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Abstract: For the purpose of reducing noise from grain flow signal, this paper proposes a filtering
method that is on the basis of empirical mode decomposition (EMD) and artificial bee colony (ABC)
algorithm. At first, decomposing noise signal is performed adaptively into intrinsic mode functions
(IMFs). Then, ABC algorithm is utilized to determine a proper threshold shrinking IMF coefficients
instead of traditional threshold function. Furthermore, a neighborhood search strategy is introduced
into ABC algorithm to balance its exploration and exploitation ability. Simulation experiments
are conducted on four benchmark signals, and a comparative study for the proposed method and
state-of-the-art methods are carried out. The compared results demonstrate that signal to noise ratio
(SNR) and root mean square error (RMSE) are obtained by the proposed method. The conduction of
which is finished on actual grain flow signal that is with noise for the demonstration of the effect in
actual practice.

Keywords: Grain flow signal; filtering method; empirical mode decomposition; artificial bee
colony algorithm

1. Introduction

In the measuring of grain flow, a crucial parameter in the construction of yield map, impact-type
flow sensors are always adopted [1]. These sensors are installed on the clean grain elevator’s top.
Normally they are subject to excessive noise, which makes it hard to measure precisely. Buried in noise
signals, these grain flow signals from these sensors are not available for subsequent processing. As a
result, the effect of subsequent processing is under the direct influence of an effective filtering method.
Figure 1 shows the above grain flow signal acquisition and processing principle.

Traditionally, grain flow signal filtering schemes rely on linear methods, for example,
moving average [2] or low pass filter [3,4]. The frequent use of these linear methods is due to
their easy design and implementation. However, linear filtering methods do not have good effects
when sharp edges as well as impulses of short duration are contained in grain flow signal, or when the
processing involves transient non-stationary and wide-band components, the spectrum of which is
similar to that of the noise. For the purpose of overcoming these obstacles, researchers have proposed
nonlinear methods, particularly methods that are on the basis of wavelets and EMD. According to
Wang and Hu [5], when EMD was used to finish the removal of noise from grain flow signal, the value
of total grain mass’ relative error was under 1.6%. Other filtering noise methods could not achieve a
result as good as that. Zhang et al. [6] finished the processing of grain flow signal using the wavelets.
In this method, the basis of wavelets is DB9, and the level of decomposition is eight. According to the
results, this method performs better in suppressing the noise. Chen et al. [7] also adopted wavelets to
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finish the removal of noise in grain flow signal. However, their method was not totally the same as
that of Zhang. In the latter, the mallat algorithm was introduced for the purpose of decomposing and
removing grain flow signal’s noise components.Symmetry 2018, 10, x FOR PEER REVIEW  2 of 14 
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Figure 1. Process of grain flow signal acquisition and processing. 
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Inspired by wavelet threshold filtering, EMD threshold filtering was proposed to eliminate the
noise components effectively [8]. In comparison with wavelet threshold filtering, EMD threshold
filtering has broad application prospects because it is adaptive [9]. In this method, a threshold function
was adopted to calculate threshold. While the introduction of threshold improves the filtering ability
of EMD, but the threshold function fails to get the optimal threshold to achieve adaptive filtering.

Not long ago, researchers developed swarm intelligence algorithms (SIAs) in threshold filtering
for the threshold estimation work. Combination EMD threshold and an improved fruit fly
optimization algorithm (IFOA) were proposed to eliminate noise components from machinery sound.
The introducing of IFOA was for the purpose of searching each IMF’s global optimal threshold.
The proposed method’s effectiveness and superiority were proved through simulation and engineering
application [10]. Particle swarm optimization (PSO) was adopted for the purpose of determining
the optimal wavelet-filtering threshold. According to the results, the proposed method performed
better than state-of-the-art methods. The proposed method could make source signals recovered
from a heavy blurred signal, as well as keep source signals’ details from light blurred signals [11].
To choose the best optimization algorithm for EMD threshold, artificial bee colony (ABC), PSO, and
cuckoo search (CS) were implemented. As a result, PSO and CS were the best method in terms of
attaining maximum SNR as well as MSE [12]. From the above, it can be seen that some results of
swarm intelligence algorithms for estimating threshold have been achieved. However, few references
about employing ABC to estimate EMD threshold can be found. Therefore, a filtering method, which is
on the basis of EMD and ABC, is proposed. This paper’s contribution mainly lies in the methodology
illustrating the design as well as application of ABC-optimized EMD threshold.

The specific objectives of this study are to: (1) Develop a new filtering method based on EMD and
ABC algorithm, and (2) investigate the results obtained by using different filtering method to remove
noise through simulation experiment and practical application.

The rest of this paper is organized as follows: Section 2 introduces related works about EMD
threshold filtering method and basic ABC. Section 3 presents our method. Section 4 presents
performance comparison between our method and state-of-the-art methods. Section 5 shows the
application of proposed method to reduce grain flow signal noise. Section 6 gives some conclusions.
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2. Related Works

2.1. EMD Algorithm

The decomposition of a given signal is carried out by EMD through these sifting processes.
After the decomposing process, some distinct time scale IMFs are obtained. All the IMFs have to meet
two conditions. The first condition is that the number of extreme and these zero crossings’ numbers
are either equal to or differ with each other at most by one; the other condition is that at any point,
the mean values of local-maxima-defined envelope and the local minima-defined-envelop is zero [13].
When a signal x(t) is given, the following steps are involved in the EMD sifting process:

Step 1: Identifying all extreme of x(t), and constructing its upper envelope h(t) and lowering
envelope l(t) through making all local maxima and minima with cubic spline functions connected;

Step 2: Computing the envelopes mean with the formula m(t) = [h(t) + l(t)]/2;
Step 3: Extracting the detail e1(t) = x(t) − m(t);
Step 4: Regarding e1(t) as new x(t) and repeating the operation above until e1(t) meet the IMF

conditions, then obtaining the first IMF, label as c1(t) = e1(t).
Step 5: Setting the residual x(t) = x(t) − e1(t) to be a new signal, and jump to Step1, obtain the

other IMFs.
According to the sifting result, x(t) is decomposed into cq(t), q = 1, . . . , p, and a residual rp(t) given

as follow:

x(t) =
p−1

∑
q=1

cq(t) + rp(t) (1)

2.2. EMD Filtering Method

Through threshold process the IMFs before reconstructing signals, the input data’s smooth
version can be got. When T = [τ1, τ2, · · · , τq, · · · , τp] denotes a threshold set, and τq represents cq(t)’s
threshold, the determination of τq can be finished for the removal of Gaussian white noise as shown in
the following [14]:

τq =
MADq

√
2 log(L)

0.6745
(2)

MADq = Median
{∣∣cq(t)−Median

{
cq(t)

}∣∣} (3)

where MADq represents the qth IMF’s absolute median deviation, and L represents the signal length or
the sampling number. Gaussian white noise presents a standard normal distribution. For the standard
normal distribution, the error probability fall within the range of 25% to 75% that corresponding to
−0.6745 and +0.6745, respectively. These IMF samples are shrunk towards zero by the threshold τq,
which is as follows [15]:

bq(t) =


cq(t)− τq if cq(t) ≥ τq

0 if
∣∣cq(t)

∣∣ < τq

cq(t) + τq if cq(t) ≤ −τq

(4)

The presenting of the filtered signal y(t) can be made as follows:

y(t) =
p−1

∑
q=1

bq(t) (5)

Above all, Figure 2 shows the threshold-based EMD filtering method’s schematic diagram.
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2.3. Basic ABC Algorithm

ABC algorithm inspired by honey-bees’ behaviors is used for solving complex optimization
problems [16–19]. This algorithm involves three kinds of bees. They are employed, onlooker and scout
bees. Information of the food sources is shared among these different kinds of bees. Employed bees
are responsible for finding the food sources and delivering the food sources’ information to onlooker
bees in their hive. Onlooker bees are following employed bees to find the food sources according to
the information received by them. In food sources exploring process, if there is no improvement in a
food source after the conduction of successive trials of a pre-determined number, the employed bee
will abandon the food sources, and the employed bee related to the food source will become a scout
who searches around randomly. The name of the number of trials to release a food source is “limit”,
and in the ABC algorithm, “limit” is a crucial control parameter. The following shows the procedure
of ABC algorithm:

Step 1: Generating N food sources randomly:

xij = xmin
j + rand[0, 1](xmax

j − xmin
j ) (6)

where xij means that artificial bee is in ith food source’s jth position; i = 1, 2, · · · , N; j = rand[1, 2, · · · , n];
Here, N represents the number of food sources, and n represents the dimension of the search space;
xmin

j and xmax
j represent the jth variable’s lower and upper bounds, respectively.

Step 2: When the present food position is Xi = [xi1, xi2, . . . , xin], the employed bees use the
following solution search equation for the purpose of generating a new food source Vi = [xi1, xi2, . . . ,
vij, . . . , xin].

vij = xij + θij(xij − xkj) (7)

where vij means that the position of the new source is found by the ith employed bee, i = 1, 2, · · · , N,
j = rand[1, 2, · · · , n] and k ∈ {1, 2, · · · , N} k 6= i . θij is a random number that is selected from [−1, 1].

Step 3: all the onlooker bees choose and follow the employed bees according to the food sources’
quality. The calculation of the quality, which is denoted as Pi, is as follows;

Pi =
f iti

N
∑

i=1
f iti

(8)

where fiti represents the ith solution’s fitness.
Step 4: When no improvement of a food sources is observed after trails of the predetermined

number “limit”, it will be supposed that the food source will be abandoned, after which the employed
bees will become scouts. After this, the production of a new food source will be made randomly in the
searching space using (6).
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3. The Proposed Method

This paper proposes a filtering method that is on the basis of EMD threshold, which is optimized
by the ABC algorithm for the purpose of adaptively eliminating noise components from signal. Figure 3
illustrates the proposed method’s schematic diagram.

Symmetry 2018, 10, x FOR PEER REVIEW  5 of 14 

Step 2: When the present food position is Xi = [xi1, xi2, ..., xin], the employed bees use the 

following solution search equation for the purpose of generating a new food source Vi = [xi1, xi2, ..., vij, 

..., xin]. 

( )ij ij ij ij kjv x x x    (7) 

where ijv
 means that the position of the new source is found by the ith employed bee, 

1,2, , Ni 
, 

rand[1,2, , ]j n
 and {1,2, , }k N k i  . ij

is a random number that is 

selected from [−1, 1]. 

Step 3: all the onlooker bees choose and follow the employed bees according to the food 

sources’ quality. The calculation of the quality, which is denoted as Pi, is as follows; 

1

i
i N

i

i

fit
P

fit





 (8) 

where fiti represents the ith solution’s fitness.  

Step 4: When no improvement of a food sources is observed after trails of the predetermined 

number “limit”, it will be supposed that the food source will be abandoned, after which the 

employed bees will become scouts. After this, the production of a new food source will be made 

randomly in the searching space using (6). 

3. The Proposed Method 

This paper proposes a filtering method that is on the basis of EMD threshold, which is 

optimized by the ABC algorithm for the purpose of adaptively eliminating noise components from 

signal. Figure 3 illustrates the proposed method’s schematic diagram. 

EMD

Signal with 

noise

IMFs

Threshold 

processing
ABC

Shrinked 

IMFs

Reconstruction

Filtered

signal 

1 2[ , , , , , ]q p   T

EMD-ABC

 

Figure 3. Schematic diagram of EMD-IABC. 

It is often hard and time-consuming to determine EMD threshold since their estimation is in 

accordance with statistic and experiment analysis. In addition, the noise elimination process based 

on EMD gets important efficiency from an appropriate threshold. In this paper, the determination of 

thresholds 1 2[ , , , , , ]q p   T  is performed automatically by using ABC algorithm. 

ABC algorithm has its drawbacks for solving complex problems, including premature 

convergence and slow convergence speed. A potential reason for these is that the fitness landscape is 

also very rugged especially for a multimodal problem. However, local optimum may be in close to 

the global optimum particularly for the complex optimization problem. When a current solution is 

unfortunately trapped in local optimum, searching its neighborhoods is effective to find better 

solutions or the global optimum. Based on this viewpoint, a new neighborhood search strategy 

(NSS) is employed in the basic ABC algorithm, and is expressed as:  

Figure 3. Schematic diagram of EMD-IABC.

It is often hard and time-consuming to determine EMD threshold since their estimation is in
accordance with statistic and experiment analysis. In addition, the noise elimination process based
on EMD gets important efficiency from an appropriate threshold. In this paper, the determination of
thresholds T = [τ1, τ2, · · · , τq, · · · , τp] is performed automatically by using ABC algorithm.

ABC algorithm has its drawbacks for solving complex problems, including premature convergence
and slow convergence speed. A potential reason for these is that the fitness landscape is also very
rugged especially for a multimodal problem. However, local optimum may be in close to the global
optimum particularly for the complex optimization problem. When a current solution is unfortunately
trapped in local optimum, searching its neighborhoods is effective to find better solutions or the global
optimum. Based on this viewpoint, a new neighborhood search strategy (NSS) is employed in the
basic ABC algorithm, and is expressed as:

viq =


a1 · τbest + a2(τiq − τkq)

τbest + θij(τiq − τkq)

viq

if f it′i < f iti, f it′′i
if f iti < f it′i, f it′′i

otherwise
(9)

where τbest is the best food source in the all food source. The indices a1 and a2 are mutually exclusive
integers randomly chosen from [0, 1], and a1 + a2 = 1, a1 and a2 are regenerated in each generation,
but they remain unchanged for all dimensions of each generation. Once a new food source is
generated, the previous food source must compete with it to the next generation. This means
that a food source with better fitness value have the chance to survive. f iti

′ represents the fitness
value, which is corresponding to term a1 · τbest + a2 · (τiq − τkq), f iti represents fitness value which is
corresponding to term τbest + θiq(τiq − τkq), f it′′ i represents fitness value which is corresponding to
term vij. Term a1 · τbest + a2 · (τiq − τkq) can increase searching speed due to a single direction search
around the best solution, which could be trapped in local optimum because indices a2 is from [0, 1].
But term τbest + θiq(τiq − τkq) is a two- direction search mechanism because indices θiq is from [−1, 1],
which enhances the exploration ability of the algorithm and is helpful to jump out of local optimum.
Therefore, term a1 · τbest + a2 · (τiq − τkq) and term τbest + θiq(τiq − τkq) are combined for the balance of
exploitation and exploration.

RMSE, short for the root mean square error, refers to the degree of the reconstructed signal’s
deviation with the ideal signal in mean square. However, few of ideal signals are predictable. As a
result, the GCV, which is short for generalized cross validation criterion, is adopted as the fitness for
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selecting threshold in this paper [20]. The GCV does not require an estimation of the noise variance,
and is calculated as follows:

f it =

1
p

p
∑

q=1

[
cq
(
t)− bq(t)

]2
(

p0
p

)2 (10)

where p represents the number of IMFs, p0 represents the number of IMFs that is set to 0 in the
shrinking process.

In short, the proposed ABC variant in this paper is called NSSABC, and our proposed filtering
method combining EMD and NSSABC is referred to as EMD-NSSABC. The proposed filtering method
flow is described in the following.

Step 1: Initiation of parameters. Initializing NSSABC’s colony size, maximum cycle number and
limit value.

Step 2: Signal decomposition. EMD is used to decompose the original signal.
Step 3: Threshold optimization. Automatic determination of the thresholds T = [τ1, τ2, · · · , τq, · · · , τp]

is realized by the NSSABC.
Step 3.1: Determining the positions of neighbor food source (T1, T2, . . . , TN) for these employed

bees using Equation (7).
Step 3.2: Calculating fitness value using Equation (10).
Step 3.3: Selecting a source of food for an onlooker bee using Equation (8).
Step 3.4: Determining the positions of neighbor food source for these onlooker bees using

Equation (9).
Step 3.5: Finding the abandoned food source and allocating its employed bee as a scout for the

search of new food sources using Equation (6).
Step 3.6: Memorizing the position of the best food source.
Step 4: Iteration termination. If the number of the maximum cycle is attained, optimal thresholds

Tbest = [τ1, τ2, · · · , τq, · · · , τp] are recorded, and then stop, and go to Step 3 if that is not the case.
Step 5: IMFs shrinkage. Each IMF is shrunk by Equation (4) with optimal thresholds Tbest =

[τ1, τ2, · · · , τq, · · · , τp].
Step 6: Signal reconstruction. All IMFs after shrinkage are superposed then filtered signal would

be obtained.

4. Simulation Analyses

4.1. Benchmark Signals

To test the performance of the proposed filtering methods, four benchmark signals: Bumps,
Doppler, Heavysine, and Blocks are used to perform numerical simulations. Four benchmark signals
with size 4096 are corrupted by Gaussion white noise that make SNR maintaining at 2 dB (dB is a
pure counting unit and is to represent the ratio of the two quantities). The benchmark signals and the
corresponding noisy versions are showed in Figures 4 and 5, respectively.



Symmetry 2018, 10, 575 7 of 14

Symmetry 2018, 10, x FOR PEER REVIEW  7 of 14 

Step 4: Iteration termination. If the number of the maximum cycle is attained, optimal 

thresholds 1 2[ , , , , , ]best q p   T  are recorded, and then stop, and go to Step 3 if that is not 

the case. 

Step 5: IMFs shrinkage. Each IMF is shrunk by Equation (4) with optimal thresholds 

1 2[ , , , , , ]best q p   T .
 

Step 6: Signal reconstruction. All IMFs after shrinkage are superposed then filtered signal 

would be obtained. 

4. Simulation Analyses 

4.1. Benchmark Signals 

To test the performance of the proposed filtering methods, four benchmark signals: Bumps, 

Doppler, Heavysine, and Blocks are used to perform numerical simulations. Four benchmark 

signals with size 4096 are corrupted by Gaussion white noise that make SNR maintaining at 2 dB (dB 

is a pure counting unit and is to represent the ratio of the two quantities). The benchmark signals 

and the corresponding noisy versions are showed in Figures 4 and 5, respectively.  

 

Figure 4. Four benchmark signals. Figure 4. Four benchmark signals.Symmetry 2018, 10, x FOR PEER REVIEW  8 of 14 

 

Figure 5. Four Corresponding noisy versions. 

4.2. Comparison with Other Filtering Methods 

In this subsection, a comparative study between EMD-NSSABC and other four EMD-SIAs is 

presented. The four SIAs are improved fruit fly optimization algorithm (IFOA) [10], particle swarm 

optimization with low discrepancy sequence initialized particles and high-order nonlinear dynamic 

varying inertia weight (LHNPSO) [21], elite-guided genetic algorithm (EGA) [22], and basic ABC. 

The basic ABC provides a deep insight into the effect of the proposed method. So there are totally 

five different algorithms in this simulation test, including EMD-IFOA, EMD-LHNPSO, EMD-ABC, 

and EMD-NSSABC. Parameters setting for five filtering methods are set as follows: 

EMD-IFOA: The fruit fly population size was set to 3; fruit fly number in each population was 

set to 10; fly distance range was set to 1; the variation coefficient was set to 0.2 and the disturbance 

coefficient was set to 5. 

EMD-LHNPSO: The acceleration coefficients c1 and c2 were set to 2; the weight coefficients wmin 

and wmax were set to 0.4 and 0.9, respectively; the population size was equal to 100; the number of 

non-significant improvements was equal to 5. 

EMD-ESLGA: Maximum number of parents was set 12; statistical significance level was equal 

to 0.05; Population size was equal to 100; elite eligibility threshold was set to 0.9.  

EMD-ABC: Population size was equal to 100; the limit was calculated as follows [23]: 

0.6limit CS D    (11) 

where CS is population size, D is the number of IMFs. 

EMD-NSSABC: Parameter settings are same as those of EMD-ABC.  

In addition, for all filtering methods, the stopping criterion in EMD was set to 0.25 [13], the 

iteration number was set to 100, and the initial threshold [0,0 0]T . 

Figure 6 displays the outcome of applying the five EMD-SIAs filtering methods to the four 

benchmark signals. Globally, the five EMD-SIAs filtering methods do well in reduction of noise and 

make filtered signals close to the original signals. However, it is difficult to evaluate which method is 

good or bad from Figure 5, so noise-signal ratio (SNR) and root mean squared error (RMSE) were 

calculated as the measures of efficiency of noise reduction, which were calculated as follows: 

Figure 5. Four Corresponding noisy versions.

4.2. Comparison with Other Filtering Methods

In this subsection, a comparative study between EMD-NSSABC and other four EMD-SIAs is
presented. The four SIAs are improved fruit fly optimization algorithm (IFOA) [10], particle swarm
optimization with low discrepancy sequence initialized particles and high-order nonlinear dynamic
varying inertia weight (LHNPSO) [21], elite-guided genetic algorithm (EGA) [22], and basic ABC.
The basic ABC provides a deep insight into the effect of the proposed method. So there are totally five
different algorithms in this simulation test, including EMD-IFOA, EMD-LHNPSO, EMD-ABC, and
EMD-NSSABC. Parameters setting for five filtering methods are set as follows:
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EMD-IFOA: The fruit fly population size was set to 3; fruit fly number in each population was
set to 10; fly distance range was set to 1; the variation coefficient was set to 0.2 and the disturbance
coefficient was set to 5.

EMD-LHNPSO: The acceleration coefficients c1 and c2 were set to 2; the weight coefficients wmin

and wmax were set to 0.4 and 0.9, respectively; the population size was equal to 100; the number of
non-significant improvements was equal to 5.

EMD-ESLGA: Maximum number of parents was set 12; statistical significance level was equal to
0.05; Population size was equal to 100; elite eligibility threshold was set to 0.9.

EMD-ABC: Population size was equal to 100; the limit was calculated as follows [23]:

limit = 0.6× CS× D (11)

where CS is population size, D is the number of IMFs.
EMD-NSSABC: Parameter settings are same as those of EMD-ABC.
In addition, for all filtering methods, the stopping criterion in EMD was set to 0.25 [13], the

iteration number was set to 100, and the initial threshold T = [0, 0 · · · 0].
Figure 6 displays the outcome of applying the five EMD-SIAs filtering methods to the four

benchmark signals. Globally, the five EMD-SIAs filtering methods do well in reduction of noise and
make filtered signals close to the original signals. However, it is difficult to evaluate which method
is good or bad from Figure 5, so noise-signal ratio (SNR) and root mean squared error (RMSE) were
calculated as the measures of efficiency of noise reduction, which were calculated as follows:

SNR = 10 log10

L
∑

m=1
[s(m)]2

L
∑

m=1
[y(m)− s(m)]2

(12)

RMSE =

√√√√ 1
L

L

∑
m=1

[s(m)− y(m)]2 (13)

where L denotes sampling number, s(m) denotes the original signal, and y(m) is the filtered signal.
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As Table 1 show, the EMD-NSSABC obviously occupied the advantages of SNR and RMSE
in comparison with the other four filtering methods. Specifically, compared with the basic ABC,
the EMD-NSSABC outperforms it on four benchmark signals: For Bumps, Doppler, Heavysine,
and Blocks signals, RMSE reduces by 17.78%, 18.75%, 34.48%, and 22.45% (computing method:
|RMSEEMD−NSSABC−RMSEEMD−ABC|

RMSEEMD−ABC
× 100%), and SNR increases by 17.67%, 15.12%, 7.26% and 10.85%

(computing method: |SNREMD−NSSABC−SNREMD−ABC|
SNREMD−ABC

× 100%). Table 1 results illustrate that the threshold
obtained by the NSSABC are superior to that get by the other four SIAs, and imply that with the new
neighborhood search strategy, the NSSABC has more exploration ability than the basic ABC.

Table 1. The filtering performance of the five methods.

Method
Bumps Doppler Heavysine Blocks

SNR RMSE SNR RMSE SNR RMSE SNR RMSE

EMD-IFOA 10.69 0.43 11.17 0.41 19.25 0.22 11.26 0.43
EMD-LHNPSO 10.27 0.41 11.15 0.45 19.35 0.21 11.42 0.40
EMD-ESLGA 10.38 0.42 11.13 0.43 19.14 0.25 11.36 0.42

EMD-ABC 9.79 0.45 10.12 0.48 18.96 0.29 11.15 0.49
EMD-NSSABC 11.52 0.37 11.65 0.39 20.23 0.19 12.36 0.38

To clearly show the convergence rate, the convergence curves of EMD-IFOA, EMD-LHNPSO,
EMD-ESLGA, EMD-ABC and EMD-NSSABC are plotted in Figure 7, which clearly indicates that
EMD-NSSABC is better than EMD-IFOA, EMD-LHNPSO, EMD-ESLGA, and EMD-ABC, respectively,
regarding to convergence speed on four benchmark signals. This result demonstrates that the new
neighborhood search strategy can enhance the exploitation of ABC and accelerate the convergence
speed. In summary, through introduction of new neighborhood search strategy, the performance of
the basic ABC can be further significantly improved, and then the filtering performance of EMD is
enhanced effectively.
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For the purpose of researching the filtering performance at different levels of noise, a further
comparison was performed for four noise levels, which were 4 dB, 6 dB, 8 dB, and 10 dB, respectively.
As Figure 8 shows, for four benchmark signals, the EMD-NSSABC still kept the best filtering effect with
increasing noise level among five filtering methods. A group including EMD-IFOA, EMD-LHNPSO,
and EMD-ELSGA is secondary compared with EMD-NSSABC in term of SNR, and the three methods’
SNR do not show an obvious difference. The last one is the EMD-ABC due to no improvement in
the basic ABC. A similar comparison in term of RSME is presented in Figure 9. As seen in Figure 9,
RSME increases gradually with the increasing noise level and obtained a minimum value at the
EMD-NSSABC. Through the comparison, we can draw a conclusion that the EMD-NSSABC shows
noticeable advantages over other EMD-SIAs methods and is robust to different noise levels.
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5. EMD-NSSABC in Application

A test rig was established for the purpose of testing the EMD-NSSABC’s practical performance
for grain flow signal. As shown in Figure 10, Grain flow signals were got from the test rig. There were
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some experiment conditions. First, the clean grain elevator’s top was installed with a novel grain
flow sensor, which using PVDF piezoelectric film as the active to measure the impact force [24,25], the
structure of novel sensor used in this paper is shown in Figure 11. Second, measuring of the grain
flow was finished through by the weighing sensor with an accuracy of 0.05%. Third, measuring of the
sprocket rotational speed was made by the speed sensor. The sprocket rotational speed was changed
by using the motor and the frequency converter. Fourth, it is necessary to use signal modulate circuit
in order to bring signals to an appropriate range for recording. In addition, NI USB-6216 card as well
as computer and LABVIEW software were included in the data acquisition system, and the sampling
rate was set to be 1 kHz.Symmetry 2018, 10, x FOR PEER REVIEW  12 of 14 
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Figure 11. Structure and principle of novel grain flow sensor.

The PVDF piezoelectric film is force-sensitive element of the sensor with size
220 mm × 180 mm × 0.07 mm and piezoelectric constant d33 = 200 pc/N. The damping material
plays an important role of buffer effect for PVDF piezoelectric film. The mounting rack make PVDF
piezoelectric film fixed at the exit of clean grain elevator. The charge amplifier outputs voltage that is
proportional to the grain impact force.

Since there were a lot of noise signals in the grain flow signal, reducing the collected grain flow
signal’s noise was of great importance for the improvement of the grain flow’s measurement accuracy.
For the purpose of validating the EMD-NSSABC’s effectiveness and superiority, a piece of grain flow
signal from the test rig was collected and analyzed. The grain flow signal with noise as well as the
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filtered grain flow signal are shown in Figure 12. In the Figure 12, the EMD-NSSABC’s effect on the
grain flow signal with noise are shown in a clear way. Besides conserving the grain flow signal’s
overall trend, the filtered grain flow signal can also restore the weak grain flow signal that is drowned
in noise. Table 2 also shows that the EMD-NSSABC perform better than the other four methods in
practical application. Altogether, there are five pulses in the grain flow signal, and the 4th pulse in the
grain flow with noise is not strong enough to distinguish from noise. However, it is easy to identify it
in filtered grain flow signal. Thus, the filtered grain flow signal more suits for further processing.
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Table 2. Application comparison of the five methods.

SNR RMSE

EMD-IFOA 9.79 0.52
EMD-LHNPSO 9.28 0.61
EMD-ESLGA 9.48 0.57

EMD-ABC 8.73 0.65
EMD-NSSABC 10.26 0.49

6. Conclusions

This paper proposed an EMD threshold-based filtering method, which is optimized by the ABC
for the purpose of reducing noise in grain flow signal. To balance exploration and exploitation
ability of ABC and then search optimal thresholds, the neighborhood search strategy is integrated
into ABC (NSSABC). To comprehensively investigate the proposed method, four benchmark signals
is used in the experiments, and five different EMD-SIAs methods are included in the comparison
studies, including the EMD-NSSABC, the EMD-IFOA, the EMD-LHNPSO, the EMD-ELSGA, and the
EMD-ABC. The compared results demonstrate the proposed method can offer better performance on
four benchmark signals. Even when the noise level increases, the proposed method still performs
better than the other four EMD-SIAs methods. Moreover, the proposed method has been verified in a
grain flow test rig. It can well eliminate noise and restore grain flow signal, proving its effectiveness
and superiority in filtering out noise in a complex environment.
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