )
V⊗1 ⊕

(2k+2
2 )+(4k+2

2 )
V⊗3

d2
−→ ⊕

(2k+2
1 )(4k+2

2 )+(2k+2
2 )(4k+2

1 )
V⊗2 ⊕

(2k+2
1 )+(4k+2

1 )
V⊗4 d3

−→

. . . d6k+2
−−−→ ⊕

(2k+2
1 )

V⊗2k ⊕
(4k+2

1 )
V⊗2k+2 d6k+3

−−−→ V⊗2k+1 d6k+4
−−−→ 0

Differential d0 having an order of 24k + 16× 8 is

d0 =


A 0 0 0 0 0 0 0
0 A B 0 0 0 0 0
0 0 C A 0 0 0 0
0 0 0 0 C A B 0

 ,

where A, B, and C, each having an order of (6k + 4)× 1, are:

A =
(

1 1 1 1 1 1 1 · · · 1
)t

B =
(

0 1 0 0 1 0 0 · · · 0 1
)t

C =
(

1 0 1 1 0 1 1 · · · 1 0
)t

Since im d−1 = 0 and ker d0 = Z(v+⊗v−⊗v−−v−⊗v+⊗v−+v−⊗v−⊗v+) ⊕ Z(v−⊗v−⊗v−),
H0(∆2k+1x2) = Z(v+⊗v−⊗v−−v−⊗v+⊗v−+v−⊗v−⊗v+) ⊕Z(v−⊗v−⊗v−).
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Now, differential d1 of an order of 18(6k2 + 6)× 4(6k + 4) is

d1 =



M1 −M1 0 0
M1 0 −M1 0
M1 0 0 −M1

M2 −M2 0 0
M2 0 −M2 0
M3 −M3 0 0
M3 0 −M3 0
0 M4 −M4 0
0 M4 0 −M4
...

...
. . .

...
0 0 Mn−1 Mn



,

where the order of each Mi is (16k + 2)× (6k + 4) and is

M1 =



−1 0 0 0 1 0 . . . 0
0 −1 −1 0 0 1 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
−1 0 0 0 0 0 . . . 0
−1 0 0 0 0 0 . . . 0
0 −1 0 0 0 0 . . . 1
...

...
...

...
...

...
...

...
0 0 0 −1 0 . . . 0 0


,

M2 =



0 . . . −1 0 . . . 0 0
0 . . . 0 0 0 0 0
0 . . . 0 −1 0 0 0
0 . . . 0 0 −1 0 0
0 . . . 0 0 −1 0 0
0 . . . −1 0 . . . 0 0
0 . . . 0 −1 −1 0 0
...

...
...

...
...

...
...

0 . . . 0 −1 0 0 0


,

M3 =



0 . . . −1 0 0 0 0 0 0
0 . . . 0 −1 −1 0 0 0 0
0 . . . 0 0 0 0 0 0 0
0 . . . −1 0 0 1 0 0 0
0 . . . −1 0 0 1 0 0 0
0 . . . 0 0 0 0 0 0 −1
0 . . . 0 0 0 0 0 0 −1
...

...
...

...
...

...
...

... 0
0 . . . 0 0 0 0 0 0 0


,



Symmetry 2018, 10, 720 17 of 19

M4 =



−1 0 0 0 . . . . . . . . . 1 0
0 −1 −1 0 . . . . . . . . . 0 1
0 0 0 0 . . . . . . . . . 0 0
0 0 0 0 . . . . . . . . . 0 0
...

...
...

...
...

...
...

... 0
0 −1 0 0 . . . . . . . . . 0 0
0 0 −1 0 . . . . . . . . . 0 0
0 0 0 −1 0 0 . . . 0 0


,

and Mn =
(

0 . . . −1 0 −1 0 . . . −1
)

.

In this case, the kernel of d1 and image of d0 contain the same number of Z spaces. So,
H1(∆2k+1x2) = 0.

Finally, the differential of d6k+4 of an order of 22k+1 × (2k + 3)(22k)(22k+1) is

d6k+4 =
(

Y1 Y2 Y3 Y4 . . . Yi

)
,

where each Yi has an order of 22k+1 × 6k + 4 and is

Y1 =



−1 1 −1 0 0 1 0 0 −1 1
0 0 0 0 0 0 0 0 0 0
...

...
... 1 −1

... −1 1
...

...
...

...
... 1 −1

... −1 1
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 0


,

Y2 =



0 0 0 0 0 0 0 0 0 0
1 1 −1 0 0 1 0 0 −1 1
...

...
...

...
...

...
...

...
...

...
...

...
... 1 −1

... −1 1
...

...
...

...
... 1 −1

... −1 1
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 0


,

Y3 =



0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
−1 1 −1 0 0 1 0 0 −1 1

...
...

...
...

...
...

...
...

...
...

...
...

... 1 −1 0 −1 1
...

...
0 0 0 0 0 0 0 0 0 0


,
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Y4 =



0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
−1 1 −1 0 0 1 0 0 −1 1

...
...

...
...

...
...

...
...

...
...

0 0 0 1 −1 0 −1 1 0 0


,

...

and Yi =



0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

−1 1 −1 0 0 1 0 · · · 0


.

It is evident that ker d6k+4 is full space V⊗2k+1. Moreover, im d6k+3 is also V⊗2k+1.
We also get the Khovanov homology of braid link ∆2k+1x1:

Theorem 6.

Hi(∆2k+1x1) =


Z⊕Z i = 0
0 i = 1
0 i = 6k + 1

Proof. The proof is similar to the proof of Theorem 5: Obtain all states, organized them in columns,
assign a graded vector space to each state, form chain groups as a direct sum of all vector spaces along
a column, and form the chain complex. Then, write the differential maps in terms of matrices using the
ordered bases of the chain groups, and compute their kernels and images. Finally, find the Khovanov
homology groups using the relationHr(L) = ker dr

im dr+1 .

4. Conclusions

Although computing the Khovanov homology of links is common in the literature, no general
formulae have been given for all families of knots and links. In this paper, we considered a general
three-strand braid x1x2x1x2 · · · , which, depending on the powers of Garside element ∆ = x1x2x1,
is divided into six subclasses, and gave the Khovanov homology of ∆2k+1, ∆2k+1x2, and ∆2k+1x1

(To learn more about these classes, see Reference [23–26].) The results particularly cover the 0th, 1st,
and top homology groups of these classes, and all homology groups, in general, of link ∆2k+1. We hope
the results will help classifying links, and in studying the important properties of these links.
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