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Abstract: The q-rung orthopair fuzzy sets (q-ROFSs), originated by Yager, are good tools to describe
fuzziness in human cognitive processes. The basic elements of q-ROFSs are q-rung orthopair
fuzzy numbers (q-ROFNs), which are constructed by membership and nonmembership degrees.
As realistic decision-making is very complicated, decision makers (DMs) may be hesitant among
several values when determining membership and nonmembership degrees. By incorporating dual
hesitant fuzzy sets (DHFSs) into q-ROFSs, we propose a new technique to deal with uncertainty,
called q-rung dual hesitant fuzzy sets (q-RDHFSs). Subsequently, we propose a family of q-rung dual
hesitant fuzzy Heronian mean operators for q-RDHFSs. Further, the newly developed aggregation
operators are utilized in multiple attribute group decision-making (MAGDM). We used the proposed
method to solve a most suitable supplier selection problem to demonstrate its effectiveness and
usefulness. The merits and advantages of the proposed method are highlighted via comparison with
existing MAGDM methods. The main contribution of this paper is that a new method for MAGDM
is proposed.

Keywords: q-rung orthopair fuzzy set; q-rung dual hesitant fuzzy; q-rung dual hesitant fuzzy
Heronian mean; multiple attribute group decision-making

1. Introduction

With the rapid economic and technological development, competition among enterprises has
become increasingly fierce. For manufacturing companies, choosing an appropriate supplier is of
high importance. Generally speaking, companies need to collect relevant information for all suppliers
and use some technologies to determine the most suitable one. In essence, supplier selection is a
multiple attribute decision-making problem. Due to the complexity of modern decision-making
problems, it is impossible for a single decision maker (DM) to grasp all the information of all decision
objectives. Thus, many real decision-making problems often require group decision-making, i.e.,
multiple attribute group decision-making (MAGDM). Decision-making problems are constrained by a
variety of internal and external factors. For example, as decision-making problems become increasingly
complex, it is almost impossible to describe attribute values using crisp values. Decision-making
problems often have enormous complexity and uncertainty. So, many scholars focus on how to
deal with and describe uncertain phenomena. In 1986, Atanassov [1] proposed the concept of an
intuitionistic fuzzy set (IFS) for coping with fuzziness and uncertainty. IFS is more powerful and useful
than Zadeh’s fuzzy set (FS) [2], as FS only has a membership degree, which makes it impossible to
comprehensively describe imprecision. Since the appearance of IFS, it has been widely applied to
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medical diagnoses [3,4], pattern recognition [5,6], cluster analysis [7,8], and especially, MAGDM [9–12].
However, there are quite a few circumstances with which IFSs cannot cope. For instance, in some cases,
the sum of the membership and nonmembership degrees provided by DMs is greater than that of
their square sum being less than or equal to one. To effectively address these cases, the concept of the
Pythagorean fuzzy set (PFS) was introduced by Yager [13]. Obviously, the PFS is a generalized form of
an IFS and can describe a wider information range. Owing to the effectiveness and powerfulness of
PFSs, MAGDM with Pythagorean fuzzy information have become a research topic of great interest.
Studies on PFSs can be roughly divided into three categories. The first category includes extensions
of classical decision-making methods to MAGDM with Pythagorean fuzzy information, the most
representative of which are the Pythagorean fuzzy decision-making methods proposed by Zhang
and Xu [14] and Khan et al. [15] based on TOPSIS (Technique for Order Preference by Similarity to
an Ideal Solution), and the one developed by Ren et al. [16] on the basis on TODIM (an acronym in
Portuguese for Interactive Multi-Criteria Decision Making). The second category contains MAGDM
methods with Pythagorean fuzzy information based on aggregation operators. Aggregation operators
play a significantly important role in MAGDM. Solving MAGDM in different scenarios requires
different aggregation operators. For example, to fairly treat membership and nonmembership degrees
of PFSs, Ma et al. [17] raised symmetry operations of PFSs and proposed a battery of Pythagorean
fuzzy symmetric aggregation operators. Xing et al. [18] put forward Pythagorean fuzzy Choquet
integral aggregation operators based on Frank t-norm and t-conorm. To capture the interrelationship
between aggregated Pythagorean fuzzy numbers (PFNs), Wei and Lu [19] put forward Pythagorean
fuzzy Maclaurin symmetric mean operators. To fully absorb the advantages of Bonferroni mean and
generalized Bonferroni mean in capturing the relationship among variables, Liang et al. [20] and
Zhang et al. [21] introduced the Pythagorean fuzzy Bonferroni mean and generalized Pythagorean
fuzzy Bonferroni mean operators, respectively. Due to the complexity of decision-making issues and
the lack of sufficient experience, DMs often make unreasonable assessments. These unreasonable
evaluation values have a serious negative impact on the final decision results. Thus, Li et al. [22]
proposed the Pythagorean fuzzy power Muirhead mean operators to eliminate such bad impacts.
Analogously, to fully utilize the advantages of Pythagorean fuzzy interaction operational rules in
dealing with the interaction between membership and nonmembership degrees, Xu et al. [23] proposed
the Pythagorean fuzzy interaction Muirhead mean operators. The third category is the investigation
of combining PFSs with linguistic term sets. In actual MAGDM problems, the evaluations made by
DMs need to be expressed from both qualitative and quantitative perspectives. Thus, Teng et al. [24],
Du et al. [25], and Xian et al. [26] investigated MAGDM with Pythagorean fuzzy linguistic sets
and interval-valued Pythagorean fuzzy linguistic sets, respectively. Considering uncertain linguistic
terms provides DMs with a more convenient method to express their assessments. Geng et al. [27],
Liu et al. [28], and Liu et al. [29] proposed the concept of Pythagorean fuzzy uncertain linguistic sets
and studied their applications in MAGDM. In addition, some scientists also investigated MAGDM
issues with Pythagorean 2-tuple linguistic information [30–32].

Although in the majority of cases IFSs and PFSs can successfully describe the attribute values in
MAGDM, there are quite a few situations in which IFSs and PFSs are insufficient. According to the
constraints of IFSs and PFSs, when the square sum of membership and nonmembership degrees exceed
one, then the attribute value cannot be represented by both IFSs and PFSs. To deal with such a case,
more recently, Yager [33] introduced the concept of the q-rung orthopair fuzzy set (q-ROFS), which can
be viewed as an extension of IFS and PFS. From the definition of q-ROFSs, it is not difficult to see that
q-ROFSs give DMs great freedom and a wider space within which to evaluate alternatives. Therefore,
the decision-making opinions of DMs are greatly preserved, resulting in less information distortion.
Analogous to PFSs, quite a few aggregation operators for q-ROFSs have been proposed [34–37]. To deal
with both DMs’ quantitative and qualitative evaluations in MAGDM, Li et al. [38] proposed q-rung
orthopair linguistic sets as well as their aggregation operators. Moreover, Li et al. [39] introduced
q-rung picture fuzzy linguistic sets by taking DMs’ neutrality degree into consideration.
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Due to the extreme complexity of realistic decision-making problems, the abovementioned
decision-making methods with q-ROFSs are still insufficient. In reality, it is very common to encounter
the following issues: (1) The complexity of decision-making problems causes DMs to be highly hesitant.
In quite a few real-life decision-making scenarios, DMs may feel hesitant among a group of values
when determining the attribute values in q-ROFSs. By taking such hesitancy into consideration,
Torra [40] originated the concept of the hesitant fuzzy set (HFS), in which the membership degree
is denoted by several discrete values instead of a single value. Afterwards, Zhu et al. [41] pointed
out the drawback of HFS is that it only contains membership degrees. Subsequently, they proposed
the concept of the dual hesitant fuzzy set (DHFS), which has both membership and nonmembership
degrees. Recently, Wei and Lu [42] extended DHFS to PFS and proposed the concept of dual hesitant
Pythagorean fuzzy set (DHPFS) (It is noted that Khan et al. [43] and Liang and Xu [44] also proposed the
so-called hesitant Pythagorean fuzzy set, however, their definitions are the same as Wei and Lu’s [42]
DHPFS). Analogously, DMs may feel that it is difficult to determine membership and nonmembership
degrees by single values, as they prefer to use several values to represent them in q-ROFSs. Therefore,
this paper proposes the concept of the q-rung dual hesitant fuzzy set (q-RDHFS), which is constructed
by a set of q-rung membership degrees and q-rung nonmembership degrees. Compared with DHFS and
DHPFS, the proposed q-RDHFS allows the sum and square sum of membership and nonmembership
degrees to be greater than one, providing decision makers more freedom to express their assessments.
Compared with q-ROFS, the proposed q-RDHFS can effectively deal with DMs’ hesitancy when
determining membership and nonmembership degrees, consequently resulting in less information loss.
Thus, the q-RDHFS exhibits more usefulness, power, and flexibility over DHFS, DHPFS, and q-ROFS.
In Section 2, we introduce the concept of q-RDHFS in detail. (2) In most MAGDM, there is a strong
correlation between attributes. Thus, in the process of information integration, it is not only necessary
to aggregate the attribute values themselves but also to collect the correlation between them. Heronian
mean (HM) [45] is the most common information aggregation method that can reflect the correlation
between variables. Thus, we extended HM to q-RDHFSs to integrate q-rung dual hesitant fuzzy
information. Then, we applied the proposed operators to solve MAGDM problems.

The main significance of this paper is that it expands the theory of q-ROFSs and DHFSs and
proposes a new, powerful tool for describing uncertain phenomena, called q-RDHFSs. Compared
with many existing fuzzy set theories, the newly proposed q-RDHFSs show great flexibility and
effectiveness and can very effectively express the decision-making opinions of DMs in a very hesitant
state. We also investigated their applications in MAGDM. The remainder of the paper is organized as
follows. Section 2 briefly recalls some basic concepts. Section 3 presents some q-rung dual hesitant
fuzzy Heronian mean operators. Section 4 introduces a novel approach to MAGDM. Section 5 provides
a numerical example to demonstrate the validity and superiority of the proposed method. Finally,
Section 6 summarizes the paper.

2. Basic Concepts

2.1. q-Rung Orthopair Fuzzy Set

Definition 1 [33]. Let X be an ordinary fixed set. A q-ROFS A defined on X is given by

A = {〈x, uA(x), vA(x)〉 |x ∈ X } (1)

where uA(x) and vA(x) represent the membership and nonmembership degrees, respectively, satisfying uA(x) ∈
[0, 1], vA(x) ∈ [0, 1] and 0 ≤ uA(x)q + vA(x)q ≤ 1, (q ≥ 1). The indeterminacy degree is defined as
πA(x) =

(
uA(x)q + vA(x)q − uA(x)qvA(x)q)1/q. For convenience, (uA(x), vA(x)) is called a q-rung

orthopair fuzzy number (q-ROFN) by Liu and Wang [34], which can be denoted by A = (uA, vA).
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From Definition 1, it is not difficult to find out that q-ROFS can describe a wider information
range than IFSs and PFSs. To illustrate the difference among intuitionistic fuzzy numbers (IFNs), PFNs,
and q-ROFNs, we present their space of acceptable membership degrees in Figure 1.
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Figure 1 clearly shows that as the index of u and v increases, the range of information that the
fuzzy numbers can describe also grows. Therefore, the q-ROFNs can expand the information that the
attributes can describe and widen the space for experts to evaluate alternatives.

Definition 2 [34]. Let ã1 = (u1, v1), ã2 = (u2, v2) be two q-ROFNs and λ be a positive real number. Then,

1. ã1 ⊕ ã2 =

((
uq

1 + uq
2 − uq

1uq
2

)1/q
, v1v2

)
.

2. ã1 ⊗ ã2 =

(
u1u2,

(
vq

1 + vq
2 − vq

1vq
2

)1/q
)

.

3. λã1 =

((
1−

(
1− uq

1

)λ
)1/q

, vλ
1

)
.

4. ãλ
1 =

(
uλ

1 ,
(

1−
(

1− vq
1

)λ
)1/q

)
.

Definition 3 [34]. Let ã = (ua, va) be a q-ROFN. Then, the score of ã is defined as S(ã) = uq
a − vq

a and the
accuracy of ã is defined as H(ã) = uq

a + vq
a. For any two q-ROFNs, ã1 = (u1, v1) and ã2 = (u2, v2). Then,

1. If S(ã1) > S(ã2), then ã1 > ã2;
2. If S(ã1) = S(ã2), then

if H(ã1) > H(ã2), then ã1 > ã2;
if H(ã1) = H(ã2), then ã1 = ã2.

2.2. q-Rung Dual Hesitant Fuzzy Set

In this subsection, we introduce q-RDHFS, which is a new extension of q-ROFS and DHFS.
Clearly, the proposed q-RDHFS is constructed of a set of membership degrees and several
nonmembership degrees.

Definition 4. Let X be an ordinary fixed set. A q-RDHFS A defined on X is given by

A = {〈x, hA(x), gA(x)〉|x ∈ X}, (2)
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in which hA(x) and gA(x) are two sets of values in [0, 1] denoting the possible membership and nonmembership
degrees of the element x ∈ X to the set A, respectively, with the conditions

γq + ηq ≤ 1 (q ≥ 1),

where γ ∈ hA(x), η ∈ gA(x) for all x ∈ X. For convenience, the pair d(x) = (hA(x), gA(x)) is called a
q-RDHFE denoted by d = (h, g) with the conditions γ ∈ h, η ∈ g, 0 ≤ γ, η ≤ 1, 0 ≤ γq + ηq ≤ 1. Evidently,
when q = 2, then q-RDHFS is reduced to Wei and Lu’s [42] DHPFS, and when q = 1, then q-RDHFS is reduced
to Zhu et al.’s [41] DHFS.

To compare any two q-RDHFEs, in the following, we propose a comparison law for q-RDHFEs.

Definition 5. Let d = (h, g) be a q-RDHFE, S(d) =

(
1

#h ∑
γ∈h

γ

)q

−
(

1
#g ∑

η∈g
η

)q

be the score function of d,

and H(d) =

(
1

#h ∑
γ∈h

γ

)q

+

(
1

#g ∑
η∈g

ηq

)q

the accuracy function of d, where #h and #g are the numbers of the

elements in h and g, respectively. Then, let di = (hi, gi)(i = 1, 2) be any two q-RDHFEs. Thus, we have the
following comparison laws:

1. If S(d1) > S(d2), then d1 is superior to d2, denoted by d1 > d2;
2. If S(d1) > S(d2), then

if H(d1) = H(d2), then d1 is equivalent to d2, denoted by d1 = d2;
if H(d1) > H(d2), then d1 is superior to d2, denoted by d1 > d2.
In the following, we define some operations of the q-RDHFEs.

Definition 6. Let d = (h, g), d1 = (h1, g1), and d2 = (h2, g2) be any three of q-RDHFEs and λ be a positive
real number. Then,

1. d1 ⊕ d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{{(
γ

q
1 + γ

q
2 − γ

q
1γ

q
2

) 1
q
}

, {η1η2}
}

;

2. d1 ⊗ d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{
{γ1γ2},

{(
η

q
1 + η

q
2 − η

q
1η

q
2

) 1
q
}}

;

3. λd = ∪γ∈h,η∈g

{{(
1− (1− γq)λ

) 1
q
}

,
{

ηλ
}}

, λ > 0;

4. dλ = ∪γ∈h,η∈g

{{
γλ
}

,
{(

1− (1− ηq)λ
) 1

q
}}

, λ > 0.

2.3. Heronian Mean

The HM was first proposed by Sykora [45] for crisp numbers. It can process the interrelationship
between arguments.

Definition 7 [45]. Let xi(i = 1, 2, ..., n) be a group of real numbers, and s, t > 0. Then, the HM is defined as

HMs,t(x1, x2, ..., xn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

xs
i xt

j

) 1
s+t

. (3)

Recently, Yu [46] introduced the concept of geometric Heronian mean (GHM).

Definition 8 [46]. Let xi(i = 1, 2, ..., n) be a group of numbers, and s, t > 0. Then, the GHM is defined as

GHMp,q(x1, x2, ..., xn) =
1

p + q

(
n

∏
i=1

n

∏
j=i

(
pxi + qxj

) 2
n(n+1)

)
. (4)
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3. The q-Rung Dual Hesitant Fuzzy Heronian Mean Operators

In this subsection, we extend the HM and GHM to q-RDHFSs and propose some new q-rung dual
hesitant fuzzy Heronian mean aggregation operators.

3.1. The q-Rung Dual Hesitant Fuzzy Heronian Mean Operator

Definition 9. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a q-RDHFE. If

q− RDHFHMs,t(d1, d2, ..., dn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

ds
i dt

j

) 1
s+t

, (5)

then q− RDHFHMs,t is called the q-rung dual hesitant fuzzy Heronian mean (q-RDHFHM) operator.
Based on the operational laws of the q-RDHFEs shown in Definition 6, we can get Theorem 1.

Theorem 1. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a q-RDHFE. Then, the aggregated value by the

q-RDHFHM is also a q-RDHFE, and

q− RDHFHMs,t(d1, d2, ..., dn) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
γs

i γt
j

)q) 2
n(n+1)

) 1
q(s+t)

,
1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− η

q
i

)s(
1− η

q
j

)t
) 2

n(n+1)
) 1

s+t


1
q



(6)

Proof. From Definition 6, we have

ds
i = ∪γi∈hi ,ηi∈gi

{
{γs

i },
{(

1−
(

1− η
q
i

)s) 1
q

}}
, dt

j = ∪γj∈hj ,ηj∈gj

{{
γt

j

}
,

{(
1−

(
1− η

q
j

)t
) 1

q
}}

.

Therefore,

ds
i dt

j = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

{{
γs

i γt
j

}
,

{(
1−

(
1− η

q
i

)s(
1− η

q
j

)t
) 1

q
}}

,

n
∑
j=i

ds
i dt

j = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



(

1−
n
∏
j=i

(
1−

(
γs

i γt
j

)q)) 1
q
,

{
n
∏
j=i

(
1−

(
1− η

q
i

)s(
1− η

q
j

)t
) 1

q
},

and

n
∑

i=1

n
∑
j=i

ds
i dt

j = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
γs

i γt
j

)q)) 1
q
,

{
n
∏
i=1

n
∏
j=i

(
1−

(
1− η

q
i

)s(
1− η

q
j

)t
) 1

q
},

2
n(n + 1)

n

∑
i=1

n

∑
j=i

ds
i dt

j = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



1−

n

∏
i=1

n

∏
j=i

(
1−

(
γs

i γt
j

)q) 2
n(n+1)

 1
q
,

{
n

∏
i=1

n

∏
j=i

(
1−

(
1− η

q
i

)s(
1− η

q
j

)t
) 2

qn(n+1)
}}

.
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Thus,

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

ds
i dt

j

) 1
s+t

= ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
γs

i γt
j

)q) 2
n(n+1)

) 1
q(s+t)

,


1−

(
1−

n

∏
i=1

n

∏
j=i

(
1−

(
1− η

q
i

)s(
1− η

q
j

)t
) 2

n(n+1)
) 1

s+t


1
q

.

The q-RDHFHM operator has the following properties. �

Theorem 2. (Monotonicity) Let dj and d′ j be two collections of q-RDHFEs. If dj ≥ d′ j for all j = 1, 2, . . . , n,
then

q− RDHFHMs,t(d1, d2, ..., dn) ≥ q− RDHFHMs,t(d′1, d′2, ..., d′n
)

(7)

Proof. Since di ≥ d′ i and dj ≥ d′ j for i = 1, 2, ..., n and j = i, i + 1, ..., n, we have

ds
i dt

j ≥ d′si d′tj.

Then,
n

∑
i=1

n

∑
j=i

ds
i dt

j ≥
n

∑
i=1

n

∑
j=i

d′si d′tj,

and
2

n(n + 1)

n

∑
i=1

n

∑
j=i

ds
i dt

j ≥
2

n(n + 1)

n

∑
i=1

n

∑
j=i

d′si d′tj.

So, (
2

n(n + 1)

n

∑
i=1

n

∑
j=i

ds
i dt

j

) 1
s+t

≥
(

2
n(n + 1)

n

∑
i=1

n

∑
j=i

d′si d′tj

) 1
s+t

.

i.e.,
q− RDHFHMs,t(d1, d2, ..., dn) ≥ q− RDHFHMs,t(d′1, d′2, ..., d′n

)
.

�

Theorem 3. (Idempotency) Let dj =
(
hj, gj

)
, j = 1, 2, ..., n be a collection of q-RDHFEs. If all the q-RDHFEs

are equal, i.e., dj = d = (h, g), then

q− RDHFHMs,t(d1, d2, ..., dn) = d. (8)

Proof. Since dj = d for all i, we have

q− RDHFHMs,t(d1, d2, ..., dn) =

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

ds
i dt

j

) 1
s+t

=

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

ds+t

) 1
s+t

=
(
ds+t) 1

s+t = d.

�

Theorem 4. (Boundedness) Let dj =
(
hj, gj

)
, j = 1, 2, . . . , n be a collection of q-RDHFEs. If d+ = max

j
dj

and d− = min
j

dj, then

d+ ≥ q− RDHFHMs,t(d1, d2, ..., dn) ≥ d−. (9)
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Proof. According to the Theorems 2 and 3, we can get

q− RDHFHMs,t(d1, d2, ..., dn) ≤ q− RDHFHMs,t(d+, d+, ..., d+
)
,

and
q− RDHFHMs,t(d1, d2, ..., dn) ≥ q− RDHFHMs,t(d+, d+, ..., d+

)
.

Thus, we can get
d+ ≥ q− RDHFHMs,t(d1, d2, ..., dn) ≥ d−.

The advantages of q-RDHFHM are that it not only reflects the hesitation of DMs in the
decision-making process and captures the correlation between attribute values, but it also shows
great generality and flexibility. In the following, we can discuss some special cases of the q-RDHFHM
operator. �

1. If t→ 0 , then the q-RDHFHM reduces to a q-rung dual hesitant fuzzy generalized linear
descending weighted mean operator, and we can obtain

q− RDHFHMs,0(d1, d2, ..., dn) = lim
t→0

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
γs

i γt
j

)q) 2
n(n+1)

) 1
q(s+t)

,
1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− η

q
i

)s(
1− η

q
j

)t
) 2

n(n+1)
) 1

s+t


1
q



= ∪γi∈hi ,ηi∈gi



(

1−
(

n
∏
i=1

(
1−

(
γs

i
)q
)n+1−i

) 2
n(n+1)

) 1
qs

,


1−

(
1−

(
n
∏
i=1

(
1−

(
1− η

q
i

)s)n+1−i
) 2

n(n+1)
) 1

s


1
q



(10)

Evidently, it is equivalent to weight the information (d1, d2, ..., dn) with the weight values
(n, n− 1, ..., 1).

2. If s→ 0 , then the q-RDHFHM reduces to a q-rung dual hesitant fuzzy generalized liner ascending
weighted mean operator, and we can obtain

q− RDHFHM0,t(d1, d2, ..., dn) = lim
s→0

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
γs

i γt
j

)q) 2
n(n+1)

) 1
q(s+t)

,
1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− η

q
i

)s(
1− η

q
j

)t
) 2

n(n+1)
) 1

s+t


1
q



= ∪γj∈hj ,ηj∈gj



(

1−
(

n
∏
i=1

(
1−

(
γt

j

)q)i
) 2

n(n+1)
) 1

qt

,


1−

1−
(

n
∏
i=1

(
1−

(
1− η

q
j

)t
)i
) 2

n(n+1)


1
t


1
q



(11)

Obviously, it is equivalent to weight the information (d1, d2, ..., dn) with weight values
(1, 2, . . . , n).

3. If s = t = 1
2 , then the q-RDHFHM reduces to a q-rung dual hesitant fuzzy basic Heronian mean

operator, and we can obtain

q− RDHFHM
1
2 , 1

2 (d1, d2, ..., dn) =

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



(

1−
n
∏
i=1

n
∏
j=i

(
1−

(√
γiγj

)q) 2
n(n+1)

) 1
q
,

 n
∏
i=1

n
∏
j=i

(
1−

√(
1− η

q
i

)(
1− η

q
j

)) 2
nq(n+1)


 (12)
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4. If s = t = 1, then the q-RDHFHM reduces to a q-rung dual hesitant fuzzy line Heronian mean
operator. It follows that

q− RDHFHM1,1(d1, d2, ..., dn) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
γiγj

)q
) 2

n(n+1)

) 1
2q
,

1−
(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
1− η

q
i

)(
1− η

q
j

)) 2
n(n+1)

) 1
2


1
q




(13)

5. If q = 2, then the q-RDHFHM reduces to a dual hesitant Pythagorean fuzzy Heronian mean
operator. So, we can obtain

q− RDHFHMs,t(d1, d2, ..., dn) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
γs

i γt
j

)2
) 2

n(n+1)
) 1

2(s+t)

,


1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− η2

i
)s
(

1− η2
j

)t
) 2

n(n+1)
) 1

s+t


1
2



(14)

6. If q = 1, then the q-RDHFHM reduces to the dual hesitant fuzzy Heronian mean operator
proposed by Yu et al. [47]. It follows that

q− RDHFHMs,t(d1, d2, ..., dn) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
γs

i γt
j

)) 2
n(n+1)

) 1
s+t
,

1−
(

1−
n
∏
i=1

n
∏
j=i

(
1− (1− ηi)

s(1− ηj
)t
) 2

n(n+1)

) 1
s+t



(15)

3.2. The q-Rung Dual Hesitant Fuzzy Weighted Heronian Mean (q-RDHFWHM) Operator

Definition 10. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a collection q-RDHFEs. The q-RDHFWHM

operator is defined as

q− RDHFWHMs,t(d1, d2, ..., dn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

(nwidi)
s(nwjdj

)t
) 1

s+t

, (16)

where w = (w1, w2, ..., wn)
T is the weight vector of (d1, d2, ..., dn), satisfying wj ∈ [0, 1],

n
∑

j=1
wj = 1.

According to the operations for q-RDHFEs, the following theorem can be obtained.

Theorem 5. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a collection q-RDHFEs. The aggregated value

by the q-RDHFWHM is also a q-RDHFE and

q− RDHFWHMs,t(d1, d2, ..., dn) =

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



1−

n
∏
i=1

n
∏
j=i

(
1−

((
1−

(
1− γ

q
i

)nwi
) 1

s

)((
1−

(
1− γ

q
j

)nwj
) 1

t

)) 2
n(n+1)


1

q(s+t)

,


1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− η

qnwi
i

)s(
1− η

qnwj
j

)t
) 2

n(n+1)
) 1

s+t


1
q



(17)

The proof of Theorem 5 is similar to that of Theorem 1.
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Theorem 6. Suppose w = (1/n, 1/n, ..., 1/n)T . Then,

q− RDHFWHMs,t(d1, d2, ..., dn) = q− RDHFHMs,t(d1, d2, ..., dn). (18)

Proof. Since w = (1/n, 1/n, ..., 1/n)T , then according to Equation (20),

q− RDHFWHMs,t(d1, d2, ..., dn) =

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

(nwidi)
s(nwjdj

)t
) 1

s+t

=

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

(
n 1

n di

)s(
n 1

n dj

)t
) 1

s+t

=

(
2

n(n+2)

n
∑

i=1

n
∑
j=i

ds
i dt

j

) 1
s+t

= q− RDHFWHMs,t(d1, d2, ..., dn)

Moreover, it is easy to prove that the q-RDHFWHM operator has the properties of monotonicity
and boundedness. �

3.3. The q-Rung Dual Hesitant Fuzzy Geometric Heronian Mean Operator

In this subsection, we shall extend the GHM to aggregate q-rung dual hesitant fuzzy information.

Definition 11. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a q-RDHFE. Then, the q-RDHFGHM

operator is defined as

q− RDHFGHMs,t(d1, d2, ..., dn) =
1

s + t

(
n

∏
i=1

n

∏
j=i

(
sdi + tdj

) 2
n(n+1)

)
. (19)

Based on the operational laws of q-RDHFEs, the following theorem can be obtained.

Theorem 7. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a q-RDHFE. The aggregated value by the

q-RDHFGHM is also q-RDHFE and

q− RDHFGHMs,t(d1, d2, ..., dn) =

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− γ

q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
) 1

s+t


1
q
,


(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
ηs

i ηt
j

)q) 2
n(n+1)

) 1
q(s+t)




(20)

Proof. According to Definition 6, we can get

sdi = ∪γi∈hi ,ηi∈gi

{{(
1−

(
1− γ

q
i

)s) 1
q

}
,
{

ηs
i
}}

and

tdj = ∪γj∈hj ,ηj∈gj

{{(
1−

(
1− γ

q
j

)t
) 1

q
}

,
{

ηt
j

}}
.
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Then,

sdi + tdj = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

{{(
1−

(
1− γ

q
i

)s(
1− γ

q
j

)t
) 1

q
}

,
{

ηs
i ηt

j

}}
,

and

(
sdi + tdj

) 2
n(n+1) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj


{(

1−
(

1− γ
q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
}

,


(

1−
(

1−
(

ηs
i ηt

j

)q) 2
n(n+1)

) 1
q

.

Thus,

n
∏
j=i

(
sdi + tdj

) 2
n(n+1) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj


{

n
∏
j=i

(
1−

(
1− γ

q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
}

,


(

1−
n
∏
j=i

(
1−

(
ηs

i ηt
j

)q) 2
n(n+1)

) 1
q

,

and

n
∏
i=1

n
∏
j=i

(
sdi + tdj

) 2
n(n+1) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

{{
n
∏
i=1

n
∏
j=i

(
1−

(
1− γ

q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
}

,
(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
ηs

i ηt
j

)q) 2
n(n+1)

) 1
q



Therefore,

1
s+t

(
n
∏
i=1

n
∏
j=i

(
sdi + tdj

) 2
n(n+1)

)
= ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− γ

q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
) 1

s+t


1
q
,


(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
ηs

i ηt
j

)q) 2
n(n+1)

) 1
q(s+t)


.

In the following, we present some desirable properties of the q-RDHFGHM operator. �

Theorem 8. (Monotonicity) Let dj = (d1, d2, ..., dn) and d′ j = (d′1, d′2, ..., d′n) be two collections of
q-RDHFEs. If dj ≥ d′ j for all j = 1, 2, ..., n, then

q− RDHFGHMs,t(d1, d2, ..., dn) ≥ q− RDHFGHMs,t(d′1, d′2, ..., d′n
)
. (21)

The proof of the Theorem 8 is similar to that of Theorem 2, which is omitted here.

Theorem 9. (Idempotency) Let dj =
(
hj, gj

)
, j = 1, 2, ..., n be a collection of q-RDHFEs. If all the q-RDHFEs

are equal, i.e., dj = d = (h, g), then

q− RDHFGHMs,t(d1, d2, ..., dn) = d. (22)

Proof. Since dj = d for all i, we have

q− RDHFGHMs,t(d1, d2, ..., dn) = 1
s+t

(
n
∏
i=1

n
∏
j=i

(
sdi + tdj

) 2
n(n+1)

)
= 1

s+t

(
n
∏
i=1

n
∏
j=i

(sd + td)
2

n(n+1)

)

= 1
s+t

(
n
∏
i=1

n
∏
j=i

((s + t)d)
2

n(n+1)

)
= 1

s+t ((s + t)d) = d

�
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Theorem 10. (Boundedness) Let dj =
(
hj, gj

)
, j = 1, 2, ..., n be a collection of q-RDHFEs. If d+ = max

j
dj and

d− = min
j

dj, then

d+ ≥ q− RDHFGHMs,t(d1, d2, ..., dn) ≥ d−. (23)

Analogous to the q-RDHFHM operator, the proposed q-RDHFGHM operator also exhibits high generality
and flexibility. In the following, we shall discuss some special cases of the q-RDHFGHM operator.

1. If t→ 0 , then the q-RDHFGHM reduces to a q-rung dual hesitant fuzzy generalized geometric
linear descending weighted mean operator, and we can obtain

q− RDHFGHMs,0(d1, d2, ..., dn)

= lim
t→0

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− γ

q
i

)s(
1− rq

j

)t
) 2

n(n+1)
) 1

s+t


1
q
,


(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
µs

i ηt
j

)q) 2
n(n+1)

) 1
q(s+t)




= ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



1−

(
1−

(
n
∏
i=1

(
1−

(
1− γ

q
i

)s)n+1−i
) 2

n(n+1)
) 1

s


1
q
,


(

1−
(

n
∏
i=1

(
1−

(
ηs

i
)q
)n+1−i

) 2
n(n+1)

) 1
qs




(24)

2. If s→ 0 , the q-RDHFGHM reduces to a q-rung dual hesitant fuzzy generalized geometric liner
ascending weighted mean operator, and we can obtain

q− RDHFGHM0,t(d1, d2, ..., dn)

= lim
s→0

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− γ

q
i

)s(
1− γ

q
j

)t
) 2

n(n+1)
) 1

s+t


1
q
,


(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
ηs

i ηt
j

)q) 2
n(n+1)

) 1
q(s+t)




= ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



1−

1−
(

n
∏
i=1

(
1−

(
1− γ

q
j

)t
)i
) 2

n(n+1)


1
t


1
q
,


(

1−
(

n
∏
i=1

(
1−

(
ηt

j

)q)i
) 2

n(n+1)
) 1

qt




(25)

3. If s = t = 1
2 , the q-RDHFGHM reduces to a q-rung dual hesitant fuzzy basic geometric Heronian

mean operator, and we can obtain

q− RDHFGHM
1
2 , 1

2 (d1, d2, ..., dn)

= ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj


 n

∏
i=1

n
∏
j=i

(
1−

√(
1− γ

q
i

)(
1− γ

q
j

)) 2
nq(n+1)

,


(

1−
n
∏
i=1

n
∏
j=i

(
1−

(√
ηiηj

)q) 2
n(n+1)

) 1
q

 (26)
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4. If s = t = 1, the q-RDHFGHM reduces to a q-rung dual hesitant fuzzy line Heronian mean
operator, and it follows that

q− RDHFGHM1,1(d1, d2, ..., dn) = ∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj

1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− γ

q
i

)(
1− γ

q
j

)) 2
n(n+1)

) 1
2


1
q

,


(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
ηiηj

)q
) 2

n(n+1)

) 1
2q



(27)

5. If q = 2, then the q-RDHFGHM reduces to the dual hesitant Pythagorean fuzzy Heronian mean
operator, and can we can obtain

q− RDHFGHMs,t(d1, d2, ..., dn) =

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− γ2

i
)s
(

1− γ2
j

)t
) 2

n(n+1)
) 1

s+t


1
2
,


(

1−
n
∏
i=1

n
∏
j=i

(
1−

(
ηs

i ηt
j

)2
) 2

n(n+1)
) 1

2(s+t)




(28)

6. If q = 1, then the q-RDHFGHM reduces to the dual hesitant fuzzy Heronian mean operator
proposed by Yu et al. [47], and it follows that

q− RDHFHMs,t(d1, d2, ..., dn) =

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



1−

(
1−

n
∏
i=1

n
∏
j=i

(
1− (1− γi)

s(1− γj
)t
) 2

n(n+1)

) 1
s+t
,

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
ηs

i ηt
j

)) 2
n(n+1)

) 1
s+t



(29)

Similarly, the q-RDHFGHM does not consider the importance of the input arguments,
which means the weights of the aggregated q-RDHFGHM are not taken into consideration. However,
in real decision-making problems, the weight vector of the aggregated values plays an important role
in the final ranking orders. Therefore, we propose the q-rung dual hesitant fuzzy weighted geometric
Heronian mean (q-RDHFWGHM) operator, which can take the weights of the aggregated q-RDHFEs
into account.

3.4. The q-Rung Dual Hesitant Fuzzy Weighted Geometric Heronian Mean Operator

Definition 12. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a collection of q-RDHFEs:

q− RDHFWGHMs,t(d1, d2, ..., dn) =
1

s + t

(
n

∏
i=1

n

∏
j=i

(
s(di)

nwi + t
(
dj
)nwj

) 2
n(n+1)

)
, (30)

where w = (w1, w2, ..., wn)
T is the weight vector of (d1, d2, ..., dn), satisfying wj ∈ [0, 1],

n
∑

j=1
wj = 1.

Based on the operational laws of q-RDHFEs, the following theorem can be obtained.
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Theorem 11. Let s, t ≥ 0 and dj =
(
hj, gj

)
(j = 1, 2, ..., n) be a collection of q-RDHFEs. The aggregated

value by the q-RDHFWGHM is also a q-RDHFE and

q− RDHFWGHMs,t(d1, d2, ..., dn) =

∪γi∈hi ,γj∈hj ,ηi∈gi ,ηj∈gj



1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− γ

qnwi
i

)s(
1− γ

qnwj
j

)t
) 2

n(n+1)
) 1

s+t


1
q
,


1−

(
1−

n
∏
i=1

n
∏
j=i

(
1−

(
1− γ

qnwi
i

)s(
1− γ

qnwj
j

)t
) 2

n(n+1)
) 1

s+t


1
q



(31)

The proof of Theorem 11 is similar to Theorem 5, which is omitted here.

Theorem 12. Suppose w = (1/n, 1/n, ..., 1/n)T . Then,

q− RDHFWGHMs,t(d1, d2, ..., dn) = q− RDHFGHMs,t(d1, d2, ..., dn). (32)

The proof of Theorem 12 is similar to Theorem 6, which is omitted here.

Similarly, it is easy to prove that the q-RDHFWGHM has the properties of monotonicity
and boundedness.

4. A Novel Approach to MAGDM with q-Rung Dual Hesitant Fuzzy Information

4.1. Description of a Typical MAGDM Problem with q-Rung Dual Hesitant Fuzzy Information

A typical MAGDM problem with q-rung dual hesitant fuzzy information can be described as
follows: Let A = {A1, A2, ..., Am} and the set of attributes and G = {G1, G2, ..., Gn} be a set of attributes.

Let w = (w1, w2, ..., wn)
T be the weight vector of attributes, where wj ≥ 0, j = 1, 2, ..., n and

n
∑

j=1
wj = 1.

Suppose that D =
(
dij
)

m×n =
(
hij, gij

)
m×n is the q-rung dual hesitant fuzzy decision matrix, where hij

and gij indicate, respectively, the positive and negative degrees assessed by the decision maker that
the alternative Ai satisfies the attribute Gj.

4.2. An Algorithm for q-Rung Dual Hesitant Fuzzy MAGDM Problems

In the following subsection, we present a novel algorithm for MAGDM based on the
proposed operators.

Step 1. Standardize the original decision matrix according the following equation:

dij =

{ (
hij, gij

)(
gij, hij

) Gj ∈ I1

Gj ∈ I2
, (33)

where I1 represents benefit attributes and I2 represents cost attributes.
Step 2. For alternative Ai(i = 1, 2, ..., m), utilize the q-RDHFWHM operator

di = q− RDHFWHMs,t(di1, di2, · · · , din), (34)

or the q-RDHFWGHM operator

di = q− RDHFWGHMs,t(di1, di2, · · · , din), (35)

to aggregate all the attributes values.
Step 3. Compute the score functions of all the alternatives and rank them.
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Step 4. Rank the corresponding alternatives according to the rank of overall values and select the
best alternative.

5. Numerical Example

In this section, to demonstrate the validity of the proposed method, we provide a numerical
example adopted from [48]. A company wants to select a supplier, and after primary evaluation,
four possible suppliers (A1, A2, A3, and A4) remain on the candidates list. To select the best supplier,
a set of experts are invited to assess the four suppliers regarding four attributes: (1) relationship
closeness (G1); (2) product quality (G2); (3) price competitiveness (G3); and (4) delivery performance
(G4). The weight vector of the attributes is w = (0.17, 0.32, 0.38, 0.13)T . The DMs are required to utilize
DHFEs to express their preference information. The dual hesitant fuzzy decision matrix is shown
in Table 1.

Table 1. The dual hesitant fuzzy decision matrix.

G1 G2 G3 G4

A1 {{0.3, 0.4}, {0.6}} {{0.7, 0.9}, {0.1}} {{0.4}, {0.2,0.3}} {{0.5, 0.6}, {0.2}}
A2 {{0.2, 0.3}, {0.5}} {{0.6, 0.7}, {0.2}} {{0.7, 0.8}, {0.2}} {{0.6}, {0.1, 0.2, 0.3}}
A3 {{0.4}, {0.2,0.3}} {{0.2,0.3,0.4}, {0.6}} {{0.7,0.8}, {0.1}} {{0.7}, {0.2,0.3}}
A4 {{0.6,0.7}, {0.3}} {{0.5}, {0.4}} {{0.3,0.4}, {0.5}} {{0.4, 0.6}, {0.1,0.2}}

5.1. The Decision-Making Process

Step 1. As all the attributes are of the benefit type, the original decision matrix does not need to
be normalized.

Step 2. Utilize the q-RDHFWHM operator to aggregate attributes values, so that the overall
assessments are obtained (assume s = t = 1 and q = 3). Due to the relatively large numbers, the overall
assessments are omitted.

Step 3. Calculate the scores of the overall assessments of alternatives to obtain s(d1) = 0.2235,
s(d2) = 0.2631, s(d3) = 0.2097, and s(d4) = 0.0780.

Step 4. Rank the overall assessments so that we can obtain A2 � A1 � A3 � A4. Therefore,
the best alternative is A2.

In Step 2, if we utilize the q-RDHFWGHM operator to aggregate decision makers’ assessments,
we can obtain s(d1) = 0.1187, s(d2) = 0.1819, s(d3) = 0.0862, and s(d4) = 0.0566. Therefore,
the ranking order is A2 � A1 � A3 � A4 and the best alternative is also A2.

5.2. The Influence of the Parameters on the Results

Evidently, it is noted that the parameters s, t, and q play very important roles in the results. In the
following subsection, we investigate the effect of parameters on the score functions and ranking results.
To better illustrate the effect of the parameters s and t on the ranking results, we investigate the effects
from the following three aspects: (1) We assign several fixed values to s and t and calculate the scores
of the overall assessments. Further, we derive the ranking results of the alternatives. (2) Let s ∈ (0, 10]
and t ∈ (0, 10], we investigate the influence of s and t on the ranking results. (3) Let s or t be a fixed
value and investigate the influence of another parameter on the ranking results. Details can be found
in Tables 1 and 2 and Figures 2–13.
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Table 2. Scores and ranking results by using the q-rung dual hesitant fuzzy weighted Heronian mean
(q-RDHFWHM) operator (q = 3).

Parameters Score Function s(di)(i = 1, 2, 3, 4) Ranking Results

s = t = 1/2 s(d1) = 0.1617 s(d2) = 0.2086 s(d3) = 0.1532 s(d4) = 0.0685 A2 � A1 � A3 � A4
s = t = 1 s(d1) = 0.2235 s(d2) = 0.2631 s(d3) = 0.2093 s(d4) = 0.0780 A2 � A1 � A3 � A4
s = t = 2 s(d1) = 0.3235 s(d2) = 0.3375 s(d3) = 0.2989 s(d4) = 0.0942 A2 � A1 � A3 � A4
s = t = 5 s(d1) = 0.4494 s(d2) = 0.4363 s(d3) = 0.4174 s(d4) = 0.1198 A1 � A2 � A3 � A4

s = 1, t = 2 s(d1) = 0.2769 s(d2) = 0.3124 s(d3) = 0.2626 s(d4) = 0.0836 A2 � A1 � A3 � A4
s = 2, t = 1 s(d1) = 0.3001 s(d2) = 0.3079 s(d3) = 0.2677 s(d4) = 0.0930 A2 � A1 � A3 � A4
s = 1, t = 5 s(d1) = 0.4024 s(d2) = 0.4118 s(d3) = 0.3719 s(d4) = 0.1042 A2 � A1 � A3 � A4
s = 5, t = 1 s(d1) = 0.4463 s(d2) = 0.3952 s(d3) = 0.3825 s(d4) = 0.1214 A1 � A2 � A3 � A4
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From Table 2 and Figures 2–5, we can know that the scores and ranking results may be different
for the different parameters s and t based on the q-RDHFWHM operator. However, the best alternative
is A2 or A1. In addition, from Figures 6 and 7, we find that if we let t or s be a fixed value, then when s
or t increases, the scores based on the q-RDHFWHM operator become greater and greater. Similarly,
from Table 3 and Figures 8–11, we can obtain different scores and ranking results when s and t
represent different values based on the q-RDHFWGHM operator. No matter what the values of
s and t are, the best alternative is always A2. However, what is opposite to the q-RDHFWHM
operator is that if we let s or t be a fixed value, then when s or t increases, the scores based on the
q-RDHFWGHM operator become smaller and smaller. The results shown in Tables 2 and 3 and
Figures 2–13 demonstrate the flexibility of the aggregation processes by utilizing the q-RDHFWHM
and q-RDHFWGHM operators. In real decision-making problems, DMs should choose the appropriate
s and t according to their preference.

Table 3. Scores and ranking results by using the q-RDHFWGHM operator (q = 3).

Parameters Score Function s(di)(i = 1, 2, 3, 4) Ranking Results

s = t = 1/2 s(d1) = 0.1516 s(d2) = 0.1972 s(d3) = 0.1387 s(d4) = 0.0861 A2 � A1 � A3 � A4
s = t = 1 s(d1) = 0.1187 s(d2) = 0.1819 s(d3) = 0.0851 s(d4) = 0.0566 A2 � A1 � A3 � A4
s = t = 2 s(d1) = 0.0683 s(d2) = 0.1544 s(d3) = 0.0055 s(d4) = 0.0132 A2 � A1 � A4 � A3
s = t = 5 s(d1) = −0.0029 s(d2) = 0.1054 s(d3) = −0.0949 s(d4) = −0.0521 A2 � A1 � A4 � A3

s = 1, t = 2 s(d1) = 0.0884 s(d2) = 0.1833 s(d3) = 0.0423 s(d4) = 0.0210 A2 � A1 � A3 � A4
s = 2, t = 1 s(d1) = 0.0841 s(d2) = 0.1456 s(d3) = 0.0279 s(d4) = 0.0358 A2 � A1 � A4 � A3
s = 1, t = 5 s(d1) = 0.0204 s(d2) = 0.1540 s(d3) = −0.0507 s(d4) = −0.0418 A2 � A1 � A4 � A3
s = 5, t = 1 s(d1) = 0.0215 s(d2) = 0.0917 s(d3) = −0.0653 s(d4) = −0.0206 A2 � A1 � A4 � A3

In the following, we discuss the effects of the parameter q on the score function and ranking
results based on q-RDHFWHM and q-RDHFWGHM operators. Details can be found in Figures 14
and 15.
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As seen in Figures 14 and 15, the scores and ranking results can be different for the different
parameter q based on the q-RDHFWHM and q-RDHFWGHM operators. However, the best alternative
is always A2 or A4 based on the q-RDHFWHM, whereas the best alternative is always A2 based
on the q-RDHFWGHM operators. In addition, when q increases, both the scores obtained by the
q-RDHFWHM and q-RDHFWGHM operators have the tendency to decrease.

5.3. Compared with Exiting MAGDM Methods

To demonstrate the advantages and superiorities of the proposed method, we compared our
method with that proposed by Wang et al. [48], which was based on the dual hesitant fuzzy weighted
averaging (DHFWA) operator proposed by Yu et al. [47], which was based on the dual hesitant fuzzy
weighted Heronian mean (DHFWHM) operator proposed by Tu et al. [49], which was based on the
dual hesitant fuzzy weighted Bonferroni mean (DHFWBM) operator that proposed by Wei and Lu [42],
which was based on the dual hesitant Pythagorean fuzzy Hamacher weighted averaging (DHPFHWA)
operator. We utilized these methods to solve the above example, and the score functions and ranking
methods can be found in Table 4.
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Table 4. Score functions and ranking results by using different methods.

Methods Score Function
s(di)(i = 1, 2, 3, 4)

Ranking Results

Wang et al.’ [48] method based on
the DHFWA operator

s(d1) = 0.3915 s(d2) = 0.4147
s(d3) = 0.3573 s(d4) = 0.1198 A2 � A1 � A3 � A4

Yu et al.’ s [47] method based on the
DHFWHM operator (s = t = 2)

s(d1) = −0.3813 s(d2) = −0.3916
s(d3) = −0.3960 s(d4) = −0.6147 A1 � A2 � A3 � A4

Tu et al.’s [49] method based on the
DHFWBM operator

s(d1) = 0.3152 s(d2) = 0.3004
s(d3) = 0.2978 s(d4) = 0.0258 A1 � A2 � A3 � A4

Wei and Lu’s [42] method based on
the DHPFHWA operator

s(d1) = 0.2369 s(d2) = 0.2196
s(d3) = 0.1284 s(d4) = 0.0026 A1 � A2 � A3 � A4

The proposed method in this paper s(d1) = 0.2235 s(d2) = 0.2631
s(d3) = 0.2097 s(d4) = 0.0780 A2 � A1 � A3 � A4

First of all, Wang et al.’s [48], Yu et al.’s [47], and Tu et al.’s [49] methods are based on DHFSs.
Wei and Lu’s 429] method is based on DHPFSs. As mentioned above, DHFS and DHPFS are two
special cases of q-RDHFS. When q = 1, then q-RDHFS is reduced to DHFS, and when q = 2, q-RDHFS
is reduced to DHPFS. Evidently, q-RDHFS is more general and can describe a greater information range
and process more information in the process of MAGDM. For instance, if an attribute value provided
by DMs is {{0.1, 0.2, 0.5, 0.8}, {0.1, 0.2, 0.7}}, then obviously, the pair {{0.1, 0.2, 0.5, 0.8}, {0.1, 0.2, 0.7}} is
not valid for DHFSs and DHPFSs. Thus, our method is more general, powerful, and can process more
information in MAGDM.

Wang et al.’s [48] and Wei and Lu’s [42] methods are based on the simple weighted averaging
operator. The drawback of the two methods is that they do not consider the interrelationship between
arguments. In other words, they assume all attributes are independent, which is not correct to some
extent. In the abovementioned example, when choosing the most appropriate supplier, we need
to consider not only the attribute values of each supplier but also the correlation between these
attributes. Thus, Wang et al.’s [48] and Wei and Lu’s [42] methods are not suitable for dealing with this
problem. As our method has the ability to capture variable correlations, it is more reasonable than
Wang et al.’s [48] and Wei and Lu’s [42] methods for addressing this problem.

Tu et al.’s [49] method is based on Bonferroni mean (BM), and Yu et al.’s [47] and our methods
are based on HM. The prominent characteristic of BM and HM is that both can consider the
interrelationship between arguments. Therefore, all the three can process the interrelationship among
attribute values. However, Yu et al.’s [47] method and ours are better than Tu et al.’s [49] method.
In addition, as Yu et al.’s [47] is a special case of our method (when q = 1), our method is more general,
scientific, and applicable than Yu et al.’s [47] method.

In real decision-making problems, we may encounter situations in which DMs are hesitant
between several possible values when determining the membership and nonmembership degrees.
Additionally, the sum and square sum of membership and nonmembership degrees may be more
than one. Moreover, as attributes are related, the interrelationship between attribute values should
be considered. In this paper, we present a novel approach to MAGDM problems based on q-RDHFS,
which is a powerful tool for expressing and denoting DMs’ assessments. It can deal with DMs’ hesitancy
and its lax constraints give DMs more freedom to express their preference information. In addition,
our method is based on HM so that the interrelationship between attributes can be processed. Therefore,
our method has some advantages and superiorities compared with existing methods.

6. Conclusions

Supplier selection is very important for manufacturing companies. Choosing a suitable supplier
can greatly enhance the competitiveness and vitality of the company. In modern society, the selection
of an appropriate supplier often requires a comprehensive assessment of all suppliers from multiple
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perspectives. Thus, supplier selection is one of the most common types of MAGDM problems in
daily life. The main contributions of this paper are threefold. Firstly, we proposed the concept of
q-RDHFS by combining DHFS with q-ROFS. The q-RDHFS can not only deal with DMs’ hesitancy
when determining the membership and nonmembership degrees but also gives DMs’ more freedom
to express their assessments. Secondly, we proposed the q-RDHFHM, q-RDHFWHM, q-RDHFGHM,
and q-RDHFWGHM operators to effectively aggregate q-RDHFEs. Thirdly, we developed a novel
method for MAGDM with q-rung dual hesitant fuzzy information. Considering the supplier selection
problem is essentially a MAGDM issue, we also applied the proposed method to a real MAGDM
problem to show its performance. Additionally, through comparative analysis the superiorities
and advantages of the newly proposed method over existing methods are illustrated. Compared
with the existing methods, the proposed method is more general and powerful. In addition, it has
three parameters—q, s, and t—making the process of information aggregation more flexible. In real
decision-making problems, DMs can choose the appropriate values of the parameters according to their
preference. It is worth pointing out that as the newly proposed method is based on the HM operator,
it mainly focuses on the interrelationship between any two q-RDHFEs. In future works, we should
investigate more aggregation operators for fusing q-RDHFEs, such as the q-rung dual hesitant fuzzy
Maclaurin symmetric mean, the q-rung dual hesitant fuzzy Hamy mean, and the q-rung dual hesitant
fuzzy Muirhead mean operators, which have the ability of capturing the interrelationship among
multiple q-RDHFEs.
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