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Abstract: This paper is mainly committed to constructing a new model for solving interval-valued
fuzzy cooperative games based on the least square excess. We propose the interval-valued least
square excess solution according to the solution concept of the least square prenucleolus and the
least square nucleolus for solving crisp cooperative games. In order to obtain the corresponding
optimal analytical solution, one mathematic programming model is constructed. The least square
excess solution can be used to determine plays’ payoffs directly. Considering the fuzziness and
uncertainty existing in the process of the road freight coalition, we establish the interval-valued fuzzy
utility function of the road freight coalition that can properly reflect the real situation in view of
the green logistics. The illustratively calculated results show that the least square excess solution
proposed in this paper is effectual and ascendant, and satisfied many important and useful properties
of cooperative games, such as symmetry and uniqueness. As for the problems of interval-valued
cooperative games, the model proposed in this paper can be applied appropriately to obtain the
players’ interval-valued payoffs.

Keywords: fuzzy game; cooperative game; interval; road freight coalition; green logistics

1. Introduction

There are many fuzzy and uncertain phenomenon or things in the activities of daily life.
Many classical cooperative game theories and methods have been extended to the fuzzy field in recent
years. Many kinds of fuzzy numbers are used to express the fuzziness and uncertainty, one of which is
the interval. Intervals use the upper bound and the lower bound to represent a possible range of values.
Unlike triangular/trapezoidal fuzzy numbers or intuitionistic triangular/trapezoidal fuzzy numbers,
the membership of each possible value is equal to 1 for the intervals, which can effectively reduce
the amplification of fuzziness during the process of calculation. The fuzzy cooperative games with
coalition values expressed as intervals are usually called the interval-valued cooperative games [1–3].

In recent years, the theory on interval-valued cooperative games has already been studied more
and more deeply. At the same time, their theory is applied to many fields, such as green logistics, supply
chain management, and ecological construction [4–6]. One vivid and classical application example
of the interval-valued cooperative games is the bankruptcy model [7]. Branzei et al. [7] proposed
two values that looked like the Shapley value, and analyzed their relationships according to the
interval arithmetic [8]. In order to apply the interval-valued cooperative game theory more extensively
so as to solve practical problems and constantly enhance researchers’ interest in interval-valued
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cooperative games, Branzei et al. [1] reviewed the existing interval-valued cooperative game theory and
prospected its potential application in many fields, such as economy and management. Alparslan [2]
analysed the properties of one kind of interval-valued Shapley value and showed its axiomatic
characterization. Kimms et al. [9] proposed one kind of mathematical programming method,
which was used to determine the interval-valued core. Alparslan et al. [10] generalized several
kinds of interval-valued cooperative game’s set-value solutions, such as interval stable sets and the
interval Shapley value. Branzei et al. [11] proposed the interval core of the interval-valued cooperative
games. Alparslan et al. [12] developed the classical two-person cooperative game theory and proposed
the solution concepts and methods of the interval-valued two-person cooperative game. However,
many of the solutions of the fuzzy cooperative games mentioned above inevitably used the arithmetic
operations of fuzzy numbers, especially the subtraction operation of fuzzy numbers. As is known to all,
the subtraction operation of the fuzzy numbers could directly result in the distortion of information and
in the amplification of fuzziness. In order to solve the income distribution or cost sharing problems of
fuzzy cooperative games more effectively, we propose the interval-valued least square excess solution
of interval-valued cooperative games.

The remainder of this paper unfolds as follows. Section 2 introduces some important preliminaries,
such as the square distance between intervals and the concept of the square excess. Section 3
introduces the concept of the interval-valued least square excess solution of interval-valued cooperative
games. Section 4 gives the solving process of the interval-valued least square excess solution through
constructing the corresponding Lagrange function. In Section 5, the cost accounting method of the
road freight is studied, the computational formula is given, and the utility function is constructed.
Furthermore, the interval-valued least square excess solution is illustrated with a real practical example
about profit allocation in the road freight coalition, and is compared with the interval Shapley-like
value. In Section 6, some advantages of the proposed interval-valued least square excess solution are
discussed, and the future research focus and direction are prospected.

2. Preliminaries

In this section, we will introduce some corresponding concepts, theories, and terms, such as
intervals, square excess, and fuzzy cooperative games.

2.1. Intervals and the Square Distance between Intervals

Considering the following interval, shown as a = [aL, aR] = {x|x ∈ R, aL ≤ x ≤ aR },
where aL ∈ R, aR ∈ R. R is called the real number set. It is easy to find that the interval a = [aL, aR]

degenerates to a real number when aL = aR. In other words, intervals are one type of real numbers’
generalization, or the real number are a special case of the interval.

For the sake of the clear description of the square excess, the square distance between intervals a
and b can be given as D(a, b) = (aL − bL)

2 + (aR − bR)
2.

2.2. Some Concept and Definition of Fuzzy Cooperative Games

For any interval-valued cooperative game υ ∈ Gn, as the coalition values are expressed by
intervals, it can be inferred that the players’ payoff distributed from the coalition should also be
intervals. Let xi = [xLi, xRi] (i ∈ N) represent the interval-valued payoff distributed from the largest
coalition, N. Therefore, x = (x1, x2, · · · , xn)

T is shown as the interval-valued payoff vector distributed
from the largest coalition, N. For any coalition, S ⊆ N denotes x(S) = ∑

i∈S
xi, which means the sum

of the players’ interval-valued payoffs who take part in the coalition, S. According to the interval
arithmetic [8,13,14], x(S) is also an interval, as follow: x(S) = [xL(S), xR(S)] = [ ∑

i∈S
xLi, ∑

i∈S
xRi].
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2.3. The Concept of the Square Excess

Similar to the efficiency condition of the classical cooperative game, for an interval-valued

cooperative game, υ ∈ Gn, if x = (x1, x2, · · · , xn)
T satisfies the efficiency as follows:

n
∑

i=1
xi = υ(N),

then the vector x is called a preimputation of interval-valued cooperative game υ ∈ Gn. That is to
say, as long as x(N) = υ(N), the interval-valued payoff vector x can be treated as one pre-imputation.
IPr

(υ) denotes the set of interval-valued preimputations of an interval-valued cooperative game
υ ∈ Gn.

Based on Moore’s interval order relation [8], the interval-valued cooperative game’s efficiency
condition can be expressed as follows: 

n
∑

i=1
xLi = υL(N)

n
∑

i=1
xRi = υR(N).

For any x and S (S 6= ∅), denote

e(S, x) = (υL(S)− xL(S))
2 + (υR(S)− xR(S))

2, (1)

which is expressed as the square excess of S on x. Generally, for any S (S ⊆ N), (υL(S)− xL(S)) is
denoted by eL(S, x) and (υR(S)− xR(S)) is denoted by eR(S, x), that is,

eL(S, x) = (υL(S)− xL(S)) (2)

and
eR(S, x) = (υR(S)− xR(S)) (3)

respectively. eL(S, x) is called the lower bound of e(S, x) and eR(S, x) is called the upper bound of
e(S, x). Then, e(S, x) can be rewritten as follows:

e(S, x) = (eL(S, x))2 + (eR(S, x))2.

e(S, x) can be used to measure the coalitions’ dissatisfaction degrees. It is easy to see that the
greater e(S, x), the more unfair S would feel.

3. The Interval-Valued Least Square Excess Solution of Interval-Valued Cooperative Games

Similar to the prenucleolus [15,16] of classical cooperative games, the interval-valued least square
excess solution is a one kind of solution concept on the basis of the square excess. The key to obtaining
the interval-valued least square excess solution is to minimize the maximal dissatisfaction degrees.
This idea sounds reasonable and effective. However, instead of adjusting relatively greater payoffs,
according to the target that ∑

S⊆N
e(S, x) gets minimum, we try to select the interval-valued payoff vector

that minimizes the coalitions’ sum of the differences of the square excesses to balance each player’s
allocation. Next, we mainly consider the quadratic programming model, as follows:

min{ ∑
S⊆N,S 6=∅

[(eL(S, x)− eL(S, x))2 + (eR(S, x)− eR(S, x))2]}

s.t.


n
∑

i=1
xLi = υL(N)

n
∑

i=1
xRi = υR(N),

(4)
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where eL(S, x) and eR(S, x) are the average excesses at x, given by

eL(S, x) =
1

2n−1 ∑
S⊆N,S 6=∅

eL(S, x) (5)

and
eR(S, x) =

1
2n−1 ∑

S⊆N,S 6=∅
eR(S, x), (6)

respectively.
The conclusion can be easily drawn that

∑
S⊆N,S 6=∅

eL(S, x) = ∑
S⊆N,S 6=∅

(υL(S)− xL(S))

= ∑
S⊆N,S 6=∅

υL(S)− ∑
S⊆N,S 6=∅

xL(S) = ∑
S⊆N,S 6=∅

υL(S)− 1
2 [ ∑

S⊆N,S 6=∅
xL(S) + ∑

S⊆N,S 6=∅
xL(N\S) + xL(N)]

= ∑
S⊆N,S 6=∅

υL(S)− 1
2 ∑

S⊆N,S 6=∅
(xL(S) + xL(N\S))− 1

2 xL(N) = ∑
S⊆N,S 6=∅

υL(S)− 1
2 (2

n − 1)xL(N)− 1
2 xL(N)

= ∑
S⊆N,S 6=∅

υL(S)−2n−1xL(N) = ∑
S⊆N,S 6=∅

υL(S)−2n−1υL(N),

that is,

∑
S⊆N,S 6=∅

eL(S, x) = ∑
S⊆N,S 6=∅

υL(S)−2n−1υL(N). (7)

Similarly, we can prove that

∑
S⊆N,S 6=∅

eR(S, x) = ∑
S⊆N,S 6=∅

υR(S)−2n−1υR(N). (8)

According to Equations (2), (3), (7), and (8), and combining with the arithmetic operations of
intervals [8,13,14], Equation (4) can be rewritten as follows:

min{ ∑
S⊆N,S 6=∅

[υL(S)− xL(S)− 1
2n−1 ( ∑

S⊆N,S 6=∅
υL(S)−2n−1υL(N))]

2

+ ∑
S⊆N,S 6=∅

[υR(S)− xR(S)− 1
2n−1 ( ∑

S⊆N,S 6=∅
υR(S)−2n−1υR(N))]

2}

s.t.


n
∑

i=1
xLi = υL(N)

n
∑

i=1
xRi = υR(N).

(9)

4. The Solving Process of the Interval-Valued Least Square Excess Solution

In this section, on the basis of the square excess, we focus on developing one kind of mathematical
programming model for solving interval-valued cooperative games. Obviously, we can obtain the
interval-valued least square excess solution through solving the mathematical programming model of
Equation (9).

Equation (9) can be rewritten in the form of the Lagrange function, as follows:

L(x, λ, µ) = ∑
S⊆N,S 6=∅

[υL(S)− xL(S)− 1
2n−1 ( ∑

S⊆N,S 6=∅
υL(S)−2n−1υL(N))]

2

+ ∑
S⊆N,S 6=∅

[υR(S)− xR(S)− 1
2n−1 ( ∑

S⊆N,S 6=∅
υR(S)−2n−1υR(N))]

2

+λ(
n
∑

i=1
xLi − υL(N)) + µ(

n
∑

i=1
xRi − υR(N)).

Next, we discuss how to solve the interval-valued optimal solution x∗ = (x∗1 , x∗2 , · · · , x∗n)
T of

Equation (9).



Symmetry 2018, 10, 709 5 of 11

The partial derivatives of L(x, λ, µ) with regard to the variables xLj, xRj (j ∈ S ⊆ N), λ and µ are
obtained as follows:

∂L(x, λ, µ)

∂xLj
= −2 ∑

S:i∈S
[υL(S)− xL(S)−

1
2n − 1

( ∑
S⊆N,S 6=∅

υL(S)−2n−1υL(N))] + λ,

∂L(x, λ, µ)

∂λ
=

n

∑
i=1

xLi − υL(N),

∂L(x, λ, µ)

∂xRj
= −2 ∑

S:i∈S
[υR(S)− xR(S)−

1
2n − 1

( ∑
S⊆N,S 6=∅

υR(S)−2n−1υR(N))] + µ

and
∂L(x, λ, µ)

∂µ
=

n

∑
i=1

xRi − υR(N),

respectively.
Let ∂L(x,λ,µ)

∂xLj
, ∂L(x,λ,µ)

∂λ , ∂L(x,λ,µ)
∂xRj

and ∂L(x,λ,µ)
∂µ be equal to 0, respectively, that is,

− 2 ∑
S:i∈S

[υL(S)− x∗L(S)−
1

2n − 1
( ∑

S⊆N,S 6=∅
υL(S)−2n−1υL(N))] + λ∗ = 0, (10)

n

∑
i=1

x∗Li = υL(N), (11)

− 2 ∑
S:i∈S

[υR(S)− x∗R(S)−
1

2n − 1
( ∑

S⊆N,S 6=∅
υR(S)−2n−1υR(N))] + µ∗ = 0, (12)

and
n

∑
i=1

x∗Ri = υR(N), (13)

respectively.
It is obvious that

∑
S:i∈S

x∗L(S) = 2n−1x∗Li + ∑
j∈N\i

2n−2x∗Lj (i, j ∈ N). (14)

It can be easily derived from Equations (10) and (14) that

− 2 ∑
S:i∈S

υL(S) + 2× 2n−1x∗Li + 2× ∑
j∈N\i

2n−2x∗Lj +
2

2n − 1 ∑
S⊆N,S 6=∅

υL(S)−
2n

2n − 1
υL(N) + λ∗ = 0

According to the following equation

x∗Li + ∑
j∈N\i

x∗Lj = υL(N) (i, j ∈ N),

we can easily obtain

− 2 ∑
S:i∈S

υL(S) + 2n−1x∗Li + (2n−1 − 2n

2n − 1
)υL(N) +

2
2n − 1 ∑

S⊆N,S 6=∅
υL(S) + λ∗ = 0 (15)

To solve x∗Li (i = 1, 2, · · · , n), Equation (15) can be rewritten as follows:

x∗Li =

2 ∑
S:i∈S

υL(S)− (2n−1 − 2n

2n−1 )υL(N)− 2
2n−1 ∑

S⊆N,S 6=∅
υL(S)−λ∗

2n−1 . (16)
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Then, the key to solve x∗Li becomes obtaining λ∗. It is easily derived from Equation (11), that

∑
i∈N

2 ∑
S:i∈S

υL(S)− (2n−1 − 2n

2n−1 )υL(N)− 2
2n−1 ∑

S⊆N,S 6=∅
υL(S)−λ∗

2n−1 = υL(N),

that is,

2 ∑
S⊆N,S 6=∅

sυL(S)− n(2n−1 − 2n

2n − 1
)υL(N)− 2n

2n − 1 ∑
S⊆N,S 6=∅

υL(S)− nλ∗ = 2n−1υL(N),

where s denotes the cardinality of coalitions S ⊆ N.
It is obvious that

λ∗ =

2 ∑
S⊆N,S 6=∅

sυ(S)

n
− (2n−1 − 2n

2n − 1
)υL(N)− 2

2n − 1 ∑
S⊆N,S 6=∅

υL(S)−
2n−1

n
υL(N). (17)

It is derived from Equations (16) and (17), that

x∗Li =
2 ∑

S:i∈S
υL(S)−(2n−1− 2n

2n−1 )υL(N)− 2
2n−1 ∑

S⊆N,S 6=∅
υL(S)

2n−1

−

2 ∑
S⊆N,S 6=∅

sυ(S)

n −(2n−1− 2n
2n−1 )υL(N)− 2

2n−1 ∑
S⊆N,S 6=∅

υL(S)− 2n−1
n υL(N)

2n−1

= υL(N)
n +

2 ∑
S:i∈S

υL(S)−
2 ∑

S⊆N,S 6=∅
sυL(S)

n

2n−1 = υL(N)
n + 1

n2n−2 (n ∑
S:i∈S

υL(S)− ∑
S⊆N,S 6=∅

sυL(S))

= υL(N)
n + 1

n2n−2 (naLi(υ)− ∑
j∈N

∑
S:j∈S

υL(S)) =
υL(N)

n + 1
n2n−2 (naLi(υ)− ∑

j∈N
aLj(υ)),

that is,

x∗Li =
υL(N)

n
+

1
n2n−2 (naLi(υ)− ∑

j∈N
aLj(υ)) (i ∈ N), (18)

where aLi(υ) = ∑
S:i∈S

υL(S).

Similarly, we can obtain the upper bounds of the interval-valued optimal solution x∗E as follows:

x∗Ri =
υR(N)

n
+

1
n2n−2 (naRi(υ)− ∑

j∈N
aRj(υ)) (i ∈ N), (19)

where aRi(υ) = ∑
S:i∈S

υR(S).

So far, we obtain the interval-valued optimal solution of Equation (9), which consists of
Equations (18) and (19). Thus, if only the efficiency is considered, the interval-valued least square
excess solution can be obtained as x∗i = [x∗Li, x∗Ri] (i ∈ N), whose lower bounds and upper bounds are
given by Equations (18) and (19), respectively.

5. Profit Allocation Strategy of the Road Freight Coalition Based on the Interval-Valued Least
Square Excess Solution

The interval-valued cooperative game theory and method can be easily applied to many real
fields, such as environment, finance, management, business, logistics, and supply chain. Next, we take
the profit allocation of the road freight coalition as an example.

In the road freight industry, the solitary activity of logistics enterprises usually results in a
tremendous waste of resources, and inevitably brings about serious environment pollution and
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damage. The theory and practice of the green logistics that can make logistics greener and more
sustainable is imperative. As an effective measure of green logistics, the road freight coalition can
effectively integrate resources and reduce energy consumption. In the following section, we will
consider a road freight coalition composed of three logistics enterprises, which are named 1, 2, and 3,
separately. What needs to be explained in advance is that some data are taken from the process of the
production operations of some logistics enterprises in Fujian province of China, and others are taken
from the bidding and tendering agreement of those logistics enterprises mentioned above.

5.1. Cost Accounting of the Road Freight and the Utility Function

For the sake of the calculation of coalitions’ utility function, some variables are described in
Table 1. The industry reference values and computational formulas are obtained from the real data of
most logistics enterprises. For example, the vehicle types of 4.2 and 9.6 m are usually used in the road
freight industry, and the tire numbers of 4.2 and 9.6 m vehicles are 6 and 8, respectively. It can be seen
from Table 1 that the profit of the carried commodity is shown as υ = Vc

Vv Fa
C

1−Rp q
− Vc

Vv Fe
C. Therefore,

the transportation profit is related to many sensitive parameters, such as the anticipated load factor,
the industrial average load factor, and the average profit rate of the industry of the road freight. In the
following, we will consider a real example to show their sensibility.

Table 1. The description of some important variables for solving coalitions’ utility function.

Variable Symbol Unit Necessary Illustrations

Haul distance K km No
Maintenance and repair fee of vehicles Fm yuan 8000 for 4.2 m; 14,000 for 9.6 m

Annual mileage Ka km Ka = 26× 12× 10× 80 = 249, 600
Insurance fee of vehicles Fi yuan 10,000 for 4.2 m; 17,000 for 9.6 m
Purchase fee of vehicles Fp yuan 120,000 for 4.2 m; 260,000 for 9.6 m

Depreciation fee of vehicles Fd yuan The depreciation period is 8 years
Driver’s salary Fs yuan 8000 per month
Diesel oil price Po yuan/L 5.14 for 0# diesel oil

Oil consumption fee Co L/100 km 20 for 4.2 m; 30 for 9.6m
Highway toll fee Th yuan/km 1.54 for 4.2 m; 1.65 for 9.6 m

Tire wear fee Ft yuan 2100 yuan per tyre.
6 tyres for 4.2 m; 8 tyres for 9.6 m

Vehicle interior volume Vv m3 15 for 4.2 m; 60 for 9.6 m
Commodity volume Vc m3 No

Anticipated load factor F̃e No No
Industrial average load factor F̃a No No

Transport cost of the single trip C yuan C = Fm + Fi + Fd + Fs + Co + Th + Ft
Actual transport cost of the carried commodity Ca yuan Ca = Vc

Vv Fe
C

Average profit rate of the industry of the road freight Rp No Approximately 6%
Industrial average non-tax quotation of the carried commodity Pq yuan Pq = Vc

Vv Fa
C

1−Rp

Profit of the carried commodity υ yuan υ = Pq − Ca

All of the three logistics enterprises need to carry goods by road transportation from City A to
City B, the distance between which is 800 km. Taking into account the fuzziness and uncertainty
existing in the road freight industry, we used the intervals to express the anticipated load factor, F̃e,
that is, F̃e = [FLe, FRe]. What is more, suppose we know in advance about the industrial average load
factor, F̃a, which is also expressed as an interval, that is, F̃a = [FLa, FRa] = [55%, 60%]. The values of
some important related parameters are shown as Table 2.

Table 2. The values of some important related parameters.

Logistics Vc
~
Fe Planned Vehicle Type

1 4 [68%, 71%] 4.2 m
2 6 [63%, 66%] 4.2 m
3 30 [65%, 70%] 9.6 m
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C(i) (i = 1, 2, 3) represents the transport cost of the single trip of the three logistics enterprises of
1, 2, and 3, respectively. As for logistics enterprise 1, it is obvious that

C(1) = Fm(1) + Fi(1) + Fd(1) + Fs(1) + Co(1) + Th(1) + Ft(1) = 2508,

CRa(1) =
Vc(1)

Vv(1)FLe(1)
C(1) = 983, PLq(1) =

Vc(1)
Vv(1)FRa(1)

C(1)
1− Rp(1)

= 1186,

υL(1) = PLq(1)− CRa(1) = 202.

Similarly, we can have υL(2) = 186 and υL(3) = 366.
In order to actively respond to the new changes in market competition, the three logistics

enterprises of 1, 2, and 3 decide to form possible coalitions to reduce cost and increase revenue.
The values of some of the important parameters of all of the possible coalitions are shown as

Table 3.

Table 3. The values of some important related parameters of all of the possible coalitions.

Coalition Vc
~
Fe Planned Vehicle

{12} 10 [76%, 80%] 4.2 m
{13} 36 [78%, 83%] 9.6 m
{23} 38 [85%, 90%] 9.6 m

{123} 44 [98%, 100%] 9.6 m

υ(S) (S ⊆ N) represents the profit when all of the transport tasks assigned to the logistics
enterprises in coalition S are fulfilled. Take the coalition composed of logistics enterprises 1 and 2
(i.e., υ(12)), for example; it is obvious that

C(12) = 2508, CRa(12) =
Vc(12)

Vv(12)FLe(12)
C(12) = 2200,

C(12) = 2508, CRa(12) =
Vc(12)

Vv(12)FLe(12)
C(12) = 2200,

Similarly, we can have υL(13) = 919, υL(23) = 1178 and υL(123) = 1721.
So far, we have obtained the lower bounds of the coalition values (utility function) of all of the

possible coalitions υ(S) (S ⊆ N), that is, υL(1) = 202, υL(2) = 186, υL(3) = 366, υL(12) = 764,
υL(13) = 919, and υL(23) = 1178, υL(123) = 1721.

Similarly, we can obtain the upper bounds of the coalition values (utility function) of all of the
possible coalitions υ(S) (S ⊆ N) as follows: υR(1) = 351, υR(2) = 420, υR(3) = 788, υR(12) = 1144,
υR(13) = 1365, υR(23) = 1626, and υR(123) = 2136.

5.2. Profit Allocation and Results Analysis

If all of the three logistics enterprises form the grand coalition, N, according to Equation (18),
we can easily obtain the lower bounds of the interval-valued profits of the three logistics enterprises of
1, 2, and 3, which are shown as follows:

x∗L1 =
υL(N)

5
+

1
5× 2n−2 (5aL1(υ)− ∑

j∈N
aLj(υ)) =

200
5

+
1

5× 8
(5× 1075− 7485) = 437,

x∗L2 =
υL(N)

5
+

1
5× 2n−2 (5aL2(υ)− ∑

j∈N
aLj(υ)) =

200
5

+
1

5× 8
(5× 1295− 7485) = 558,
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x∗L3 =
υL(N)

5
+

1
5× 2n−2 (5aL3(υ)− ∑

j∈N
aLj(υ)) =

200
5

+
1

5× 8
(5× 1770− 7485) = 726.

In a similar way, according to Equation (19), we can easily obtain the upper bounds of the
interval-valued profits of the three logistics enterprises of 1, 2, and 3, which are shown as follows:

x∗R1 =
υR(N)

5
+

1
5× 2n−2 (5aR1(υ)− ∑

j∈N
aRj(υ)) =

200
5

+
1

5× 8
(5× 1075− 7485) = 504,

x∗R2 =
υR(N)

5
+

1
5× 2n−2 (5aR2(υ)− ∑

j∈N
aRj(υ)) =

200
5

+
1

5× 8
(5× 1075− 7485) = 669

x∗R3 =
υR(N)

5
+

1
5× 2n−2 (5aR3(υ)− ∑

j∈N
aRj(υ)) =

200
5

+
1

5× 8
(5× 1075− 7485) = 963.

Therefore, the interval-valued profits of the three logistics enterprises of 1, 2, and 3, allocated
from the grand coalition, N, can be shown as x∗1 = [x∗L1, x∗R1] = [437, 504], x∗2 = [x∗L2, x∗R2] = [558, 669],
and x∗3 = [x∗L3, x∗R3] = [726, 963], respectively. Furthermore, the lower limit and the upper limit of the
sum of all of the three logistics enterprises’ allocation results is 1721 and 2136, respectively. In other
words, the payoff vector x∗ = [x∗1 , x∗2 , x∗3 ] obtained based on the allocation method proposed in this
paper (i.e., interval-valued least square excess solution) is an imputation and efficient.

Take logistics enterprise 1 for example. When doing business alone, the minimum profit is
202 (yuan) and the maximum profit is 351 (yuan). However, once it joins the grand cooperative
coalition, N, the minimum profit allocated will increase to 437 (yuan) and the maximum profit
allocated will increase to 504 (yuan). As for logistics enterprises 2 and 3, the change tendency of the
profit allocated from the grand cooperative coalition, N, are similar to that of logistics enterprise 1.

For any logistics enterprise, it will gain more transportation profit if it joins the grand coalition,
N. That is to say, if all of the logistics enterprises form a coalition to complete transportation tasks,
each logistics enterprise can maximize its own interest. As a consequence, the grand coalition, N,
is strong and each logistics enterprise has great enthusiasm for participation.

In order to demonstrate the superiority of the proposed method in this paper, we obtained the
allocation results of the coalition profits according to the interval Shapley-like value φ∗(υ) (Han, Sun,
Xu, 2012). As for logistics enterprise 1, we have

φ∗1 (υ) = ∑
S⊆N\i

|S|!(|N|−|S|−1)!
|N|! (υ(S ∪ {i})− υ(S))

= 1
3 [υ(1)− υ(∅) + υ(12)− υ(2) + υ(13)− υ(3) + υ(123)− υ(23)] = [178, 763]

In the similar way, the final allocation results of logistics enterprise 1 and 2 can be obtained as
φ∗2 (υ) = [315, 913] and φ∗3 (υ) = [535, 1154], respectively. Observing carefully the allocation results
via the interval Shapley-like value, it is not difficult to find that the sum of the allocation results of
all the three logistics enterprises is not equal to the total profit from cooperation. The lower limit
of the sum of all of the three logistics enterprises’ allocation results is 1028, which is less than 1721.
However, the upper limit of the sum of all of the three logistics enterprises’ allocation results is 2930,
which is more than 2136. That is to say, the interval Shapley-like value is not efficient. Furthermore,
the interval Shapley-like value uses the subtraction of intervals many times, which will directly result
in the amplification of fuzzy uncertainty.

6. Conclusions

Based on the above analysis, the proposed interval-valued least square excess solution has many
advantages, as follows:
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(1) The proposed interval-valued least square excess solution is a new and intuitive method
for solving intervalvalued fuzzy cooperative games. According to Equations (18) and (19),
the interval-valued least square excess solution can be obtained just through a simple calculation.

(2) The magnification of the fuzziness and uncertainty will be the result of the subtraction of
intervals. In order to reduce the amplification of the fuzziness and uncertainty during the process of
calculation, we use the square distance to define the difference between two intervals, instead of the
interval subtraction, and propose the corresponding mathematical programming model. According
to the existing research, most of the proposed methods [2,4] inevitably use the interval subtraction
operation [8] and may not effectively overcome this disadvantage.

(3) Players may obtain negative payoffs according to some of the existing models and methods [5],
which are not rational. However, the interval-valued least square excess solution is always positive,
as long as all of the coalitions’ values are positive.

(4) The interval-valued least square excess solution can be considered as the expansion of the
least square prenucleolus for crisp cooperative games. It can be verified that the interval-valued least
square excess solution satisfies some important and excellent properties such as uniqueness, additivity,
and anonymity, in the same way as the least square prenucleolus for crisp cooperative games.

The interval-valued least square excess solution proposed in this paper is the generalization of
the least square prenucleolus for classical cooperative games [15]. Under the fuzzy environment,
the coalition values can be expressed by triangular fuzzy numbers [17–19], triangular intuitionistic
fuzzy numbers [20], Pythagorean fuzzy numbers [21,22], and some other types of fuzzy
numbers [23–25]. Therefore, the fuzzy cooperative games with coalition values expressed by other
fuzzy numbers, such as TFNs and TIFNs, will be important research hotspots in the future.
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