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Abstract: The popularity of image editing software has made it increasingly easy to alter the content
of images. These alterations threaten the authenticity and integrity of images, causing misjudgments
and possibly even affecting social stability. The copy-move technique is one of the most commonly
used approaches for manipulating images. As a defense, the image forensics technique has become
popular for judging whether a picture has been tampered with via copy-move, splicing, or other
forgery techniques. In this paper, a scheme based on accelerated-KAZE (A-KAZE) and speeded-up
robust features (SURF) is proposed for image copy-move forgery detection (CMFD). It is difficult
for most keypoint-based CMFD methods to obtain sufficient points in smooth regions. To remedy
this defect, the response thresholds for the A-KAZE and SURF feature detection stages are set to
small values in the proposed method. In addition, a new correlation coefficient map is presented,
in which the duplicated regions are demarcated, combining filtering and mathematical morphology
operations. Numerous experiments are conducted to demonstrate the effectiveness of the proposed
method in searching for duplicated regions and its robustness against distortions and post-processing
techniques, such as noise addition, rotation, scaling, image blurring, joint photographic expert group
(JPEG) compression, and hybrid image manipulation. The experimental results demonstrate that the
performance of the proposed scheme is superior to that of other tested CMFD methods.

Keywords: image forensics; copy-move forgery detection (CMFD); accelerated-KAZE (A-KAZE)
feature; speeded-up robust features (SURF)

1. Introduction

Currently, even with the rapid development of technology, images and videos continue to be
primary sources of information and have become important information carriers in research fields such
as hyper-spectral image analysis [1], image registration [2], object tracking [3], and remote sensing and
photogrammetry [4]. However, the increasing popularity of multimedia editing software such as GNU
image manipulation program (GIMP) [5] and Adobe Photoshop [6] has made editing image content
increasingly convenient. While multimedia that has been tampered with can make people’s lives more
interesting, such tampering also poses a threat in many fields [7], particularly those that involve legal
and safety aspects such as insurance claims, court sentences, patent infringement, medical diagnoses,
and so on. One recent event related to forged images involved the North Korea hovercraft landing
photo shown in Figure 1a. There is speculation that some of the hovercrafts on the sea may have been
copied and pasted onto other regions in the image; the similar regions are indicated by the purple and
blue rectangles in Figure 1a. Another event involved the Iranian missile photo shown in Figure 1b,
in which the third missile from the left was digitally appended to the original photo to obscure the fact
that it did not fire. Forged images such as those shown in Figure 1 cause a great deal of commotion in
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the world, demonstrating the urgency of developing image and video forensics techniques to avoid
unnecessary problems.
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Figure 1. Actual events involving forged images: (a) North Korea hovercraft landing photo; (b) Iranian
missile photo.

Image forensics techniques have been studied for many decades and can be classified into two
classes: active and passive forensics techniques. Active forensics techniques verify the integrity of
auxiliary information such as digital signature [8] and digital watermark [9] to help determine the
authenticity of an image. However, this type of technology requires special software and hardware to
insert the authentication information into the images before distribution and to extract authentication
information from the images in the authentication phase. In contrast, passive forensics techniques
verify the authenticity of an image by analyzing its content and structure, an approach that overcomes
the disadvantages of active forensics techniques.

There are many ways to manipulate images, for example, resampling, retouching, splicing,
copy-move, double joint photographic expert group (JPEG) compression [10], and filtering [11].
In Figure 1, the copy-move method was used to forge the image. Copy-move operations are usually
performed with image editing software to obscure objects in smooth regions and to add new objects
within an image. Copy-move is one of the most commonly used approaches for manipulating images
and has already received considerable attention from researchers in various fields. In recent decades,
many image forensics schemes for copy-move forgery detection (CMFD) have been proposed to judge
whether an image has been tampered with via copy-move manipulation. These methods are mainly
divided into two classes: block-based CMFD schemes and keypoint-based CMFD schemes.

Fridrich et al. [12] presented a CMFD method using discrete cosine transform (DCT), which is
a landmark work in the field of block-based CMFD methods. They separated the image into
overlapping image patches with a fixed size via a raster scan and then applied the DCT to each
image block. A quantization feature vector was obtained by performing zigzag scanning on the
quantized DCT coefficient matrix. The matrix, which consisted of feature vectors, was lexicographically
ordered, and Euclidean distance was used to search for similar features. However, this method carries
a high computational cost. To reduce the computational complexity of Fridrich et al.’s method [12],
Huang et al. [13] truncated the feature vector by using a constant to reduce the feature dimensionality
and presented a strategy for judging the similarity among adjacent feature vectors. To prevent
distortion (e.g., rotation), Bi et al. [14] extracted the invariant moment descriptor and color texture
descriptor calculated from the polar complex exponential transform (PCET) moments to solve the
problem of finding duplicated regions. Zhong et al. [15] extracted discrete radial harmonic Fourier
moments (DRHFMs) from each overlapping circular block to locate duplicated regions. Zhong and
Gan [16] proposed a discrete analytical Fourier-Mellin transform (DAFMT)-based scheme to find
duplicated regions. However, the DAFMT-based method is too complicated, particularly the process
of invariant moment construction. To reduce the time required to perform the feature matching
process, Cozzolino et al. [17] proposed a CMFD scheme that utilized invariant features and a modified
PatchMatch algorithm. The block-based CMFD methods achieve good accuracy in detecting duplicated
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regions without distortions. Deng et al. [18] combined DAFMT and locality sensitive hashing (LSH) to
solve the problem of CMFD. Mahmood et al. [19] divided the image into overlapping circle blocks
to extract local binary pattern variance (LBPV) to locate the duplicated region. Fadl and Semary [20]
converted the image block into polar systems, and fast Fourier transform was used as the descriptor to
find similar regions. However, most of the block-based schemes for searching for duplicated regions
have high computational complexity.

Amerini et al. [21] proposed a CMFD scheme that used the scale-invariant features transform
(SIFT) feature, which is insensitive to geometric transformation and illumination distortion.
Their scheme extracted SIFT feature descriptors and then selected similar SIFT feature descriptors
using a generalized 2 nearest-neighbor (g2NN) test. Agglomerative hierarchical clustering was used
to find the regions with dense points. Next, the affine transformation matrix between the putative
matched SIFT keypoints was estimated via the random sample consensus (RANSAC) algorithm.
Amerini et al. [22] added the J-linkage algorithm, which implements a robust cluster in the space of
a geometry transformation, to improve the performance of the scheme in Reference [21]. Jin and
Wan [23] first utilized a non-maximum value suppression algorithm to choose keypoints, and color
information was added to describe the feature descriptors. Clustering algorithms and superpixels
were combined to locate the duplicated regions. In [24], Shivakumar and Santhosh Baboo proposed
a CMFD scheme based on speeded-up robust features (SURF) [25] and used a k-dimensional tree
(k-d tree) to search for similar SURF descriptors. However, the duplicated regions are indicated by
lines, and the boundaries of the duplicated region are not explicit. Jaberi et al. [26] presented the mirror
reflection invariant feature transform (MIFT), which is invariant to mirror reflection transformations.
They presented a MIFT-based CMFD scheme that could detect reflection distortions. Yu et al. [27]
supplemented redundant feature points and feature fusion to solve the problem that the keypoint-based
CMFD methods failed to detect small and smooth tampered areas. In Reference [27], they presented
a two-stage feature detection method to guarantee that enough points existed to cover an entire
image. They proposed a fused feature obtained by using a multisupport region order-based gradient
histogram and a hue histogram to improve feature matching. Uliyan et al. [28] proposed a Harris-based
CMFD scheme combined with angular radial partitioning to find duplicated regions within forged
images tampered by copy-move. Ulutas and Muzaffer [29] presented a CMFD scheme based on
accelerated-KAZE (A-KAZE) [30], which can detect only the singly tampered region. In Reference [31],
the authors combined the KAZE [32] and SIFT features to extract sufficient points and proposed
a CMFD method that could detect multiple duplicated regions. After detecting interest points,
Zandi et al. [33] used the polar cosine transform as feature descriptors and then used an iterative
detection process for duplicated regions with regard to a priori information to enhance the output
result. Yang et al. [34] utilized an adaptive SIFT detector to achieve CMFD; however, its detection
results are marked with lines that cannot clearly mark duplicated regions. A maximally stable color
region (MSCR) detector in Refence [35] was used to detect points, and the Zernike moment was
used to describe the feature. An improved n best matching strategy was adopted to find multiple
duplicated regions.

Deep learning techniques have been extensively adopted due to the advance of modern
technology and production techniques, and have been applied in many fields, including machine
health monitoring [36], medical diagnosis [37], and target detection [38,39]. Rao and Ni [40] utilized
a convolutional neural network (CNN) to learn hierarchical representations from RGB images.
After obtaining the discriminative features, they applied a support vector machine (SVM) to
differentiate authentic and tampered images. However, the CNN-based method requires very large
amounts of training data samples, and emphasizes classification accuracy. Deep learning techniques
will require further exploration in the field of image forensics in the future.

A CMFD method based on A-KAZE and SURF is proposed in this paper. A-KAZE [30] is
an accelerated version of KAZE [32] that reduces the time KAZE requires for feature extraction and
description. Similar to SIFT extraction, KAZE builds a nonlinear scale space instead of performing
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Gaussian blurring. This approach makes it possible to avoid the issue of Gaussian blurring,
which ignores natural boundaries of objects in images. A-KAZE also improves localization accuracy
and uniqueness when smoothed to the same level of detail and noise. To obtain sufficient points,
point detection response thresholds are set to small values, which ensures that sufficient points
remain after SURF and A-KAZE feature extraction. In the feature matching stage, the g2NN test [21]
is adopted to improve the feature matching precision. To enhance the robustness of the method
presented, the affine transformation matrix is estimated via RANSAC. To demarcate the duplicated
regions using closed regions rather than lines and points, the estimated affine transformation matrix is
used to locate the forged regions. A new correlation coefficient map is calculated, and filtering and
mathematical morphology operations are combined to refine the detected duplicated regions and
eliminate isolated points. The experimental results demonstrate the effectiveness of the proposed
scheme for detecting single and multiple tampered regions and show its robustness against scaling,
rotation, image blurring, noise addition, JPEG compression, and hybrid image manipulation.

The rest of this paper is organized as follows. The A-KAZE and SURF feature detection and
description are fully described in Section 2. The proposed CMFD scheme based on these two features
is described in Section 3. Section 4 presents the performance indexes of various CMFD schemes and
experimental results of image CMFD and robustness tests. Finally, conclusions and suggestions for
future work are provided in Section 5.

2. Review of A-KAZE and SURF

In this section, the processes of A-KAZE and SURF detection and description are described in
Sections 2.1 and 2.2, respectively. The proposed CMFD scheme using hybrid features is based on these
two features; it uses their invariance to geometric transformation to ensure that the proposed scheme
can detect distortions such as scaling and rotation.

2.1. A-KAZE

2.1.1. Nonlinear Scale Space Construction

The divergence of a certain flow function can express the nonlinear diffusion filter to represent
the luminance change of images at different scales. The classic nonlinear diffusion equation is shown
in Equation (1):

∂L
∂t

= div(c(x, y, t) · ∇L), (1)

where div is the divergence operator, ∇ is the gradient operator, L is the brightness of the image, and
c(x, y, t) is a conductivity function defined in Equation (2):

c(x, y, t) = g|∇Lσ(x, y, t)|, (2)

where ∇Lσ is the gradient of a Gauss smooth version of L, and time t is a scale parameter. The smaller
the value of t is, the more complex the obtained image representations are. Alcantarilla et al. [30]
offered four kinds of conductivity functions in their project. This study adopted the g2 function,
which is defined in Equation (3):

g2 =
1

1 + |∇Lσ |2
λ2

, (3)

where λ is a contrast factor that regulates the diffusion level and is relevant to the marginal information.
The smaller the value of λ, the larger the amount of retained edge information.
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The nonlinear scale space construction resembles that of SIFT. An image pyramid is constructed
using fast explicit diffusion (FED) [41], which is discretized in a battery of S octaves and O sublevels.
The octaves and sublevels are mapped into the corresponding scale σ using Equation (4):

σi(o, s) = 2o+ s
S , o ∈ [0, 1, · · · , O− 1], s ∈ [0, 1, · · · , S− 1], i ∈ [0, 1, · · · , M], (4)

where M is the total number of filtered images. The transformation between the scale parameter
(in pixels) and the nonlinear scale space (in time units) is complete when σi → ti :

ti =
1
2

σ2
i , i = {0, 1, · · · , M}, (5)

where ti is the evolution time. All images in the nonlinear space can be obtained using different
evolution times.

Equation (1) is discretized into Equation (6) through an explicit scheme:

Li+1 − Li

τ
= A(Li)Li, (6)

where A(Li) is a matrix encoding the conductivity of a picture, and τ is a time constant. The solution
Li+1 is obtained as follows:

Li+1 = [Iidentity + τA(Li)]Li, (7)

where Iidentity is the identity matrix. In consideration of the prior estimation Li+1,0 = Li, an FED cycle
with n alterable step sizes τj can be acquired, as defined in Equation (8). The value of τj is calculated as
shown in Equation (9):

Li+1,j+1 = [I + τjA(Li)]Li+1,j, j = 0, 1, · · · , n− 1, (8)

τj =
τmax

2 cos
(
π

2j+1
4n+2

) . (9)

Figure 2 shows scale space images in both Gaussian scale space and nonlinear scale space.
An experiment is conducted as follows. By adjusting the parameters of the octaves and levels in the
SIFT and A-KAZE algorithms in Microsoft Visual Studio 2012 using the OpenCV library, we executed
SIFT and A-KAZE on Lena with a size of 512× 512 to generate 6 individual Lena images at a resolution
of 256 × 256. The first, third, fifth, and sixth space images are depicted in Figure 2, where the first
and second rows show the 256 × 256 Lena images in Gaussian scale space and nonlinear scale space,
respectively. These images demonstrate that nonlinear filtering retains more details than linear filtering.
A similar conclusion was obtained in Reference [42].
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experiment is conducted as follows. By adjusting the parameters of the octaves and levels in the 
SIFT and A-KAZE algorithms in Microsoft Visual Studio 2012 using the OpenCV library, we 
executed SIFT and A-KAZE on Lena with a size of 512 × 512 to generate 6 individual Lena images at 
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2.1.2. A-KAZE Feature Detection

Similar to SIFT extraction, A-KAZE features were extracted using a Hessian matrix, which was
calculated using Equation (10):

Li
Hessian = σ2

i,norm(Li
xxLi

yy − Li
xyLi

xy), (10)

where σi,norm is a normalized scale factor, defined as σi,norm = σi/2oi
. Here, Li

xy, Li
yy, and Li

xx are the
second-order cross, vertical, and horizontal derivatives, respectively. Next, Hessian extreme points
are detected among the 26 points around the detected point in a 3 × 3 × 3 neighborhood between the
3 × 3 rectangle windows of the neighbor scales and the current scale. A detected point is considered to
be a keypoint if it is the extreme value and its Hessian extreme value is higher than the pre-threshold
TA−KAZE.

Taking the extreme point as the centrality of the neighborhood, the principal direction can be
found by searching over a radius of 6σi with a sampling step of σi to guarantee that A-KAZE features
are rotation invariant. First-order differential values of all the adjacent points in a circular region
centered at the interest point are weighted with a Gaussian weighting. These weighted values are
regarded as the response values of pixels of the image. In the sliding window with a sector region of
π/3, all the internal response values are summed. After traversing the entire circle, the direction of the
sector region with the highest value provides the main orientation of the feature point.

2.1.3. A-KAZE Feature Description

In the feature description phase, feature descriptors are described using a modified-local difference
binary (M-LDB) descriptor. The M-LDB descriptor is obtained by modifying the local difference binary
(LDB) descriptor [43]. To ensure that the descriptor is rotation invariant, Alcantarilla et al. [30]
subsampled the grids in the steps as a function of the σ of the feature rather than the mean value of all
the pixels in each sub-division of the grid. An image patch centered at the feature point is selected.
Then, each image patch is divided into q× q grids with a fixed size, and representative information is
extracted from each grid unit. A binary test operation is performed on a pair of grid units, as indicated
in Equation (11):

ω(Ffunction(i), Ffunction(j)) =

{
1, if(Ffunction(i)− Ffunction(j)) > 0, i 6= j,

0, otherwise.
(11)
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where Ffunction(·) denotes the function used to extract information from the grid unit. The function is
defined as follows:

Ffunction(·) =
{

Fintensity(·), Fdx(·), Fdy(·)
}

, (12)

Fintensity(i) =
1
m

m

∑
k=1

Intensity(k), Fdx(i) = Gradientx(i), Fdy(i) = Gradienty(i), (13)

where m is the total number of pixels in grid unit i, Intensity(k) is pixel value, and Gradientx(i) and
Gradienty(i) are the regional gradients of the grid units in x and y, respectively.

Upon the completion of the A-KAZE feature description phase, 61 dimensional descriptors
are obtained.

2.2. SURF

SURF [25] is not only invariant to scaling and rotation but also robust to illumination variation
and affine transformation. SURF uses the determinant of the Hessian matrix to select the scale and
location. The Hessian matrix H(x; σ) at scale σ is shown in Equation (14):

H(x; σ) =

[
Cxx(x, σ) Cxy(x, σ)

Cxy(x, σ) Cyy(x, σ)

]
, (14)

where Cxx(x, σ) denotes the convolution of the Gaussian second-order derivative ∂2g(σ)/∂x2 of the
image in x, and Cxy(x, σ) and Cyy(x, σ) are treated similarly.

To save computation time, the box filter is used to simulate the Gaussian second-order derivative,
Dxx(x, σ), Dxy(x, σ), and Dyy(x, σ), which can improve the calculation speed of convolution and reduce
the time complexity of the entire process. The approximation of Hessian’s determinant is computed as
shown in Equation (15):

det(Happrox) = DxxDyy − (0.9Dxy)
2. (15)

The box filters and integral images are used to construct the image pyramid scale space. Interest
points are determined using non-maximum suppression with a 3 × 3 × 3 neighborhood. Finally,
the image points are determined by removing the candidate points whose approximate determinate of
the Hessian matrix is smaller than the Hessian response threshold TSURF.

To obtain the rotation invariant descriptors, the main direction needs to be determined.
The direction of the point depends on the circular region response centered at the point with a radius
of 6σ. A Haar wavelet filter is used to process the circular region to obtain the Haar wavelet response.
The entire circular region of Haar wavelet response is scanned by a fan-shaped area centered at
the point with an angle of π/3. The vector sum of the Haar wavelet response in each fan-shaped
region is calculated. The longest vector among all the vectors is chosen as the main direction. Finally,
after determining the direction of the point, the feature descriptor at the point is generated, as described
in the following steps:

Step 1. Build a square area centered at the point. The length of the square region is 20σ. Rotate
the square region to the main direction of the point;

Step 2. Divide the square region into a 4× 4 sub-region, and calculate a 4-dimensional vector from
the 5 × 5 regular grid space in each sub-region that includes the sum of the Haar wavelet responses to
the horizontal and vertical direction, and the absolute value of the sum of the Haar wavelet responses
to the horizontal and vertical direction;

Step 3. Calculate the 4-dimensional feature vector of each sub-region; then, a 64-dimensional
feature descriptor is obtained by combining the feature vectors calculated from the 16 sub-regions.
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3. The Proposed Image Copy-Move Forgery Detection Scheme

The entire process of the proposed CMFD method can be summarized in the following stages:
A-KAZE and SURF feature extraction, g2NN feature matching, eliminating false matching points with
RANSAC, calculating the correlation coefficient map, and filtering and mathematical morphology
operations, as shown in Figure 3.
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3.1. Feature Extraction

A-KAZE and SURF, as described in Section 2, are performed on the input image. Next, feature
descriptors are extracted. It should be noted that most keypoint-based CMFD methods fail to
detect duplicated regions. In addition, most keypoint extraction methods executed with the default
parameters cannot obtain sufficient keypoints in smooth tampered regions. Inspired by Reference [44],
in this paper, the detector response thresholds, TA−KAZE and TSURF, are set to small values to obtain
sufficient interest points. As is depicted in Figure 4b, the image of the Japan tower is hidden by
the sky region within the tampered same image. Using their default parameters, the SIFT, SURF,
KAZE, and A-KAZE feature extraction algorithms are unable to extract points in the tampered
region. However, those points can be obtained with the hybrid features (SURF and A-KAZE with
small response thresholds). Obtaining a sufficient number of points is the basis of keypoint-based
CMFD methods.
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and SURF detectors with small response thresholds.

3.2. Feature Matching

After the A-KAZE and SURF feature extractions, the g2NN test [21] is performed on the feature
descriptors obtained to identify similar descriptors in an image. A group of feature keypoints
{x1, x2, · · · , xn} and their corresponding feature descriptors {f1, f2, · · · , fn} are generated. To select
similar feature descriptors, Euclidean distance is used to evaluate the similarity between two keypoint



Symmetry 2018, 10, 706 9 of 20

descriptors. The similarity vector D = {d1, d2, · · · , dn−1} represents the sorted Euclidean distances
regarding other feature descriptors. In the 2NN test, the ratio is calculated by dividing the closest
distance by the second-closest distance; then, that value is compared with a threshold value Vt (set to 0.6
in this paper, an example is shown in Table 1). Based on this idea, the feature keypoints are considered
to match it if the constraint in Equation (16) is satisfied. The g2NN test consists of iterating the 2NN
test between di and di+1 until the ratio is larger than Vt. If the procedure stops at iteration k, those k
points can be viewed as a match of the inspected point.

d1/d2 < Vt, Vt ∈ (0, 1). (16)

Table 1. Number of pairs of matched points with different Vt.

Vt
Non-Distortion Blurring

Ndup Nnon−dup Nsum Ndup Nnon−dup Nsum

0.1 172 0 172 125 0 125
0.2 186 0 186 134 0 134
0.3 196 0 196 139 1 140
0.4 202 1 203 145 3 148
0.5 208 6 214 153 4 157
0.6 214 17 231 157 23 180
0.7 224 87 311 161 97 258
0.8 237 630 867 175 546 721
0.9 367 5944 6311 256 4920 5176

The full set of matched keypoints is obtained by combining the results of A-KAZE and SURF
feature matching.

Table 1 lists the data obtained with different Vt after the g2NN test, in which the Japan tower is
taken as an example to indicate the influence of threshold value Vt. The data in Table 1 are the number
of pairs of matched points Nsum, the number of pairs of matched points in duplicated region Ndup,
and the number of pairs of matched points in non-duplicated region Nnon−dup. From Table 1, Vt is
suitable for being set to 0.6 for feature matching considering the distorted region with rotation and
scaling, and blurring is added to Table 1 to demonstrate that 0.6 is reasonable. The false matching
points can be eliminated using RANSAC, as mentioned below. In this paper, the k-d tree is used to
implement the g2NN test to search for similar features.

3.3. Affine Transformation Estimation

The pasted region is often processed by distortions such as rotation and scaling before being
moved to another region within the same image. The distortion is modeled as an affine transformation
of image coordinates. Two coordinates from the copied region and pasted region are x = (x, y)T and
x̃ = (x̃, ỹ)T, respectively. Their relation is shown in Equation (17):

(
x̃
ỹ

)
=

(
t11 t12

t21 t22

)(
x
y

)
+

(
x0

y0

)
→

 x̃
ỹ
1

 =

 t11 t12 x0

t21 t22 y0

0 0 1


 x

y
1

→ X̃ = TX, (17)

where (x0, y0) is a shift vector, (x, y) is the coordinate of the copied region, (x̃, ỹ) is the coordinate of
the pasted region, and t11, t12, t21, and t22 are the affine transformation parameters.

To obtain T, at least three pairs of corresponding non-collinear coordinates are needed. RANSAC
is widely used to estimate the affine transformation matrix T, which it can achieve with a high degree
of accuracy, even though many mismatched pairs are included in the input data. Using the matched
features obtained in Section 3.2, the following steps are executed N times:
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(1) Randomly choose three non-collinear matched points (as described above). Based on the
selected point pairs, estimate T by minimizing the objective function in Equation (18):

L(T) =
N

∑
i=1

∥∥∥X̃i − TXi

∥∥∥2

2
. (18)

(2) Divide all the pairs of matched points obtained above into outliers and inliers by using the
estimated matrix T. A pair of matched points {x, x̃} belongs to the inlier group if ‖X̃− TX‖2 ≤ ε;
otherwise, it belongs to the outlier group.

In this scheme, the maximum number of iterations is set to N = 1000, and the evaluation error is
set to ε = 10−6.

3.4. Filtering and Post-Processing

Most keypoint-based CMFD methods terminate at the keypoint feature matching stage using the
RANSAC algorithm. When regions marked with dense points exist in the detection result, the images
can be considered as tampered images. In this paper, we adopt a strategy that can demarcate the
duplicated regions with closed regions. In the scope of the entire image, all the points are forward
transformed using the estimated matrix T, X̃f = TX. The similarity between the region centered at
the original point and that centered at the estimated point is evaluated using correlation coefficients,
as shown in Equation (19). These pixel values at locations l and l̃ are Io(l) and It(l̃), respectively.
The correlation coefficient is calculated as follows:

c(l) =
∑µ∈Ω(l),µ̃∈Ω(l̃) [Io(µ)− Io][It(µ̃)− It]

∑µ∈Ω(l),µ̃∈Ω(l̃)

√
[Io(µ)− Io]

2
[It(µ̃)− It]

2
, (19)

where Ω(l) and Ω(l̃) are 5 × 5 pixel neighbor regions centered at l and l̃, respectively, Io and It are
the mean values of Ω(l) and Ω(l̃), respectively, and c(l) is the correlation coefficient, which ranges
from 0 to 1. A smaller value of c(l) indicates less similarity between the original and the transformed
regions. The other correlation coefficient map is obtained using a similar approach, i.e., X̃b = T−1X.
In this paper, the correlation coefficient map is only calculated in the square region determined
by xmin − Npixel, xmax + Npixel, ymin − Npixel, and ymax + Npixel instead of the whole image scope,
where xmin and ymin are the smallest coordinates of the region of dense points, xmax and ymax are the
biggest coordinates of the region of dense points, and Npixel is the number of expanded pixels in the x
and y direction. Combining these two maps, the entire correlation map is obtained. An example is
shown in the fifth image of the first row of Figure 3.

After obtaining the correlation map, a binary image is obtained by transforming each correlation
map with the threshold Tbin. Then, a filtering scheme is adopted to roughly locate the tampered
regions. A 5 × 5 square area centered at a point in the binary image is obtained. If the sum of this area
is larger than 80% of this area, the point belongs to a duplicated region. Finally, isolated points are
removed, and mathematical morphology operations are used to fill in holes in the binary image.

To make the proposed method more understandable, a pseudocode for the entire scheme process
is presented in Algorithm 1. Several of the symbols in Algorithm 1 need to be defined: PA1 and PA2

are the positions of the matched points from the g2NN test of the A-KAZE descriptors. PS1 and PS2 are
the positions of the matched points from the g2NN test of the SURF descriptors. P1 and P2 are the
positions of the matched points after eliminating the points that are too close between [PA1 , PA2 ] and
[PS1 , PS2 ].
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Algorithm 1. Proposed CMFD Scheme.

Variable Declaration:

I: test image
Di: extracted descriptors, i = A−KAZE, SURF
Pj: positions of detected points, j = A−KAZE, SURF

Pk: positions of matched points with g2NN test, k = A1, A2, S1, S2, 1, 2
T: estimated affine transformation matrix
Pinliners: matched points with RANSAC
Mmap: correlation coefficient map
Mmask: final binary image with demarcated duplicated regions

Proposed CMFD Scheme:
1. Read Image

I←tested image
Mmask←image whose pixel values are 0

2. Feature Extraction

[DA−KAZE, PA−KAZE]← A−KAZE(I)
[DSURF, PSURF]← SURF(I)

3. Feature Matching

[PA1 , PA2 ]← g2NN(DA−KAZE, PA−KAZE)

[PS1 , PS2 ]← g2NN(DSURF, PSURF)

[P1, P2]← pos_combination(PA1 , PA2 , PS1 , PS2 )

4. Eliminating False Matches with RANSAC

[T, Pinliers]← RANSAC(P1, P2)

5. Calculate Correlation Coefficient Map

Mmap ← corr_map(I, T)

6. Filtering and Mathematical Morphology Operation

Mmask ← post_processing(Mmap)

7. Judgment

if Mmask is black

I is an authentic image
else

I is a tampered image
end if

4. Performance Analysis

In this paper, all the experiments were conducted using MATLAB R2015b and a computer with
an Intel Core i5-4690 processor at 3.50 GHz and 8 GB of memory. The GRIP dataset created by
Cozzolino et al. [17] and the FAU dataset created by Christlein et al. [45] were used to evaluate the
performance of the proposed method. The GRIP dataset included 80 plain tampered images and 80
corresponding authentic images with a size of 1024 × 768 in PNG format. The tampered regions were
also separately saved as images in PNG format, and the location of the tampered regions in tampered
images was saved in text form. The FAU dataset included 48 groups of tampered images with various
distortions and 48 corresponding authentic images of different sizes in both PNG and JPEG formats.
Binary images that demarcated the tampered regions were provided that correspond to the tampered
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images in these two datasets. In the following experiments, the parameter settings were as follows:
TA−KAZE = 0.0001, TSURF = 0.1, Vt = 0.6, Tbin = 0.8, and Npixel = 50.

4.1. Performance Indexes

The precision p, recall r, and F score [45] metrics were used to evaluate the performance of the
CMFD methods. The calculations are shown in Equation (20):

r =
NDD

NDD + NDA
, p =

NDD

NDD + NAD
, F = 2 · p · r

p + r
, (20)

where NDD is the number of correctly detected doctored pixels, NDA is the number of falsely detected
authentic pixels, and NAD denotes the number of falsely detected doctored pixels. Similar indexes
were also used to evaluate the performance of the CMFD schemes at the image level as follows:
NDD denotes the number of correctly detected doctored images, NDA denotes the number of falsely
detected doctored images, and NAD denotes the number of falsely detected authentic images. A larger
recall r, precision p, and F score indicate higher accuracy of the CMFD scheme.

4.2. Copy-Move Forgery Detection

To compare the proposed method with other keypoint-based CMFD methods, an experiment
was conducted in which the proposed method is performed as described above except for the feature
extraction step. For the feature extraction, the SIFT, SURF, A-KAZE, BRIEF (binary robust independent
elementary features) [46], BRISK (binary robust invariant scalable keypoints) [47], and hybrid features
used in this paper were evaluated to compare the performance of the method. The number of pairs of
matched points within duplicated regions (as shown in the fourth image of the first row of Figure 3)
and related data are listed in Table 2. The four images shown in Table 2 are from the datasets provided
by References [17,45]. The data demonstrate that the hybrid features consisting of A-KAZE and
SURF obtain more matched points within the duplicated regions than SIFT, SURF, A-KAZE, BRIEF,
and BRISK do with their default parameters. Thus, the hybrid features can be used to estimate the
geometric transformation matrix more accurately. It should be noted that KAZE is not included in
Table 2 because KAZE and A-KAZE perform similarly in this scheme. The first group of images was
correctly identified as tampered images using the hybrid features; however, the correct judgment
cannot be obtained using the other tested keypoints.

Table 2. Number of pairs of matched points within duplicated regions.
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Images
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In addition, the duplicated regions were located using the post-processing method mentioned
above. We selected several tampered images and corresponding ground-truth maps from the tested
datasets [17,45] to demonstrate the effectiveness of the proposed scheme; these are shown in Figure 5,
and their names are given in the subtitles of Figure 5. The proposed method can detect duplicated
regions in doctored images with both single and multiple image copy-move forgeries, illustrating the
effectiveness of the presented scheme. In addition, the detection results of other CMFD algorithms
are also shown in Figure 5, demonstrating that regions demarcated by the proposed scheme are more
accurate than the other methods [17,33] and demarcating the locations of tampered regions more
clearly than the block-based CMFD method [17]. The precision p, recall r, and F score were also
calculated for the image examples in Figure 5, and the results are listed in Table 3. The data in Table 3
also show that the proposed scheme achieves state-of-the-art CMFD performance at the pixel level.
In addition, the precision p of the proposed method is higher than those of the other tested CMFD
methods. To evaluate the overall use of the proposed scheme at the image level, we conducted an
experiment in which the presented scheme was performed on every plain tampered image and the
corresponding authentic image in the GRIP [17] and FAU [45] datasets. Similar to Table 3, the precision
p, recall r, and F score were calculated and are listed in Table 4. The proposed method achieves a similar
performance to that of the other recent tested CMFD schemes at the image level. The data in Table 4
illustrate the advantages of the block-based CMFD scheme [17], in which the most relevant evaluation
criteria are higher than those of other schemes. In particular, the recall r of the presented scheme on
FAU dataset is higher than that of other methods. However, several images exist in datasets [17,45]
that cannot be judged correctly.

Table 3. Precision p, recall r, and F score of the images shown in Figure 5.

Methods Figure 5a Figure 5b Figure 5c Figure 5d Figure 5e

Zandi et al. [33]
p 0.9456 0.9662 0.8589 0.7428 0.9468
r 0.9672 0.9909 0.9845 0.9646 0.9695
F 0.9563 0.9784 0.9174 0.8393 0.9580

Cozzolino et al. [17]
p 0.9721 0.9688 0.9577 0.9491 0.9791
r 0.9656 0.9850 0.9658 0.9761 0.9571
F 0.9688 0.9769 0.9617 0.9624 0.9680

Amerini et al. [22]
p 0.5598 0.5747 0.9081 0.4844 0.9528
r 0.9767 0.9890 0.9814 0.9659 0.9925
F 0.7117 0.7269 0.9433 0.6452 0.9722

Proposed
p 0.9799 0.9948 0.9954 0.9972 0.9761
r 0.9396 0.9431 0.9472 0.9394 0.9797
F 0.9594 0.9682 0.9707 0.9674 0.9779

Table 4. Precision p, recall r, and F score of the images in the GRIP and FAU datasets.

Methods
GRIP FAU

p r F p r F

Zandi et al. [33] 0.7692 1 0.8695 0.7188 0.9583 0.8214
Cozzolino et al. [17] 0.9286 0.9750 0.9512 0.9167 0.9167 0.9167
Amerini et al. [22] 0.8837 0.9500 0.9157 0.8936 0.8750 0.8842

Proposed 0.9176 0.9750 0.9454 0.8824 0.9375 0.9091
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rotation and scaling are presented in Figure 6a,b, respectively. From Figure 6, it can be seen that the 
precision p and F scores of the proposed scheme are noticeably higher than those of the other 
CMFD schemes [17,22,33]. The region located using the proposed method was more accurate than 
those of the other tested CMFD methods under rotation and scaling. However, the recall values r of 
the proposed method were lower than those of the other tested CMFD methods [17,22,33] after the 

Figure 5. Detection results of different CMFD methods and the proposed scheme. First row:
the authentic images; Second row: the tampered images; Third row: ground-truth maps of the tampered
images; Fourth row: the detection results of Zandi et al.’s method [33]; Fifth row: the detection results of
Cozzolino et al.’s method [17]; Sixth row: the detection results of Amerini et al.’s method [22]; Seventh
row: the detection results of the proposed scheme. (a) IMG_C01_010; (b) IMG_C01_018; (c) barrier;
(d) IMG_C02_041; (e) kore.

The experiments mentioned above tested the performance of the proposed method and other
CMFD schemes [17,22,33] only with respect to plain copy-move forgery images. However, the intruder
may process the copied region (rotation, scaling, etc.) before pasting it to another region. Thus, it is
also necessary to evaluate the ability of CMFD schemes against rotation and scaling. The data listed in
Figures 6 and 8 are the average values of precision p, recall r, and F score obtained by calculating the
precision p, recall r, and F score of the detection results of the image with corresponding distortions,
barrier, clean walls, extension, fountain, and supermarket. In the “rotation experiment”, the copied
region is rotated by 2

◦
to 10

◦
with a step size of 2

◦
and pasted into another region within the same

image. In the “scaling test”, the copied region is scaled by different factors and pasted into another
region within the same image. The results of the rotation and scaling are presented in Figure 6a,b,
respectively. From Figure 6, it can be seen that the precision p and F scores of the proposed scheme
are noticeably higher than those of the other CMFD schemes [17,22,33]. The region located using the
proposed method was more accurate than those of the other tested CMFD methods under rotation and
scaling. However, the recall values r of the proposed method were lower than those of the other tested
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CMFD methods [17,22,33] after the copied region distorted by rotation and scaling. Two distorted
images with rotation and scaling and their corresponding detection results of proposed method are
given in Figure 7.
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Figure 6. Detection results (precision p, recall r, and F score) of the proposed scheme and different
CMFD methods under different distortions: (a) rotation; (b) scaling.
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(a) barrier with rotation (10
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); (b) detection result of (a); (c) clean walls with scaling (1.09); (d) detection

result of (c).

4.3. Robustness Test

In addition, image post-processing manipulations such as image blurring, noise addition, JPEG
compression, and hybrid image manipulation are usually used to conceal the evidence of image
copy-move tampering. Therefore, robustness experiments were conducted to test the ability of
CMFD methods to detect tampering in images with post-processing manipulations. In the following
experiments, image blurring, noise addition, and JPEG compression were used to process the
copy-move forgery images with individual different parameters. The images in the dataset were
resaved in JPEG format with different quality factors (QFs); QF ranged from 30 to 100 with a step size
of 10. Next, the various CMFD methods were performed on these images, and the detection results
were displayed in Figure 8a. In the “noise addition test”, Gaussian noise was added to images with
zero-mean and different variances (ranging from 0.005 to 0.02 with a step size of 0.005). The detection
results of noise addition of CMFD methods are shown in Figure 8b. In the “blurring experiment”,
a filter with a radius ranging from 0.5 to 2.5 with a step size of 0.5 was used to process the forged
images. The detection results of image blurring using the proposed method and the other tested
CMFD schemes are shown in Figure 8c. Three distorted images with different distortions and their
corresponding detection results of proposed method are given in Figure 9.
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Figure 8. Detection results (precision p, recall r, and F score) of the proposed method and tested
schemes under distorted copy-move images with different image post-processing manipulations:
(a) JPEG compression; (b) noise addition; (c) image blurring.
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First, the proposed method can detect duplicated regions containing forged images with
distortions such as image blurring, noise addition, and JPEG compression. These results demonstrate
that the proposed method is robust to image post-processing manipulations. Figure 8 shows that the
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proposed scheme is superior to the method [22] with respect to JPEG compression, noise addition,
and image blurring. However, the proposed scheme has both advantages and disadvantages compared
to other tested CMFD methods [22,33]. The precision p and F scores of the proposed method are higher
than those of other CMFD methods, demonstrating that the proposed scheme is superior to other
tested CMFD schemes [17,22,33] against JPEG compression, noise, and image blurring.

The proposed scheme also detects tampered images where the duplicated regions are distorted
with hybrid image manipulations. However, the post-processing method is not as effective with
these manipulations as with the images in previous experiments; therefore, the duplicated regions
are indicated with lines and points in Figure 10. The detection result of the proposed method for the
tampered image distorted with scaling (0.7) and rotation (50

◦
) is shown in Figure 10a. The detection

result of the proposed scheme for the tampered image distorted with rotation (90
◦
) and JPEG

compression (80) is shown in Figure 10b. The detection result of the proposed method for the tampered
image distorted with scaling (0.6) and blurring (1.5) is shown in Figure 10c. The detection result of
the proposed scheme for the tampered image distorted with scaling (0.8), rotation (120

◦
), and JPEG

compression (70) is shown in Figure 10d.
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In summary, the proposed method can detect duplicated regions in forged images with single
and multiple copy-move forgeries. In addition, the proposed scheme can detect pasted regions
altered by rotation and scaling, and it is robust to image post-processing manipulations such as image
blurring, noise addition, JPEG compression, and hybrid image manipulation. Compared to the other
tested CMFD methods [17,22,33], the proposed method exhibits both advantages and disadvantages.
The proposed method overcomes the defect of most keypoint-based CMFD methods, which are unable
to detect sufficient points in smooth tampered regions. In particular, the detected forged regions of
the proposed method are more accurate than those of the other tested methods with respect to the
precision p and F score in most situations. In addition, the proposed scheme is more robust against
image blurring than the other tested methods in some situations. Although the proposed method can
correctly judge the forged images, the performance indexes of the proposed scheme are lower than
other tested CMFD schemes in some situations. These discrepancies form one of the directions for
investigating ways to improve the proposed method.

The comparison with other CMFD methods shows that current CMFD methods have several
issues. Too many similar regions in images make detecting duplicated regions difficult, and they can
easily falsely detect regions. In particular, forged images with small duplicated regions are difficult to
detect. In addition, clearly locating the duplicated regions found by keypoint-based CMFD methods
is an area that requires further exploration because mathematical morphology operations with fixed
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parameters are difficult to generalize in various situations. Most importantly, a faster feature matching
algorithm is also necessary to save time when finding similar features. With the development of deep
learning techniques such as CNN and SVM, their applications in the image forensics field are also
worth exploring.

5. Conclusions

In this paper, a CMFD scheme based on A-KAZE and SURF was proposed. A-KAZE and SURF
features have the advantages of fast feature extraction and robustness, which were used in this scheme
to find regions within the tampered image using copy-move forgery. To obtain sufficient points in the
smooth regions, the response thresholds for A-KAZE and SURF were set to small values instead of their
default parameters. This approach allows for the detection of the duplicated regions within a tampered
image even in smooth regions. In particular, a new correlation map was presented in this paper that
can demarcate the duplicated regions with closed regions in tampered images. However, when the
tampered region is distorted by image manipulation, this may not be as effective as that in plain
image copy-move forgery detection. The experimental results demonstrate that the proposed scheme
can detect forged regions in tampered images even when the tampered region is distorted by image
manipulations such as image blurring, rotation, noise addition, scaling, JPEG compression, and hybrid
image manipulations. Compared to other tested CMFD methods, the proposed method exhibits both
advantages and disadvantages. For example, it is more accurate than the other tested CMFD methods
in some aspects but inferior to other CMFD schemes in others. However, there are several directions
by which the proposed method could be improved in future work. The process of obtaining sufficient
points is time-consuming. This issue could be solved by finding a faster feature matching algorithm
to identify similar features. In addition, similar features may be found by using image-matching
techniques from other fields [48,49]. In keypoint-based CMFD methods, the duplicated regions should
be demarcated with closed regions with a clear boundary; however, this remains a problem to be
solved. As deep learning techniques become increasingly popular, their applications in the field of
multimedia forensics will continue to be explored.
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