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Abstract: The definition of a Detour-Harary index is wH(G) = % Yu0ev(G) m, where G is a

simple and connected graph, and I(u, v|G) is equal to the length of the longest path between vertices
u and v. In this paper, we obtained the maximum Detour-Harary index about unicyclic graphs,
bicyclic graphs, and cacti, respectively.
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1. Introduction

In recent years, chemical graph theory (CGT) has been fast-growing. It helps researchers to
understand the structural properties of a molecular graph, for example, References [1-3].

A simple graph is an undirected graph without multiple edges and loops. Let G be a simple and
connected graph, and V(G) and E(G) be the vertex set and edge set of G, respectively. For vertices
u,vof G,dg(v1,v2) (or d(vy, vp) for short) is the distance between v; and v,, which equals to the length
of the shortest path between v and v; in G; [(v1,v2|G) (or I(vy,v;) for short) is the detour distance
between v and v, which equals to the longest path of a shortest path between v1 and v; in G.

G[S] is an induced subgraph of G, the vertex set is S, and the edge set is the set of edges of G and
both ends in S. G — S is the induced subgraph G[V(G) \ S]; when S = {w}, we write G — w for short.

In 1947, Wiener introduced the first molecular topological index—Wiener index. The Wiener index
has applications in many fields, such as chemistry, communication, and cryptology [4-7]. Moreover,
the Wiener index was studied from a purely graph-theoretical point of view [8-10]. In Reference [11],
Wiener gave the definition of the Wiener index:

WG =5 Y. dunv).
u,veV(G)

The Harary index was independently introduced by Plavsi¢ et al. [12] and by Ivanciuc et al. [13]
in 1993. In References [12,13], they gave the definition of the Harary index:

1
d(u,v)’

HG) =5 )

u,veV(G)
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In Reference [13], Ivanciuc gave the definition of the Detour index:

w(G) == Y Uu0v]G).

u,veV(G)

Lukovits [14] investigated the use of the Detour index in quantitative structure—activity
relationship (QSAR) studies. Trinajsti¢ and his collaborators [15] analyzed the use of the Detour index,
and compared its application with Wiener index. They found that the Detour index in combination
with the Wiener index is very efficient in the structure-boiling point modeling of acyclic and cyclic
saturated hydrocarbons.

In this paper, we introduce a new graph invariant reciprocal to the Detour index, namely,
the Detour-Harary index, as

1 1
wH(G) = = -
(6) 2 M,UEXV:(G) I(u,v|G)

Let G be a simple and connected graph, V(G) = nand E(G) = m. If m = n — 1, then G is a tree;
if m = n, then G is a unicyclic graph; if m = n + 1, then G is a bicyclic graph.

Suppose Uy (B, respectively) is the set of unicyclic (bicyclic, respectively) graphs set with n
vertices. Any bicyclic graph G can be obtained from 6(p, g,1)-graph or 6(p, g,1)-graph Gy by attaching
trees to the vertices, where p,q,! > 1, and at most one of them is equal to 1. We denote Gy be the kernel
of G (Figure 1).

If each block of G is either a cycle or an edge, then we called graph G a cactus graph. Suppose Ck
be the set of all cacti with n-vertices and k cycles. Obviously, CJ are trees, C are unicyclic graphs, and
C2 are bicyclic graphs with exactly two cycles.

O ORI o

oo(p, q,1) 0(p, q,1)

Figure 1. co-graph and 6-graph.

There are more results about cacti and bicyclic graphs [16-25]. More results about Harary
index can be found in References [26-34], and more results about Detour index can be found in
References [14,35-39].

Note that the Detour-Harary index is the same as Harary index for a tree graph; we study the
Detour-Harary index of topological structures containing cycles. In this paper, we gave the maximum
Detour—Harary index among U;,,B,, and C,’; (k > 3), respectively.

2. Preliminaries

In this section, we introduce useful lemmas and graph transformations.

Lemma 1. [40] Let G be a connected graph, x be a cut-vertex of G, and u and v be vertices occurring in different
components that arise upon the deletion of vertex x. Then

I(u,v|G) = 1(u,x|G) +1(x,v|G).
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2.1. Edge-Lifting Transformation

The edge-lifting transformation [41]. Let G; and G, be two graphs with n; > 2 and n, > 2
vertices. 1y € V(Gy) and vy € V(Gy), G is the graph obtained from G; and G; by adding an edge
between 1y and vy. G’ is the graph obtained by identifying 1 to vy and adding a pendent edge to
up(vg). We called graph G’ the edge-lifting transformation of graph G (see Figure 2).

Edge-lifting transformation

G o

Figure 2. Edge-lifting transformation.

Lemma 2. Let graph G’ be the edge-lifting transformation of graph G. Then wH(G) < wH(G').

Proof. By the definition of wH(G) and Lemma 1,

1 1
wH(G) = wH(Gy) + wH(Gy) + - 4 y 1
cev(EMiuy [P0 XIG) ey G o) Lo ¥IG)
b1y _ 1
N0 20lG) sy 6\ fugy 1 ¥16)
yeV(Ga)\{vo}

1 1

= wH(Gy) + wH(Gp) + T T{ug %Gy T T+ 1(00,91C)

xeV(G1)\{uo} yeV(Go)\{vo}
1
+1+ ,
er(g\{uo} I(uo, x|G) +1+1(vo, y|G)
yeV(G2)\{vo}
1 1

wH(G') = wH(G}) +wH(Gh) + ) —
wev(E N\ fup} | (@0 ¥'|C')

PN — !
1(ug, wo|G')

yev(Gp fuy [ (@0 Y'IC)

eV (G fup} LK Y1G)
Y eV(GH\ o}
1 1

H(G)+wH(G) + ), s —an T oen
x’GV(Gi)\{ug}1+l(uo’x|G) 1+l(u0,y|G)
1
+ 1 + Z ! ! ! AN
Cev(G\ o} L0 X'[G) + 110, ' G)
y'eV(Gy)\{uo}

y'eV(Gy)\{uo}

Obviously,

wH(G1) = wH(Gy);

wH(Gy) = wH(GY);
(uo,x|G) (uo, x'|G"), where x € V(Gy1) \ {ug} and x’ € V(G]) \ {uo};
1(v0,y|G) = I(uo,y'|G"), wherey € V(G2) \ {o} and ¥’ € V(G2) \ {uo}-
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Then

1
I(x,u0|G) +1+1(vo,y|G)

wH(G) —wH(G') =
x€V(G1)\{uo}
yeV(G2)\{vo}
1
o Z / / / / < 0
V(G ugy (7 10]G') + L0, ¥'|GY)
y'€V(Gy)\{uo}

O

2.2. Cycle-Edge Transformation

Suppose G € Cl, is a cactus as shown in Figure 3. Cp = v102 - - - vp0y is a cycle of G; G; is a cactus,
and v; € V(G;),1 <i < p; Wy, = Ng(vi) NV(G;), 1 <i < p. G is the graph obtained from G by
deleting the edges from v; to W, (2 < i < p), while adding the edges from v; to W, (2 < i < p).

We called graph G’ the cycle-edge transformation of graph G (see Figure 3).

‘I e
@ e Cycle edge transformatlon
A — Up

G G’

Figure 3. Cycle-edge transformation.

Lemma 3. Suppose G € C), is a cactus, p > 3, and G’ is the cycle-edge transformation of G (see Figure 3).
Then, wH(G) < wH(G'), and the equality holds if and only if G = G'.

Proof. Let V; = V(G; — v;), 1 < i < p. By the definition of wH(G) and Lemma 1,

1 PP 14 1
wH(G) = wH(Cp) + = + = S
7 lzlzxyze"v I(x, ]/|G 21;1];x§/l (x, y|G) ; xezv; 1(x,y|G)
yev; yeV(Cy)
i#]
CwHC)+ Y Y L lyyy 1
) Sy I(x,y|G) 2 b Y= 1(x,v;|G) +l(vl,v]|G) + l(v],y|G)
yev;
i#]
Y X 1
+ ,
i=1 xeV; l(xlvi’G) +l(01/y|G)

yeV(Cp)
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1 1 p r P 1
wH(G") = wH(Cp) + 4z -
ZIleyZGV I(x, y|G’ ZZ;]ZU;l (x, y\G’) l; xezvi I(x,y|G")
yev; yeV(Cy)
i#]
HC) 41 Yy y !
P 2i:1x,yev, l(x y|G’ 121] 10 I(x,v1|G") + 1(v1,y|G’)
yGV
i#]
4 1
+ .
i; xezvi I(x,01|G") + I(v1,y|G)
yeV(Cy)
Obviously,
3 -y ¥
i=1xyeV; l(x y|G i=1xyeV; Z x y|G/
I(x,v;]G) = 1(x,v1|G"), where x € V;;
l(vj,y|G) I(v1,y|G"),wherey € V;;
> Y 1 -y ¥ 1
i=1 x€V; l<x’vi‘G)+l(vi’y|G) i=1 xev 1(x,01|G") 4+ I(v1,y|G')
yeV(Cy) yeV(Cy)
Then
WH(G) -~ wH(G) = 1YY ¥ 1
2 5455, I(x,v;|G) + (v, vj|G) + 1 (v}, y|G)
Yyey;
i#]
14 L 1
- = < 0.
2 l.:zl];x;, I(x,v1|G") + I(v1,y|G)
yev;
i#]

The proof is completed. [

2.3. Cycle Transformation

Suppose G € C}, is a cactus, as shown in Figure 4. Cp =v102---vpvyisacycleof G,and Gy is a
simple and connected graph, v; € V(Gy). G’ is the graph obtained from G by deleting the edges from
v; tov;11(2 <i < p—1), meanwhile, adding the edges from v1 to v;(3 <i < p —1).

We called graph G’ is the cycle transformation of G (see Figure 4).

(%

U3 .

4

Cycle transformation
Up
U3 Vg Up—1

G G’

Figure 4. Cycle transformation.
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Lemma 4. Suppose graph G is a simple and connected graph with p > 4, and G’ is the cycle transformation of
G(see Figure 4). Then, wH(G) < wH(G').

Proof. Let V(Cp) = {01,02, R ,'Up}, Vi = V(Cp - 01), V, = V(G1 — U]). By the definition of wH(G),

1 1
wH(G) = wH(G1)+ Y}, + Y —=
xyeVi(C, (x ylG) T 1(x,y]G)

— WH(Gy) + Z LI o !

yevic (x,y|G) xevlll(x,vﬂG)+l(vl,y|G)'

yeEVS
1 1
wH(G") = wH(Gy) + . -
( ) ( l) xye;‘ZC)l(x y|G/) xezvll,l(x’mcl)
yeVr
HG)+ ¥ Y 1
' x,y€V(Cp) l(x'y|G/) xeVy, l(x’ 01|G/) + l(vlly|G/),
yeV,
Obviously,
I(x,y|G) > I(x,y|G"), where x,y € Vy;
I(x,v1|G) > 2 > I(x,v1|G"), where x € V;;
[(v1,y|G) = 1(v1,y|G"), wherey € V5.
Then
WHG) ~wH(C) = ( ¥ 0y
x,y€V(Cp) l(x’y|G) xyeV(Cp) l(x,y|G’)
1 1
< 0.
xezv I(x,v1|G) + I(v1,y|G) XEZVI,I(X,01|G’)+l(01,y|G’))
yEVZ erZ

O

3. Maximum Detour-Harary Index of Unicyclic Graphs

For any unicyclic graph G € Uy, by repeating edge-lifting transformations, cycle-edge
transformations, cycle transformations, or any combination of these on G, we get U; from G, where
graph U is defined in Figure 5.

U2

i1 n—3

U3

Ur

Figure 5. Unicyclic graph Uj.
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Theorem 1. Let Uy be defined as Figure 5. Then, Uy is the unique graph that attains the maximum
Detour—Harary index among all graphs in U, (n > 3), and wH(U;) = 3’7’2;72”’6.
Proof. By Lemmas 2—4, U is the unique graph which attains the maximum Detour-Harary index of
all graphs in U,,. We then calculate the value wH (U;).

Let V(Uy) = {v1,v2,- -+ ,vn}. It can be checked directly that

! 1

- -2
igl(vl,vi|u1)
1 1 1 1 n=3 =n
(v, v;U;) T~ = 5t 5+ =Z.
1<iSiza 10201 U) 1§j§mj#3l(v3'vj|ul) 272773 3
; =1+ L_ZL _'_g o 3n—2
1§i§n,i;é4l(v4’vi|u1) 2 3 6
Then
WH(U) = 2y b2 ¥ NV S
)= z[) —— I B 1
2 i=2 Z(Ulr Ui|ul) 1<i<n,i#2 Z(UZ, ’Ul"ul) = 1(04’ Ui|U1)
_ 3n*—-n—6
- 12

The proof is completed. [

4. Maximum Detour-Harary Index of Bicyclic Graphs

For any bicyclic graph G € oo(p,q,1) with exactly two cycles, by repeating edge-lifting
transformations, cycle-edge transformations, cycle transformations, or any combination of these
on G, we get By from G, where graph By is defined in Figure 6.

For any bicyclic graph G € 0(p, g,1) with n vertices, by repeating edge-lifting transformations on
G, we get By from G, where graph B; is defined in Figure 7.

n—>y

(%) Vg

U3 Us

B

Figure 6. Bicyclic graph Bj.
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By(t > 2)

Figure 7. Bicyclic graph By(t > 2).

Theorem 2. Let By, B3 be defined as Figures 7 and 8. Then, wH(B,) < wH (Bs), and the equality holds if and
only if By = Bs.

n—4

U3
Figure 8. Bicyclic graph By(t > 2).

Proof. Case 1. B, = B3. Obviously, wH(B;) = wH(B3).

Case 2. By # Bz and p = g = 3, = 2(see Figures 7 and 8).

Let = {'01,'02,03, M3}, Wvl. = {w | wo; € E(Bz) and de(w) = 1} and |in| = k;,
Wy, = {w | wuz € E(By) and dp,(w) = 1} and |W,,| = I3,kj + I3 =n —4for1 <i < 3.

1 1 1
CH(B) = ¥ 1 1
D TwyB) A TR L TlE)
yeV(By)—V;
1 1
- + R
R R M R Vo
yeV(B3)—V;
Easily,
M
xygv I(x, y|B2 xyze:v I(x, y|B3
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1 1 1
_— 7+ -
X B T TenalB) |, TeelB)
yeV(By)—V;
1 1

-+ S
l(Z)3,W|Bz) weV(%)fw l(u3,w|B2)

_|_
wGV(Bz)fvl
1 1

1 1 1 1
= (1-k1+1-k2+§-k3+1-13)+(1-k1+1-k2+1-k3+1-l3)
1

1 1 1 1 1
+(§-k1+1-k2+1-k3+1-13)+(f-k1+1-k2+1-k3+1-l3)

4
11(ky +k3)  7(kp +13)
6 + 4 ’

= 11(k1+k26+k3+13), (sincek; +13=n—4for1<i<3)

Then,
1 1 1
1(x,y|By) Ty = (ke +13) 20, )
yeV(B2)-V yeV(B3)-V;

the equality holds if and only if k, = I3 = 0.
On the other hand ;

1 1 _1
B2 < eylB) = 2 where x,y € V(By) — V4, then

DI

xyeV(By)—V; 1(x,y|B2) xyeV(By)-Vi I(x,y|Bs)’

®)

the equality holdsif ky =n —4orky =n—4orks=n—4orlz3 =n—4.
By (1)-(3) and B, # B3, we have wH(B;) < wH(B3).
Case3. By # Bzand p+q—1t > 4.
It can be checked directly that

WH(By) < (1+ 1+ + ) +3(" ) +3[() —(n—p—qg+ 1) = ("7, "),

\_v_/

n—p—q+t

wWH(B3) = (1+ 1+ +1)+3[1+ ("] + 35+ (n—4)] + 1 [2(n — 4)].

\_v_/

n—4
By, B3 are bicyclic graphs and | V(B,) |=| V(B3) |=n.Sincep+q—t >4, thenn —p—g+1t <
n—>5and ("P; ) < (";*), we have wH(B,) < wH(B3).

The proof is completed. [

Theorem 3. Let By, B3 be defined as Figures 6 and 8. Then,

(UH(B?,) = %/ ifn = 4,

max{wH(By)} = {a)H(B1) =wH(B3) = 37[2_1#/ ifn>5.
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Proof. Let G € co(p, q,1), by Lemmas 2—4, we have wH(G) < wH(By), and the equality holds if and
only if G & B;.

For any bicyclic graph with G € 6(p,q,1), by Lemmas 24 and Theorem 2, we have
wH(G) < wH(B3), and the equality holds if and only if G = Bjs. Thus, max{wH(B,)} =
max{wH(By), wH(B3)}.

It can be checked directly that

1./n—5 1 1 3n2 —5n—2

= — — — _ _ .4 = > 5.

wH(By) = (n 5)+2[< 5 >+6]+3[4(n 5)}—0—4 4 B ,h>5;
1/n—4 1 1 3n2 —5n—2

— _ — - J— - — = — > .

wH(B3) = (n 4)+2< 5 )—1—3(11 4)+4[2(n 4)] 5 >4

Therefore

wH(B3) = &, if n =4,

max{wH(B,)} = {

wH(By) = wH(B3) = 35312 ifp > 5.
The proof is completed. [

5. Maximum Detour-Harary Index of Cacti

For any cactus graph G € CK(k > 3), by repeating edge-lifting transformations, cycle-edge
transformations, cycle transformations, or any combination of these on G, we get C; from G,
where graph C; is defined in Figure 9.

UV2k+-2 Unp,

Figure 9. Cactus graph C; (k > 3).

Theorem 4. Let C; be defined as Figure 9. Then, Cy is the unique cactus graph in Ck(k > 3) that attains the
maximum Detour-Harary index, and wH(Cy) = 3”2+2k2*4g‘+3"*2k*6.

Proof. By Lemmas 24, C; is the unique graph that attains the maximum Detour—Harary index of all
graphs in CK(k > 3).
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Let V(Cy) = {v1,v2,- -+ ,vn}, and it can be checked directly that

n 1 1
——=1-n-2k-1)+=-2k=n—-k—-1;
= 1(v1,0|Cq) ( ) 2
1 1 1 1 1 1 1
=~ 24 - (n=2%-1+>-2k=2)=n—k+>;
1§i§n,i#zl(vz’vi|61) 2 3( 4( ) 3 6 6
n—1
1 1 1 1 1
=14 :-(n—2k—2)+ - -2k=2n— -k
]; l(vn,v]-|C1) 2 3 2 3
Then,
1 1 1 1 1 1
wH(Cy) = E[(n—k—1)+2k~(gn—6k+6)+(n_2k_1).(,n_gk)]
_ 3n?+2k? —4nk+3n—2k—6
B 12 :

The proof is completed. [
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