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Abstract

:

We derive several properties such as convolution and partial sums of multivalent analytic functions associated with an operator involving Srivastava–Tomovski generalization of the Mittag–Leffler function.
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1. Introduction


The Mittag–Leffler function Eα(z) [1] and its generalization Eα,β(z) [2] are defined by the following series:


Eα(z)=∑n=0∞znΓ(αn+1)(z,α∈C;Re(α)>0)



(1)




and


Eα,β(z)=∑n=0∞znΓ(αn+β)(z,α,β∈C;Re(α)>0),



(2)




respectively. It is known that these functions are extensions of exponential, hyperbolic, and trigonometric functions, since


E1(z)=E1,1(z)=ez,










E2(z2)=E2,1(z2)=coshz








and


E2(−z2)=E2,1(−z2)=cosz.











The functions Eα(z) and Eα,β(z) arise naturally in the resolvent of fractional integro-differential and fractional differential equations which are involved in random walks, super-diffusive transport problems, the kinetic equation, Lévy flights, and in the study of complex systems. In particular, the Mittag–Leffler function is an explicit formula for the solution the Riemann–Liouville fractional integrals that was developed by Hille and Tamarkin.



In [3], Srivastava and Tomovski defined a generalized Mittag–Leffler function Eα,βγ,k(z) as follows:


Eα,βγ,k(z)=∑n=0∞(γ)nkznΓ(αn+β)n!,



(3)






(α,β,γ,k,z∈C;Re(α)>max{0,Re(k)−1};Re(k)>0),








where (x)n is the Pochhammer symbol


(x)n=Γ(x+n)Γ(x)=x(x+1)⋯(x+n−1)(n∈N;x∈C)








and (x)0=1. They proved that the function Eα,βγ,k(z) given by (3) is an entire function in the complex plane. Recently, Attiya [4] proved that, if Re(α)≥0 with Re(k)=1 and β≠0, the power series in (3) converges absolutely and analytically in U={z:|z|<1} for all γ∈C. We call the function Eα,βγ,k(z) the Srivastava–Tomovski generalization of the Mittag–Leffler function.



Let A(p) be the class of functions of the form


f(z)=zp+∑n=2∞an+p−1zn+p−1(p∈N)



(4)




which are analytic in U. For p=1, we write A:=A(1). The Hadamard product (or convolution) of two functions


fj(z)=zp+∑n=2∞an+p−1,jzn+p−1∈A(p)(j=1,2)








is given by


(f1∗f2)(z)=zp+∑n=2∞an+p−1,1an+p−1,2zn+p−1=(f2∗f1)(z).











Let P denote the class of functions φ with φ(0)=1. Suppose that f and g are analytic in U. If there exists a Schwarz function w such that f(z)=g(w(z)) for z∈U, then we say that the function f is subordinate to g and write f(z)≺g(z) for z∈U. Furthermore, if g is univalent in U, then the following equivalence holds true:


f(z)≺g(z)(z∈U)⇔f(0)=g(0)andf(U)⊂g(U).











Throughout this paper, we assume that


α,β,γ,k∈C;Re(α)>max{0,Re(k)−1}andRe(k)>0.











We define the function Qα,βγ,k(z)∈A(p) associated with the Srivastava–Tomovski generalization of the Mittag–Leffler function by


Qα,βγ,k(z)=Γ(α+β)(γ)kzp−1Eα,βγ,k(z)−1Γ(β)(z∈U).



(5)







For f∈A(p), we introduce a new operator Hα,βγ,k:A(p)→A(p) by


Hα,βγ,kf(z)=Qα,βγ,k(z)∗f(z)=zp+∑n=2∞Γ(γ+nk)Γ(α+β)Γ(γ+k)Γ(αn+β)n!an+p−1zn+p−1.



(6)







Note that H0,β1,1f(z)=f(z). From (6), we easily have the following identity:


zHα,βγ,kf(z)′=γk+1Hα,βγ+1,kf(z)−γk+1−pHα,βγ,kf(z).



(7)







It is noteworthy to mention that the Fox–Wright hypergeometric function qΨs is more general than many of the extensions of the Mittag–Leffler function.



Now, we introduce a new subclass of A(p) by using the operator Hα,βγ,k.



Definition 1.

A functionf∈A(p)is said to be inΩα,βγ,k(λ;φ)if it satisfies the first-order differential subordination:


(1−λ)z−pHα,βγ,kf(z)+λpz−p+1Hα,βγ,kf(z)′≺φ(z),



(8)




whereλ∈Candφ∈P.





Lemma 1.

([5]). Letg(z)=1+∑n=m∞bnzn(m∈N)be analytic inU. IfRe(g(z))>0(z∈U), then


Reg(z)≥1−|z|m1+|z|m(z∈U).











The study of the Mittag–Leffler function is an interesting topic in Geometric Function Theory. Many properties of the Mittag–Leffler function and the generalized Mittag–Leffler function can be found, e.g., in [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]. In this paper we shall make a further contribution to the subject by showing some interesting properties such as convolution and partial sums for functions in the classΩα,βγ,k(λ;φ).






2. Properties of the Class Ωα,βγ,k(λ;φ)


Theorem 1.

Letλ≥0and


fj(z)=zp+∑n=2∞an+p−1,jzn+p−1∈Ωα,βγ,k(λ;φj)(j=1,2),



(9)




where


φj(z)=1+Ajz1+Bjzand−1≤Bj<Aj≤1.



(10)







Iff∈A(p)is defined by


Hα,βγ,kf(z)=Hα,βγ,kf1(z)∗Hα,βγ,kf2(z),



(11)




thenf∈Ωα,βγ,k(λ;φ), where


φ(z)=ρ+(1−ρ)1+z1−z



(12)




and ρ is given by


ρ=1−4(A1−B1)(A2−B2)(1−B1)(1−B2)1−pλ∫01tpλ−11+tdt(λ>0),1−2(A1−B1)(A2−B2)(1−B1)(1−B2)(λ=0).



(13)







The bound ρ is sharp whenB1=B2=−1.





Proof. 

We consider the case when λ>0. Since fj∈Ωα,βγ,k(λ;φj), it follows that


pj(z)=(1−λ)z−pHα,βγ,kfj(z)+λpz−p+1Hα,βγ,kfj(z)′≺1+Ajz1+Bjz(j=1,2)



(14)




and


Hα,βγ,kfj(z)=pλz−p(1−λ)λ∫0ztpλ−1pj(t)dt=pλzp∫01tpλ−1pj(tz)dt(j=1,2).



(15)







Now, if f∈A(p) is defined by (11), we find from (14) that


Hα,βγ,kf(z)=Hα,βγ,kf1(z)∗Hα,βγ,kf2(z)=pλzp∫01tpλ−1p1(tz)dt∗pλzp∫01tpλ−1p2(tz)dt=pλzp∫01tpλ−1p0(tz)dt,



(16)




where


p0(z)=pλ∫01tpλ−1(p1∗p2)(tz)dt.



(17)







Further, by using (14) and the Herglotz theorem, we see that


Rep1(z)−ρ11−ρ1∗12+p2(z)−ρ22(1−ρ2)>0(z∈U),








which leads to


Re{(p1∗p2)(z)}>ρ0=1−2(1−ρ1)(1−ρ2)(z∈U),








where


0≤ρj=1−Aj1−Bj<1(j=1,2).











Moreover, according to Lemma, we have


Re{(p1∗p2)(z)}≥ρ0+(1−ρ0)1−|z|1+|z|(z∈U).



(18)







Thus, it follows from (16) to (18) that


Re(1−λ)z−pHα,βγ,kf(z)+λpz−p+1Hα,βγ,kf(z)′=Re{p0(z)}=pλ∫01tpλ−1Re{(p1∗p2)(tz)}dt≥pλ∫01tpλ−1ρ0+(1−ρ0)1−|z|t1+|z|tdt>ρ0+p(1−ρ0)λ∫01tpλ−11−t1+tdt=1−4(1−ρ1)(1−ρ2)1−pλ∫01tpλ−11+tdt=ρ,








which proves that f∈Ωα,βγ,k(λ;φ) for the function φ given by (12).



In order to show that the bound ρ is sharp, we take the functions fj∈A(p)(j=1,2) defined by


Hα,βγ,kfj(z)=pλz−p(1−λ)λ∫0ztpλ−11+Ajt1−tdt(j=1,2),



(19)




for which we have


pj(z)=(1−λ)z−pHα,βγ,kfj(z)+λpz−p+1Hα,βγ,kfj(z)′=1+Ajz1−z(j=1,2)








and


(p1∗p2)(z)=1+A1z1−z∗1+A2z1−z=1−(1+A1)(1+A2)+(1+A1)(1+A2)1−z.











Hence, for the function f given by (11), we have


(1−λ)z−pHα,βγ,kf(z)+λpz−p+1Hα,βγ,kf(z)′=pλ∫01tpλ−11−(1+A1)(1+A2)+(1+A1)(1+A21−tzdt→ρ(asz→−1),








which shows that the number ρ is the best possible when B1=B2=−1.



For the case when λ=0, the proof of Theorem 1 is simple, and we choose to omit the details involved. Now the proof of Theorem 1 is completed. □





Theorem 2.

Letα,β,γ,k, and λ be positive real numbers. Letf(z)=zp+∑n=2∞an+p−1zn+p−1∈A(p),s1(z)=zp, andsm(z)=zp+∑n=2man+p−1zn+p−1(m≥2). Suppose that


∑n=2∞cn|an+p−1|≤1,



(20)




where


cn=1−BA−B·Γ(γ+nk)Γ(α+β)Γ(β+nα)Γ(γ+k)n!1+λp(n−1)



(21)




and−1≤B<A≤1.



(i) If−1≤B≤0, thenf∈Ωα,βγ,kλ;1+Az1+Bz.



(ii) If{cn}1∞is nondecreasing, then


Ref(z)sm(z)>1−1cm+1



(22)




and


Resm(z)f(z)>cm+11+cm+1



(23)




forz∈U. The estimates in (22) and (23) are sharp for each m∈N.





Proof 

From the assumptions of Theorem 2, we have cn>0(n∈N). Let


J(z)=(1−λ)z−pHα,βγ,kf(z)+λpz−p+1Hα,βγ,kf(z)′=1+∑n=2∞Γ(γ+nk)Γ(α+β)Γ(β+nα)Γ(γ+k)n!1+λp(n−1)an+p−1zn−1.



(24)







(i) For −1≤B≤0 and z∈U, it follows from (20), (21), and (24), that


J(z)−1A−BJ(z)=∑n=2∞Γ(γ+nk)Γ(α+β)Γ(β+nα)Γ(γ+k)n!1+λp(n−1)an+p−1zn−1A−B−B∑n=2∞Γ(γ+nk)Γ(α+β)Γ(β+nα)Γ(γ+k)n!1+λp(n−1)an+p−1zn−1≤∑n=2∞cn|an+p−1|1−B+B∑n=2∞cn|an+p−1|≤1,








which implies that


(1−λ)z−pHα,βγ,kf(z)+λpz−p+1Hα,βγ,kf(z)′≺1+Az1+Bz.











Hence, f∈Ωα,βγ,kλ;1+Az1+Bz.



(ii) Under the hypothesis in part (ii) of Theorem 2, we can see from (21) that cn+1>cn>1(n∈N). Therefore, we have


∑n=2m|an+p−1|+cm+1∑n=m+1∞|an+p−1|≤∑n=2∞cn|an+p−1|≤1.



(25)







Upon setting


p1(z)=cm+1f(z)sm(z)−1−1cm+1=1+cm+1∑n=m+1∞an+p−1zn−11+∑n=2∞an+p−1zn−1,








and applying (25), we find that


p1(z)−1p1(z)+1≤cm+1∑n=m+1∞|an+p−1|2−2∑n=2m|an+p−1|−cm+1∑n=m+1∞|an+p−1|≤1(z∈U),








which readily yields (22).



If we take


f(z)=zp−zm+pcm+1,



(26)




then


f(z)sm(z)=1−zmcm+1→1−1cm+1andz→1−,








which shows that the bound in (22) is the best possible for each m∈N.



Similarly, if we put


p2(z)=(1+cm+1)sm(z)f(z)−cm+11+cm+1,








then we can deduce that


p2(z)−1p2(z)+1≤(1+cm+1)∑n=m+1∞|an+p−1|2−2∑n=2m|an+p−1|−(cm+1−1)∑n=m+1∞|an+p−1|≤1(z∈U),








which yields (23).



The bound in (23) is sharp for each m∈N, with the extremal function f given by (26). The proof of Theorem 2 is thus completed. □
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