
symmetryS S

Article

IoT Application-Layer Protocol Vulnerability
Detection using Reverse Engineering

Jian-Zhen Luo , Chun Shan *, Jun Cai and Yan Liu

School of Electronic and Information, Guangdong Polytechnic Normal University, Guangzhou 510665, China;
luojz@gpnu.edu.cn (J.-Z.L.); caijun@gpnu.edu.cn (J.C.); liuyan_sysu@163.com (Y.L.)
* Correspondence: shanchun@gpnu.edu.cn; Tel.: +86-136-0902-4077

Received: 25 September 2018; Accepted: 26 October 2018; Published: 1 November 2018
����������
�������

Abstract: Fuzzing is regarded as the most promising method for protocol vulnerabilities discovering
in network security of Internet of Things (IoT). However, one fatal drawback of existing fuzzing
methods is that a huge number of test files are required to maintain a high test coverage. In this paper,
a novel method based on protocol reverse engineering is proposed to reduce the amount of test files
for fuzzing. The proposed method uses techniques in the field of protocol reverse engineering to
identify message formats of IoT application-layer protocol and create test files by generating messages
with error fields according to message formats. The protocol message treated as a sequence of bytes
is assumed to obey a statistic process with change-points indicating the boundaries of message
fields. Then, a multi-change-point detection procedure is introduced to identify change-points of
byte sequences according to their statistic properties and divide them into segments according to
their change-points. The message segments are further processed via a position-based occurrence
probability test analysis to identify keyword fields, data fields and uncertain fields. Finally, a message
generation procedure with mutation operation on message fields is applied to construct test files for
fuzzing test. The results show that the proposed method can effectively find out the message fields
and significantly reduce the amount of test files for fuzzing test.

Keywords: vulnerability detection; IoT security; change-point detection; protocol reverse engineering

1. Introduction

Fuzzing is a widely used security technique for discovering vulnerability in network protocol
by sending a series of test files with random or fault data to software system implementing specific
protocol and observing software exceptions to detect vulnerabilities within the protocol.

Currently, there exist mainly two kinds of fuzzing techniques, i.e., mutation-based and
generation-based fuzzing [1]. The former generates test files by injecting random or fault data into
sample messages (message is the basic data unit exchanged between processes of application-layer
protocol), while the latter constructs fault-injected messages as test files based on specific protocol
specification. The mutation-based fuzzing emits a fatal problem that too many fault-injected
messages are required to maintain a high test coverage, such as FileFuzz (http://www.securiteam.
com/tools/5PP051FGUE.html) and SPIKEfile (https://www.ee.oulu.fi/research/ouspg/SPIKEfile).
However, the amount of fault-injected files is 256L, where L is the power of sample message’s
length, and it would take tremendously long time to handle so great amount of fault-injected
test files especially when L is large. Actually, a protocol’s software system parses inputs by
considering their formats and treats any files which does not obey the rule of its format as invalid
input, in which case a software system will throw an error and quit before it reaches the fault
segment(s). Therefore, many of fault-injected test files are not necessary for successful fuzzing test.
The generation-based fuzzing generates test files by considering the format of input messages, such as

Symmetry 2018, 10, 561; doi:10.3390/sym10110561 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-3664-4513
http://www.mdpi.com/2073-8994/10/11/561?type=check_update&version=1
http://www.securiteam.com/tools/5PP051FGUE.html
http://www.securiteam.com/tools/5PP051FGUE.html
https://www.ee.oulu.fi/research/ouspg/SPIKEfile
http://dx.doi.org/10.3390/sym10110561
http://www.mdpi.com/journal/symmetry

Symmetry 2018, 10, 561 2 of 13

PROTOS (https://www.ee.oulu.fi/roles/ouspg/Protos). One advantage of such fuzzing tools is that it
reduces the number of test files greatly and introduces nearly no sacrifice on test coverage [2]. However,
one has to figure out the message formats and configure generation-based fuzzer accordingly. Currently,
the message formats are mainly collected or analyzed in a manual way, which is a time-consuming and
error-prone process. To address these issues, protocol reverse engineering [3] is introduced to obtain
protocol specification automatically. The protocol specification including message format a set of
rules that describe or model a network protocol. Then a field-based fault-injected message generation
procedure conducted by the message format is applied to create fuzzing test files.

Protocol message is treated as a byte sequence which could be divided into a sequence of fields.
A keyword field usually holds a command, operator or state code of protocol, while a data field is
variable subsequence whose content is always changeable, such as the value of some parameters of
communication. Generally, message format is recovered by identifying all fields in byte sequences.
However, it is hard to locate the boundary of fields and a great challenge to identify fields in message,
since a priori information about them is usually not available. The byte sequence of protocol message is
supposed to obey an underlying stochastic process in which different fields have their own distribution
of symbols and change-points are the boundaries of fields. Apparently, each change-point implies
an end point of one field and a start point of another field. With these assumption, our goal of field
boundary detection is essentially the problem of multi-change-point detection. This problem can be
addressed using change-point detection [4] widely used in time series analysis. When change-points
are localized successfully, messages are divided into field sequences. However, the type of fields are
still uncertain. Thus, a further inference procedure, named position-based occurrence probability
test analysis, is proposed to determine field type(keyword fields and data fields). Firstly, fields with
approximate zero-probability distribution are classified as data fields. Then, the rest ones are further
processed in a position-based statistic test. Specifically, a reference position would be selected for every
field, and each field are tested by binomial test to make sure whether their positions are equal to the
reference position with probability 1 given a significance level α. The fields passing these tests are
chosen as keyword fields, while the rest ones are considered as uncertain fields.

2. Related Work

Recently, the security and privacy issues for Internet of Things have attracted a lot of research
interests [5–10]. In particular, the analysis of applications and protocols in real-time network traffic
monitoring is a fundamental and critical building block in network management and security systems
for IoT infrastructures [11–15]. In this part, we review the recent works in application-layer network
protocol vulnerability analysis and detection.

Fuzzing helps protocol vulnerabilities detection to gain higher benefit-to-cost ratio with no or less
increasing in computing complexity. It aims to reveal bugs in protocols which would be exploited by
adversary to launch attack or activate their malicious code. Currently, research on network protocol
fuzzing test is a heat topic in network security. AutoFuzz [16] identified the variable parts of sample
messages and fuzzes protocol implementation by sending messages with invalid symbols or messages.
AspFuzz [17] leveraged the accessible protocol specifications on RFCs (Request for Comments) to
generate fault-injected messages for test files. Then, AspFuzz sent both anomalous and reordered
messages to discover vulnerabilities. SecFuzz [18] focused on fuzzing security protocol implementation,
but it did not consider the specification of target protocol as well. Zhao et al. [19] used regression finite
state machine to infer a state transition diagram of protocol so as to reveal potential vulnerabilities in
wireless protocols.

In recent years, a range of works about protocol reverse engineering [20] have been published.
Early in 2005, Marshall A. Beddoe held the protocol informatics project [21] and applied bio-informatics
algorithms to identify the fields in packets based on alignment algorithms. Cui et al. went further
than Beddoe and presented Discoverer [22] to recover protocol message format using both sequence
aligning and recursively clustering algorithm. However, Discoverer need some a priori information

https://www.ee.oulu.fi/roles/ouspg/Protos

Symmetry 2018, 10, 561 3 of 13

about the delimiters used by protocol, such as space and comma, which is used to help tokenization,
i.e., breaking message into token sequence. Recently, Tao et al. [23] combines hierarchical clustering
algorithm, multi-sequence alignment and Bayesian decision model to determine the field boundary
of binary protocol in bit granularity. Chen et al. [24] introduce deep learning algorithm to analyze
mobile applications. Xiao et al. [25] propose a method based on heuristic rule to reverse analysis
of the incomplete flow. In our approach, we make no assumption about the delimiters. We treat
the byte sequence of message as a stochastic process and detect field boundaries according to their
statistical properties.

As a paralleled method to understand the unknown protocols, binary analysis-based techniques,
such as Polyglot [26], Tupni [27], AutoFormat [28], Prospex [29] Dispatcher [30] and so on, also draw
much research attention. They are practical in some special scenarios where binary codes are available
and executable in a specific sandbox-like environment. Moreover, binary analysis method would fail
if programs make use of some confusion techniques like obfuscation to keep themselves away from
being reverse-engineered.

As in many other security application domains [31–36], data mining and machine learning
techniques have been widely adopted in the domain of IoT security and IoT traffic analysis. One of the
key challenges is the data privacy problem, especially in collaborative and cloud-based learning
scenarios. Several recent studies have proposed novel data privacy preserving approaches for
addressing the problem [37–42].

3. Problem Formulation

Suppose that the alphabet used by protocol messages is defined as Σ =
{

0x00, 0x01, 0x02, ..., 0xFF
}

.
A string ω is defined as a finite set of ordered letters in Σ. That is ω = a1a2...an (a1, a2, ..., an ∈ Σ).
All strings over alphabet Σ forms a super set Σ∗. As a basic data unit used by IoT protocol, protocol
message m is essentially strings made up of a sequence of message fields. Thus, we mark message
field as $ ∈ Σ∗.

In this paper, a protocol message is assumed to be a byte sequence undergoing hidden statistical
process, denoted as Θ, whose statistical feature would shift on and on when the byte sequence goes
from one message field to another. As Θ passes from one field ($i) to another ($j), the statistical
characteristic would change significantly. Thus, a change-point would occur just in the boundary of
two different message fields. Inspired by this observation, the problem of message field identification
can be transformed to be a change-point detection issue in the statistical process undergone by
protocol message.

Given a string ωo = x1...xn, a q-length prefix of the last letter (i.e., xn) in ωo is marked as T(ωo, q),
while the set of such prefixes whose lengths are no longer than Q in ωo is marked as T (xn, Q).
For instance, T(x1...x4, 2) = x2x3, T(x1...x4, 3) = x1x2x3, and T (ωo, Q) = {T(ωo, q) : 1 ≤ q ≤
min(Q, n− 1), Q ∈ R}.

The prefix conditional probability of x1...xn is defined as

pn = P
(

xn|T (x1...xn, n− 1)
)

. (1)

Let m = x1x2x3... to be a Q-order Markov process. Then, the likelihood of xn given x1, ..., xn−1 is

P(xn|x1, ..., xn−1) = P(xn|xn−Qxn−Q+1...xn−1), (2)

where Q ∈ R and n > Q.
Suppose that the byte sequence of protocol message obeys Q-order Markov process,

then Equation (1) would be rewritten as follows.

Symmetry 2018, 10, 561 4 of 13

pn = P
(

xn|T (x1...xn, Q)
)

=
min{Q,n−1}

∑
q=1

ωqP(xn|T(x1...xn, q)), (3)

where ωq is the weight of P(xn|T(x1...xn, q)). Essentially, ωq can be regarded as the importance of
T(x1...xn, q) for predicting the context of xn.

The larger q is, the more important it is for T(x1...xn, q) in predicting the context of xn. For instance,
it is much more important for P(“e”|“xampl”) than P(“e”|“pl”) to foresee that the context of “e” is
“example” instead of “multiple”. As a result, the weight of ωq in this paper is defined as

ωq =
q2

min{Q,n−1}
∑

q′=1
(q′)2

, n > 1. (4)

Additionally, P(xn|T(x1...xn, q)) is calculated by

P(xn|T(x1...xn, q)) =
ν(xn−q...xn−1xn)

ν(xn−q...xn−1)
, (5)

where ν(ω) is the frequency of ω in training dataset D.
As shown in Figure 1, the prefix conditional probability of x1...xn would be very high when xn

and T(xn, q) locate in the same field, otherwise it would be low.

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GET /detail_desc−859e7bf1cac81e798960cf0941a39eaa.html HTTP/1.0

C
o
n
d
it
io

n
a
l
P

ro
b
a
b
ili

ty
 p

n

Figure 1. The conditional probability of xn given x1...xn−1.

3.1. Minmax Formulation for Field Detection

There exist mainly two formulations of change-point detecting problem: Bayesian formulation
and minmax formulation. The Bayesian formulation [43] assumes that the change-point γ obeys a
prior distribution which is known in prior, while the minmax formulation [44] supposes that the
change-point as well as its statistical distribution are unknown to us.

In this paper, the statistical distribution of change-points in protocol message is unknown.
As a result, the change-point detection problem should be represented in minmax formulation.
Page [45] proposed a cumulative sum (CUSUM) algorithm to implement an optimal solution to
minmax formulated problems. Accordingly, a CUSUM-LIKE algorithm is proposed to search fro
multiple change-points in this paper. Since the statistic feature of message fields is unknown in prior,
the likelihood ratio from post-change probability to pre-change probability, denoted as L(Xn) cannot

Symmetry 2018, 10, 561 5 of 13

be calculated directly by L(Xn) = f$1(Xn)/ f$0(Xn). Thus, L(Xn) is replaced with a new metric in this
paper as

Cn = −log(
pn

pn−1
), n > 1. (6)

Suppose γ is a change-point in a message and xn is the n-th letter in the message. We assume
that the post-change distribution of xn is f$1(Xn), while the pre-change distribution of xn is f$0(Xn),
then prefix conditional probability of xn, i.e., pn, would be much less than pn−1, which results in a
high and positive value of Cn. When n < γ, if xn and xn−1 locate in the same field, that is they obey
the same distribution, so that |1− pn/pn−1| ≤ ε, where ε is a small and positive value, given as a
threshold. if xn and xn−1 locate in different fields, that means n − 1 is also a change-point which
should be detected before γ. On the other hand, the value of Cn is likely to be bigger than the given
threshold ε when n > γ. As a result, a detection indicator metric which could be regarded recursively
for multi-change-point detection should be defined as:

Vn = max{0, Vn−1 + Cn}, n ≥ 1, V0 = 0. (7)

The stopping condition can be set as

τ∗ = min{n ≥ 1 : Vn ≥ υ}, (8)

where υ is a threshold of detection indicator.

3.2. Multi-Change-Point Detection

Since the problem of message field identification in this paper is actually a multi-change-point
detection problem, the detection procedure has to be extended to a multi-round procedure presented
in Section 3.1 and called MultiCUSUM.

A variable χn indicating the underlying state of xn is defined as

χn =

1, n ∈ {n′ ≥ 1 : Vn′ ≥ υ}

0, otherwise.
(9)

Accordingly, the detection statistic is

Vn =

max{0, u0 + Cn}, χn−1 = 1,

max{0, Vn−1 + Cn}, χn−1 = 0,
(10)

where u0 is the initial condition in a new round of detection procedure started once the previous
change-point has been found.

The stopping time in the k-th iteration, denoted as τ∗k , is defined as

τ∗k = min{n > τ∗k−1 : Vn ≥ υk}, k ≥ 1, τ∗0 = 0, (11)

where

υk =

1− ζ, τ∗k−1 < n < τ∗k−1 + 3

min{ρ ∗ µk, 1− ζ}, n ≥ τ∗k−1 + 3
(12)

with µk as the mean of {Cτ∗k−1+1, ..., Cn−1} and ρ as the coefficient of µk.

Symmetry 2018, 10, 561 6 of 13

3.3. Message Segmenting Algorithm

A message segmenting algorithm, as shown in Algorithm 1, is proposed to segment protocol
message m into a set of message fields. In Algorithm 1, the message m consists of a set of All messages
associated with a specific protocol inD are concatenated one by one to form a new message m according
to their appearance time. Then, a Q-depth suffix trie T is built to store sub-strings of m with max length
of Q + 1 (line 1). The prefix conditional probability pn is calculated according to Equation (3) (line 2) to
enable the multi-change-point detection procedures (MultiCUSUM()). The identified change-points
are put into P1 (line 3).

Algorithm 1 Message Segmenting Algorithm

Input: Message m = x1...xN
Output: Segment set Ω

1: T← QSufTrie(m); # Creating Q-depth suffix trie
2: P← condProb(m,T); # Compute the conditional probabilities: P = {pn : n = 1, ..., N}
3: P1 ←MultiCUSUM(m,P); # Change-point detection, P1 is the change-point set

4: mR ← xN xN−1...x1; # Reverse the message stream
5: TR ← QSufTrie(mR);
6: PR ← condProb(mR,TR);
7: P2 ←MultiCUSUM(mR,PR);

8: P ← P1 ∪ P2
9: Ω←MsgSeg(m,P);

Actually, not all change-points are not so sensitive to the prefix conditional probability of
P(xn|x1...xn−1) to be detected by the aforementioned procedure, instead they are more sensitive
to the postfix conditional probability of P(xn|xn+1...xN) which is essentially the prefix conditional
probability x− n in a special string that is the reverse-order of original message. Therefore, we reverse
the letter order of m (i.e., mR = xN xN−1...x1) and perform the same detection procedure again on mR

to search for such type of change-points (line 4∼7) and put the results in P2.
Finally, the two sets of change-points are merged by P = P1 ∪P2 and the message m is segmented

into segments based on the change-points in P(line 8∼9).

4. Inferring Message Fields

4.1. Occurrence Probability Analysis

To relief the burden of position-based statistic test analysis, a pre-processing called occurrence
probability analysis is applied to filter out the obvious part of data fields whose occurrence probability
is very low. Given a dataset D and its size of M, and the occurrence probability of a string ω ∈ Ω in D,
denoted as pD(ω), is defined as the ratio between the amount of messages containing ω, denoted as
νm(ω), and the size of dataset.

The data field is variational and their occurrence probabilities of each value in a data field
are always very small, which nearly approaches zero. Therefore, the data field can be found by
searching for those string segments whose occurrence probabilities are statistically zero. In this paper,
the occurrence probabilities of message segments is assumed to obey binomial distribution and the
binomial test in the statistics field is considered to test whether the occurrence probability of each
message segment is zero.

Let the hypothesis be

H0 :pD(ω)→ 0, ω ∈ Ω, (13)

Symmetry 2018, 10, 561 7 of 13

where α is a significance level.
The strings in F could be chosen as data fields according to

Fd =

{
ω :

νm(ω)

M
≤ α, ω ∈ Ω

}
. (14)

4.2. Position-Based Statistic Test Analysis

Apparently, a keyword field would frequently appear in many messages with similar function
and its positions are also relatively stable. That means both frequency and position are important
features for us to infer keyword fields from segment set F . As a result, a position-based statistic test is
introduced to select keyword fields from {ω : ω ∈ (F −Fd)} by testing the position of segment is
fixed or quasi-fixed in messages.

Specifically, four kinds of positions of ω are considered in our scheme. That is

• Pω,1: the distance between the message head and the position of ω in the message.
• Pω,2: the distance between the message tail and the position of ω in the message.
• Pω,3: the distance between the head of a line which containing ω and the position of ω in that line.
• Pω,4: the distance between the tail of a line which containing ω and the position of ω in that line.

Let Pω,r = (pω,r
1 , ..., pω,r

n), r ∈ {1, 2, 3, 4} and define the support rate of pω,r
i , marked as N(pω,r

i),
as the number of pω,r

i in D. Based on binomial test (see Section 4.1), the keyword fields are chosen by

Fk =

ω :
max

i,r

{
N(pω,r

i)
}

∑r,i N(pω,r
i)

> 1− α, ω ∈ F −Fd

 , (15)

given α as the significance level.
Equation (15) infers keywords whose positions are fixed by searching for segments satisfying

maxi,r{N(pω,r
i)}. It has good performance on those ω which have one dominated position.

For instance, “GET” in HTTP messages has one dominated position, i.e., in the head of a request
message. However, some other keywords have more than one dominated position, and there are
multiple peaks in N(pω,r

i).
Aiming to address multi-peak issue, an algorithm (called MDL-PTA) based on the minimal

description length (MDL) [46] criteria is introduced to enable the position-based statistic test analysis,
as shown in Algorithm 2.

k reference positions, Bk = {b1, ..., bk}, whose support rates are the first k top values in {N(pω,r
j) :

pω,r
j ∈ Pω,r} (line 5) are selected for each ω, and Pω,r is divided into k clusters, Ck = {c(b1), ..., c(bk)},

according to the distance between pω,r
j and reference position bm, m = 1, 2, ..., k (line 6).

The entropy of Ck is calculated through following equation:

Ek = −
k

∑
i=1

(
|c(bi)|

∑k
j=1 |c(bj)|

log
|c(bi)|

∑k
j=1 |c(bj)|

)
. (16)

The model complexity of Ck is (log k)/2 and the sum of description length of Ck is calculated in
line 7, that is

Lk = Ek +
log k

2
. (17)

The k-th model in the model set Ψ is represented as {Bk, Ck, Lk}. The optimal model with minimal
description length would be selected from Ψ (line 11). Apparently, the computation complexity would
be very high if all models in Ψ are considered. Meanwhile, a keyword should not have lots of reference
positions. As a result, only the top K models in Ψ are considered in Algorithm 2 (line 4∼10).

Symmetry 2018, 10, 561 8 of 13

Algorithm 2 MDL-PTA Algorithm

Input: K, D and ω ∈ (F −Fd)
Output: true if ω is a keyword field, or false otherwise.

1: Ψ← {}
2: Pω,r ← GetPos(D,ω) # Get positions of ω

3: N ← {N(pω,r
j) : pω,r

j ∈ Pω,r}
4: for i=1 to K do

5: Bi ←TopK(N ,i) # Get reference positions
6: Ci ←Cluster(Pω,r,Bi) # Cluster Pω,r

7: Li ←CalDLen(Ci) # Compute the description length of Ci
8: ψi ← {Bi, Ci, Li}
9: Ψ← Ψ ∪ {ψi}

10: end for
11: ψ∗ ←minDLen(Ψ) # Get the model with minimal description length
12: for all bi ∈ B∗ do

13: res←TestPos(bi,c∗(bi)) # Check whether bi satisfies Eq. (19)
14: if res==true then

15: return true
16: end if
17: end for
18: return false

The optimal model chosen by the Algorithm 2 is ψ∗ = {C∗, B∗, L∗}. For each reference position
bi ∈ B∗ in C∗ = {c∗(b1), ..., c∗(bk∗)}, the following hypothesis is tested via binomial test:

H0 :P(x = bi : x ∈ c∗(bi))→ 1, (18)

where bi ∈ B∗ and i = 1, ..., k∗.
The accept condition is {

b ∈ B∗ :
N(b)

∑x∈c∗(b) N(x)
> 1− α

}
, (19)

The segment set passing hypothesis test is regarded as keyword set Fk, and the rest ones are
uncertain fields.

The inferred message fields would be further refined and some semantic information of message
fields would be determined. Specifically, continuous segments of data (or uncertain) fields would be
merged into a single segment which is data (or uncertain) field. Regular expressions representing some
specific semantic information, such as IP address, File names, URLs, Timestamp and so on, are applied
to match the message fields so that some semantic of message fields would be inferred.

5. Evaluation

In this section, experiments are performed to evaluate the effectiveness of the proposed
method. The experiments comprise of two parts: message segmentation evaluation and fuzzing
test. The proposed message segmentation approach is implemented on a system called QCD-PInfer
whose system architecture is shown in Figure 2.

There are totally six typical protocols (HTTP, FTP, SMTP, POP, DNS and QQ) which are widely used
in the application-layer are selected to test the effectiveness and efficiency of message segmentation.
The recall and precision of keyword inference are shown in Tables 1 and 2. Please note that, the ground
truth of keywords are those keywords which are occurred in the test set. Both DNS and QQ are not

Symmetry 2018, 10, 561 9 of 13

taken into account for evaluating the quality of keyword set, since the two are binary protocols and
there is no concept of keyword defined in binary protocol.

Dataset

?
Pre-processing

?

Detecting Multiple Change-Points

Building Suffix Trie

?
Computing Probability Metric

?
Detecting Change-Points

-

?

Segments

6

Inferring Formats

Post-processing

6
Analyzing Semantic information

6
Position-based Test Analysis

6
Occurrence Probability Analysis

Message Formats

6

Keyword Field Set
�

Data Field Set-

Uncertain Field SetR

Figure 2. The system architecture of QCD-PInfer.

By comparison, QCD-PInfer has a higher recall rate than Discoverer and PI. In particular, PI’s
recall rate is much low: the recall rates for HTTP, FTP, SMTP and POP are less than 10%.

Table 1. The recall of keyword inference.

System HTTP FTP SMTP POP SSDP BitTorrent

QCD-PInfer 87.0 92.9 85.7 84.0 74.1 100
Discoverer 78.3 60.7 64.3 40.0 33.3 100

PI 4.4 3.6 7.1 4.0 18.5 50.0

Discoverer is prone to infer too many segments as keywords, so that its precision is much lower
than that of the proposed system. Although PI’s recall rate is very low, its precision for HTTP and FTP
is extremely high. However, PI’s precision for other protocols are still very low. It is worth mentioning
that PI infers too few keywords, always less than 5 for all protocols being considered.

Table 2. The precision of keyword inference.

System HTTP FTP SMTP POP SSDP BitTorrent

QCD-PInfer 66.7 97.0 35.0 95.8 66.0 66.7
Discoverer 7.2 23.3 19.2 22.8 33.9 5.3

PI 100 100 20.0 16.7 35.6 33.3

The F-scores of the experiment results are shown in Figure 3. The proposed system has the highest
F-score for all the six protocols, which means our method performs well in keyword inference.

HTTP FTP SMTP POP SSDP BitTorrent
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
−

sc
or

e

QCD−PInfer
Discoverer
PI

Figure 3. The F-score value of keywords.

Symmetry 2018, 10, 561 10 of 13

In fuzzing test, QCD-PInfer is extended with fuzzing function to implement an automatic
fuzzing tool (APREFuzz). APREFuzz can identify vulnerability in a system being tested which
is designed to introduce information-centric network into IoT devices to enable their caching capability.
The protocol used by target system under testing comprises of 5 type of messages responsible for
sending interesting, distributing data, pushing data, responding with target data and responding with
no answer, respectively.

Firstly, message fields are identified using QCD-PInfer system, and message format are reconstructed.
Secondly, test files are generated by inserting fault data into one field according to the message

format. Please note that, for a real fuzz test, fault data may inserted into more than one field. However,
as a proof-of-concept system, APREFuzz considers the scenarios with only one field being fault-injected
currently. Actually, it is not difficult to extend the system to consider fault-injected in multiple fields.
When inserting the fault data, keyword fields are only replacing with inferred keywords according
to message formats, data fields would be replaced by random data, while uncertain fields would be
replaced with either inferred keywords or random data. In our experiments, the uncertain fields are
treated the same as data fields.

Finally, the target system are treated as a black box and supposed to be unknown to us. APREFuzz
sends test files to target system file-by-file and monitors the reactive of target system via analyzing
the response.

In our experiments, APREFuzz extracted 7 keyword fields and infers 7 data fields in the sample
message. One data field is found that it contains only figures. The amount of inferred keywords
is 12. We take 11 abnormal strings into account for inserting fault data into the data fields except the
one containing only figures. For the special field that containing only figures, 21 boundary figures
are used to be injected. As a result, the amount of fault-injected files generated by APREFuzz is 248
(=(12 + 11)× 7 + 21× 1 + 11× 6). On the other hand, FileFuzz generates 393, 216 (=1.5× 1024× 28)
fault-injected files by replacing each byte with values from 0x00 to 0xFF. When test files are sent to
target system, APREFuzz monitored one exception that the system fails to respond, while FileFuzz
monitor none. The exceptions maybe indicates a vulnerability which would be leveraged to launch a
DoS attack, or some attacks that would ruin the system’s availability. Actually, other tools are needed
to analyze the exception deeply and figure out its type and impact. However, that work has surpassed
the discussion scope concerned in this paper so that it will not be presented here.

6. Conclusions

The proposed method applies protocol reverse engineering approach to improve IoT protocol
fuzzing performance by creating valid and effective test files based on protocol message format and
reducing greatly the size of test files. It considers the statistical attributes of message fields to locate
their boundaries by searching for change-points in the messages and reconstruct the message format.
A CUSUM-LIKE algorithm is presented to address the problem of multi-change-point detection.
Additional procedures including occurrence probability test and position test are further employed to
classify the message segments into keyword fields , data fields and uncertain fields. The results show
that the extracted message formats are useful for generating test files for network protocol fuzzing.

In the future, the proposed APREFuzz with enough improvement based on current version would
be a practical and powerful tool to generate test files automatically for fuzzing test carried on IoT
protocols or devices to reveal their hidden vulnerabilities. It also would contribute to strengthening
the IoT security in effective and efficient way, and even to be a security tool for improving protocol
fuzzing in many other types of network.

Author Contributions: Conceptualization, J.-Z.L. and J.C.; methodology, J.-Z.L.; software, J.-Z.L. and C.S.;
validation, J.-Z.L., J.C., Y.L. and C.S.; formal analysis, C.S.; investigation, C.S.; resources, J.C.; data curation,
Y.L.; writing—original draft preparation, J.-Z.L.; writing—review and editing, J.C. and C.S.; visualization, Y.L.;
supervision, J.C.; project administration, J.C.; funding acquisition, J.C.

Symmetry 2018, 10, 561 11 of 13

Funding: This research was funded by National Natural Science Foundation of China (Grant No.: 61702120,
61571141); Natural Science Foundation of Guangdong Province (Grant No.: 2017A030310591, 2014A030313637,
2015A030313672); Department of Education of Guangdong Province (Grant No.: YQ2015105, 2016GCZX006,
2016KQNCX091); Guangdong Provincial Application-oriented Technical Research and Development Special
fund project (Grant No.: 2015B010131017); Guangdong Science and Technology Department (Grant No.:
2016A010120010, 2014A010103032, 2017A090905023); Science and Technology Program of Guangzhou (Grant No.:
201604016108).

Acknowledgments: The authors would also like to thank the anonymous reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Munea, T.L.; Lim, H.; Shon, T. Network protocol fuzz testing for information systems and applications:
A survey and taxonomy. Multimed. Tools Appl. 2016, 75, 14745–14757. [CrossRef]

2. Kim, H.C.; Choi, Y.H.; Lee, D.H. Efficient file fuzz testing using automated analysis of binary file format.
J. Syst. Archit. 2011, 57, 259–268. [CrossRef]

3. Duchêne, J.; Le Guernic, C.; Alata, E.; Nicomette, V.; Kaâniche, M. State of the art of network protocol reverse
engineering tools. J. Comput. Virol. Hacking Tech. 2018, 14, 53–68. [CrossRef]

4. Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change point detection. Knowl. Inf. Syst.
2017, 51, 339–367. [CrossRef] [PubMed]

5. Yan, H.; Li, X.; Wang, Y.; Jia, C. Centralized Duplicate Removal Video Storage System with Privacy
Preservation in IoT. Sensors 2018, 18, 1814. [CrossRef] [PubMed]

6. Yang, Y.; Zheng, X.; Tang, C. Lightweight distributed secure data management system for health internet of
things. J. Netw. Comput. Appl. 2017, 89, 26–37. [CrossRef]

7. Tan, Q.; Gao, Y.; Shi, J.; Wang, X.; Fang, B.; Tian, Z.H. Towards a Comprehensive Insight into the Eclipse
Attacks of Tor Hidden Services. IEEE Internet Things J. 2018. [CrossRef]

8. Wang, Z. A privacy-preserving and accountable authentication protocol for IoT end-devices with weaker
identity. Future Gener. Comput. Syst. 2018, 82, 342–348. [CrossRef]

9. Luo, E.; Bhuiyan, M.Z.A.; Wang, G.; Rahman, M.A.; Wu, J.; Atiquzzaman, M. PrivacyProtector: Privacy-
Protected Patient Data Collection in IoT-Based Healthcare Systems. IEEE Commun. Mag. 2018, 56, 163–168.
[CrossRef]

10. Mao, Y.; Li, J.; Chen, M.R.; Liu, J.; Xie, C.; Zhan, Y. Fully secure fuzzy identity-based encryption for secure
IoT communications. Comput. Stand. Interfaces 2016, 44, 117–121. [CrossRef]

11. Liu, Q.; Wang, G.; Liu, X.; Peng, T.; Wu, J. Achieving reliable and secure services in cloud computing
environments. Comput. Electr. Eng. 2017, 59, 153–164. [CrossRef]

12. Chen, Z.; Peng, L.; Gao, C.; Yang, B.; Chen, Y.; Li, J. Flexible neural trees based early stage identification for
IP traffic. Soft Comput. 2017, 21, 2035–2046. [CrossRef]

13. Meng, W.; Tischhauser, E.W.; Wang, Q.; Wang, Y.; Han, J. When Intrusion Detection Meets Blockchain
Technology: A Review. IEEE Access 2018, 6, 10179–10188. [CrossRef]

14. Zhou, Z.; Dong, M.; Ota, K.; Wang, G.; Yang, L.T. Energy-Efficient Resource Allocation for D2D
Communications Underlaying Cloud-RAN-Based LTE-A Networks. IEEE Internet Things J. 2016, 3, 428–438.
[CrossRef]

15. Cai, J.; Wang, Y.; Liu, Y.; Luo, J.Z.; Wei, W.; Xu, X. Enhancing network capacity by weakening community
structure in scale-free network. Future Gener. Comput. Syst. 2018, 87, 765–771. [CrossRef]

16. Gorbunov, S.; Rosenbloom, A. AutoFuzz: Automated Network Protocol Fuzzing Framework. Int. J. Comput.
Sci. Netw. Secur. 2010, 10, 239–245.

17. Kitagawa, T.; Hanaoka, M.; Kono, K. AspFuzz: A state-aware protocol fuzzer based on application-layer
protocols. In Proceedings of the IEEE Symposium on Computers and Communications, Riccione, Italy,
22–25 June 2010; pp. 202–208.

18. Tsankov, P.; Dashti, M.T.; Basin, D. SecFuzz: Fuzz-testing security protocols. In Proceedings of the
International Workshop on Automation of Software Test, Zurich, Switzerland, 2–3 June 2012; pp. 1–7.

19. Zhao, J.; Chen, S.; Liang, S.; Cui, B.; Song, X. RFSM-Fuzzing a Smart Fuzzing Algorithm Based on Regression
FSM. In Proceedings of the Eighth International Conference on P2p, Parallel, Grid, Cloud and Internet
Computing, Compiegne, France, 28–30 October 2013; pp. 380–386.

http://dx.doi.org/10.1007/s11042-015-2763-6
http://dx.doi.org/10.1016/j.sysarc.2010.03.002
http://dx.doi.org/10.1007/s11416-016-0289-8
http://dx.doi.org/10.1007/s10115-016-0987-z
http://www.ncbi.nlm.nih.gov/pubmed/28603327
http://dx.doi.org/10.3390/s18061814
http://www.ncbi.nlm.nih.gov/pubmed/29867037
http://dx.doi.org/10.1016/j.jnca.2016.11.017
http://dx.doi.org/10.1109/JIOT.2018.2846624
http://dx.doi.org/10.1016/j.future.2017.09.042
http://dx.doi.org/10.1109/MCOM.2018.1700364
http://dx.doi.org/10.1016/j.csi.2015.06.007
http://dx.doi.org/10.1016/j.compeleceng.2016.10.005
http://dx.doi.org/10.1007/s00500-015-1902-3
http://dx.doi.org/10.1109/ACCESS.2018.2799854
http://dx.doi.org/10.1109/JIOT.2015.2497712
http://dx.doi.org/10.1016/j.future.2017.08.014

Symmetry 2018, 10, 561 12 of 13

20. Narayan, J.; Shukla, S.K.; Clancy, T.C. A survey of automatic protocol reverse engineering tools. ACM Comput.
Surv. (CSUR) 2016, 48, 40. [CrossRef]

21. Beddoe, M.A. Network Protocol Analysis Using Bioinformatics Algorithms. 2004. Available online:
http://www.4tphi.net/~awalters/PI/pi.pdf (accessed on 28 October 2018).

22. Cui, W.; Kannan, J.; Wang, H.J. Discoverer: Automatic protocol reverse engineering from network traces.
In Proceedings of the 16th USENIX Security Symposium on USENIX Security Symposium, Boston, MA,
USA, 6–10 August 2007; USENIX Association: Berkeley, CA, USA, 2007; pp. 1–14.

23. Tao, S.; Yu, H.; Li, Q. Bit-oriented format extraction approach for automatic binary protocol reverse
engineering. IET Commun. 2016, 10, 709–716. [CrossRef]

24. Zhengyang, C.; Bowen, Y.; Yu, Z.; Jianzhong, Z.; Jingdong, X. Automatic Mobile Application Traffic
Identification by Convolutional Neural Networks. In Proceedings of the IEEE Trustcom/BigDataSE/SPA,
Tianjin, China, 23–26 August 2016; pp. 301–307.

25. Xiao, M.M.; Zhang, S.L.; Luo, Y.P. Automatic network protocol message format analysis. J. Intell. Fuzzy Syst.
2016, 31, 2271–2279. [CrossRef]

26. Caballero, J.; Yin, H.; Liang, Z.; Song, D. Polyglot: Automatic extraction of protocol message format using
dynamic binary analysis. In Proceedings of the 14th ACM conference on Computer and Communications
Security, Alexandria, VA, USA, 29 October–2 Novemver 2007; ACM: New York, NY, USA, 2007; pp. 317–329.

27. Cui, W.; Peinado, M.; Chen, K.; Wang, H.J.; Irun-Briz, L. Tupni: Automatic reverse engineering of
input formats. In Proceedings of the 15th ACM Conference on Computer and Communications Security,
Alexandria, VA, USA, 27–31 October 2008; ACM: New York, NY, USA, 2008; pp. 391–402.

28. Lin, Z.; Jiang, X.; Xu, D.; Zhang, X. Automatic Protocol Format Reverse Engineering through Context-Aware
Monitored Execution. NDSS 2008, 8, 1–15.

29. Comparetti, P.; Wondracek, G.; Kruegel, C.; Kirda, E. Prospex: Protocol Specification Extraction.
In Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, Berkeley, CA, USA,
17–30 May 2009; pp. 110–125.

30. Caballero, J.; Poosankam, P.; Kreibich, C.; Song, D. Dispatcher: Enabling active botnet infiltration using
automatic protocol reverse-engineering. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, Chicago, IL, USA, 9–13 November 2009; ACM: New York, NY, USA, 2009;
pp. 621–634.

31. Meng, W.; Wang, Y.; Wong, D.S.; Wen, S.; Xiang, Y. TouchWB: Touch behavioral user authentication based on
web browsing on smartphones. J. Netw. Comput. Appl. 2018, 117, 1–9. [CrossRef]

32. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-an, W.; Ye, H. Significant Permission Identification for Machine Learning
Based Android Malware Detection. IEEE Trans. Ind. Inform. 2018. [CrossRef]

33. Liu, Y.; Ling, J.; Liu, Z.; Shen, J.; Gao, C. Finger Vein Secure Biometric Template Generation Based on Deep
Learning. Soft Comput. 2018, 22, 2257–2265. [CrossRef]

34. Yuan, C.; Li, X.; Wu, Q.; Li, J.; Sun, X. Fingerprint Liveness Detection from Different Fingerprint Materials
Using Convolutional Neural Network and Principal Component Analysis. CMC-Comput. Mater. Contin.
2017, 53, 357–371.

35. Meng, W.; Jiang, L.; Wang, Y.; Li, J.; Zhang, J.; Xiang, Y. JFCGuard: Detecting juice filming charging attack
via processor usage analysis on smartphones. Comput. Secur. 2018, 76, 252–264. [CrossRef]

36. Chen, S.; Wang, G.; Yan, G.; Xie, D. Multi-imensional fuzzy trust evaluation for mobile social networks
based on dynamic community structures. Concurr. Comput. Pract. Exp. 2017, 29, e3901. [CrossRef]

37. Li, P.; Li, J.; Huang, Z.; Gao, C.Z.; Chen, W.B.; Chen, K. Privacy-preserving outsourced classification in cloud
computing. Clust. Comput. 2017. [CrossRef]

38. Li, P.; Li, J.; Huang, Z.; Li, T.; Gao, C.Z.; Yiu, S.M.; Chen, K. Multi-key privacy-preserving deep learning in
cloud computing. Future Gener. Comput. Syst. 2017, 74, 76–85. [CrossRef]

39. Li, J.; Zhang, Y.; Chen, X.; Xiang, Y. Secure attribute-based data sharing for resource-limited users in cloud
computing. Comput. Secur. 2018, 72, 1–12. [CrossRef]

40. Gao, C.Z.; Cheng, Q.; Li, X.; Xia, S.B. Cloud-assisted privacy-preserving profile-matching scheme under
multiple keys in mobile social network. Clust. Comput. 2018. [CrossRef]

41. Luo, E.; Liu, Q.; Abawajy, J.H.; Wang, G. Privacy-preserving multi-hop profile-matching protocol for
proximity mobile social networks. Future Gener. Comput. Syst. 2017, 68, 222–233. [CrossRef]

http://dx.doi.org/10.1145/2840724
http://www.4tphi.net/~awalters/PI/pi.pdf
http://dx.doi.org/10.1049/iet-com.2015.0797
http://dx.doi.org/10.3233/JIFS-169067
http://dx.doi.org/10.1016/j.jnca.2018.05.010
http://dx.doi.org/10.1109/TII.2017.2789219
http://dx.doi.org/10.1007/s00500-017-2487-9
http://dx.doi.org/10.1016/j.cose.2017.11.012
http://dx.doi.org/10.1002/cpe.3901
http://dx.doi.org/10.1007/s10586-017-0849-9
http://dx.doi.org/10.1016/j.future.2017.02.006
http://dx.doi.org/10.1016/j.cose.2017.08.007
http://dx.doi.org/10.1007/s10586-017-1649-y
http://dx.doi.org/10.1016/j.future.2016.09.013

Symmetry 2018, 10, 561 13 of 13

42. Zhi Gao, C.; Cheng, Q.; He, P.; Susilo, W.; Li, J. Privacy-preserving Naive Bayes classifiers secure against the
substitution-then-comparison attack. Inf. Sci. 2018, 444, 72–88.

43. Shiryaev, A. On Optimum Methods in Quickest Detection Problems. Theory Probab. Appl. 1963, 8, 22–46.
[CrossRef]

44. Lorden, G. Procedures for Reacting to a Change in Distribution. Ann. Math. Stat. 1971, 42, 1897–1908.
[CrossRef]

45. Page, E.S. Continuous Inspection Schemes. Biometrika 1954, 41, 100–115. [CrossRef]
46. Rissanen, J. Universal coding, information, prediction, and estimation. IEEE Trans. Inf. Theory 1984,

30, 629–636. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/1108002
http://dx.doi.org/10.1214/aoms/1177693055
http://dx.doi.org/10.1093/biomet/41.1-2.100
http://dx.doi.org/10.1109/TIT.1984.1056936
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Problem Formulation
	Minmax Formulation for Field Detection
	Multi-Change-Point Detection
	Message Segmenting Algorithm

	Inferring Message Fields
	Occurrence Probability Analysis
	Position-Based Statistic Test Analysis

	Evaluation
	Conclusions
	References

