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Abstract: A vertex coloring of a graph G is a mapping that allots colors to the vertices of G. Such a
coloring is said to be a proper vertex coloring if two vertices joined by an edge receive different colors.
The chromatic number χ(G) is the least number of colors used in a proper vertex coloring. In this
paper, we compute the χ of certain distance graphs whose distance set elements are (a) a finite set of
Catalan numbers, (b) a finite set of generalized Catalan numbers, (c) a finite set of Hankel transform
of a transformed sequence of Catalan numbers. Then while discussing the importance of minimizing
interference in wireless networks, we probe how a vertex coloring problem is related to minimizing
vertex collisions and signal clashes of the associated interference graph. Then when investigating the
χ of certain G(V, D) and graphs with interference, we also compute certain lower and upper bound
for χ of any given simple graph in terms of the average degree and Laplacian operator. Besides
obtaining some interesting results we also raised some open problems.

Keywords: chromatic number; distance graphs; interference graphs; Catalan numbers; Hankel
transforms; chromatic threshold.

1. Introduction

A graph comprising vertices and edges is a discrete structure in which each edge joins only
two different vertices. In this paper, we consider graphs with only finitely many vertices. Several
graph classes model various problems wherein one can observe a lot of variance in their properties.
Graph chromatic number is a pertinent parameter in graph theory. A coloring of a graph G can be
deemed as a mapping that allots colors to elements in it. A usual type of coloring is a proper vertex
coloring, where we color the vertices of G in such a way that two vertices joined by an edge receive
different colors. The chromatic number χ of G is the least number of colors needed to properly color
the vertices of G. Finding the χ of a given graph is a computationally hard task. Garey et al. [1],
showed that the determination of χ is an NP-complete problem unless it is 1 or 2 where NP stands
for Non-Deterministic Polynomial time. That is no polynomial-time algorithm could correctly
find it. However, several practical algorithms that approximate the χ in polynomial time exist in
literature [2,3].

An interesting instance where graph coloring is applied is the open-shop scheduling problem.
It kindles us to find the least time to produce a set of products that has to pass through a sequence
of processes on several machines. If all of them consume equal time where there is no compulsion of
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order, then this problem can be modeled using a bipartite graph. Here products and processes both act
as vertices. We introduce an edge between them if and only if the product go through that process.
The least time required to finish all processes is the least colors required in a proper edge-coloring of
the respective graph. In the case of only two machines or only two products, the problem of finding
the least time can be resolved in polynomial time. However, when we have three or more machines
and three or more products to be produced then a best known algorithm is exponential as of now.

χ computation finds its use also in communication through mobile phones. Global System for
mobile communication (GSM) network is the most commonly used cellular network. It means that
the land area is partitioned into hexagonal cells with transceiver for each cell joining the mobile
devices within the cell. To keep away from doing signal interference two neighboring cells should
not share the same channel. The famous Four Color Theorem for maps provides four different
channels independently of the shape of the cells. However, in real life instances the network is not that
simple. This is because the users first should be able to shift from a given cell area to another without
experiencing any signal loss. Next there are several phone carriers. Then, the same frequency using
cells must be separated by a distance at least two or three to avoid interference. So such a conceivable
model is highly complicated. To be precise, the respective graph will be non planar and hence not
feasible for a four-coloring. This problem can be dealt with another method of graph coloring, named
list coloring. Here each vertex has a list of available colors associated with it. On can assign to each
vertex a color from its list without violating the concept of proper coloring. For the problem of the
cellular network, every vertex is a transceiver and a list of its available colors are a list of frequencies
available for assignment at that transceiver. To find the number of frequencies required one has to find
the minimum cardinality of the lists that allows the vertices of the graph colored without violating
proper coloring concept. This number is named as the list chromatic number and its computation is
much more hard to find than the usual χ. For more, one can refer to [4–6].

Another interesting application of graph coloring related to interference is register allocation.
Here a computer program has huge number of variables, but a processor has only a limited number
say 32, of registers for basic operations. So a compiler has to decide how to provide the registers these
variables. Several variables can be allotted to a given register, but variables that are in use at a given
time cannot be allotted to the same register without spoiling their values. When we model this by
means of a graph, vertices stand for temporary variables and two of them are joined by an edge if
they are involved concurrently at some point in the program. The number of registers required to
make the program run is then equal to the least number of colors in a proper vertex coloring of this
interference graph. It may be the case that this number is more than the fixed number of registers.
However, then it amounts to the fact that there exist variables which cannot be allotted to any register.
Such extra variables can be shifted to Random Acces Memory (RAM) after each operation by a method
named spilling. As RAM access speed is very low the aim is to optimize the number of spills. Chaitin’s
noteworthy algorithm [7] applies interference graph coloring in both register allocations and spilling.
To begin, an interference graph is designed. Such a graph is sparse in reality, so in the place of
adjacency matrix, an adjacency vector is placed for at each vertex. Then, get rid of unwanted register
copy operations by combining vertices. To finish, all vertices of degree less than 32 are removed in
succession. Also it leads to null graph at the end of the process, in the case of which it is possible
to allot colors for vertices by reversing the adopted method and including the omitted vertices back
in place. Now to probe the other possibility where each vertex in the modified graph has at least 32
neighbors, one also adds a spill code. To identify which node to spill, the procedure maintains a table
of guessed costs of spills for vertices, and resolve to spill a vertex whose cost is least as dictated by its
current degree. For more see [8].

A distance graph G(V, D) is a simple graph with vertex set V and any two elements of V are
said to form an edge if the absolute euclidean distance between them is a member of D. If D happens
to be a singleton set with the element 1 and the set V happens to be the euclidean two dimensional
space R× R then the computation of χ of such a distance graph G(R× R, {1}) is the famous HNP
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(Hadwiger-Nelson Problem). For this distance graph the best known lower bound is 4 and the best
known upper bound is 7. These bound are due to Nelson and Isbell respectively.

If instead of R × R if we consider R × R × R with the same distance set {1} then Raiskii [9]
showed that χ(G(R× R× R, {1})) ≥ 5 and later it was modified to 6 in [10]. A lot of efforts were
made to obtain an upper bound of 21 for this graph in [11] and it was modified to 18 in [12]. It
was further modified into 15 in [13]. For higher dimensions of the form R × R × · · · × R n-times
the lower and upper bound for the χ(G(R× R× · · · × R, {1})) are (1 + o(1)).1.2d and (3 + o(1))d

in [14] and [15] respectively.

2. Motivational Factor

Two closely and nicely interconnected research fields of current interest with similar structures and
problems are graph theory and Network science. Some notable examples of networks are interference
network, air network and scholarly networks. Lately the network science led to understanding of the
real world networks from functional perspective. Real systems of contrasting nature can be visualized
through functigraph structure that consists of two copies of the identical network. The authors’ work
in [16] similar to this paper work but on a different platform along with the articles in [17] have really
served as a motivational factor.

3. Catalan Numbers

Catalan numbers are introduced by Eugene C. Catalan in 1838 [18]. They are defined as Cn =
1

n+1

(
2n
n

)
= (2n)!

n!(n+1)! , for n ≥ 0. A C++ program to generate Cn for n =0 to 15 is given in Figure 1. The
first few Cn are, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845,
35357670, 129644790, 477638700, 1767263190, 6564120420. It is interesting to note that C100 has 57
decimal digits. One more way of formulating Cn is Cn =

(
2n
n

)
−
(

2n
n−1

)
= (2n)!

n!(n+1)! . This formulation

asserts that Cn ∈ Z+, ∀n ∈ Z+. In general an approximate value for Cn can be got by using Stirling’s
approximation as Cn ≈ 22n

(n+1)
√

nπ
.

Cn can also be defined in the form of a recurrence relation as C0 = C1 = 1, Cn = 4n−2
n+1 Cn−1, n ≥

0. It is easy to see that Cn = 4n−2
n+1 Cn−1 = (4n−2)(4n−6)

(n+1)n Cn−2 = (4n−2)(4n−6)(4n−10)
(n+1)n(n−1) Cn−3 = ... =

1
(n+1)

(
2n
n

)
. Now from Cn+1 = 4n+2

n+2 Cn it follows that (n + 2)Cn+1 = (4n + 2)Cn. Suppose that Cn is

prime for some n. If n > 3, then Cn
Cn+1

< 1. So Cn+1 = αCn for some α ∈ Z+. That is (4n + 2) = α(n+ 2)
for α ∈ [1, 3] . Hence, n ≤ 4. From this it follows that the only prime Catalan numbers are C2 and
C3. In 1988, it was known to the world that the Catalan numbers Cn were used in China even
during the year 1730 [19–22]. Originally Cn were made known to Goldbach in 1751 by Euler in his
letter while he was in the task of determining in a convex polygon the number of ways of splitting the
polygonal area into a set of traingles also called triangulations [23]. Cn are involved in the process of
classification of objects that are either geometric or algebraic.



Symmetry 2018, 10, 468 4 of 13

#include<iostream>

#define N 25

using namespace std;

unsigned long int comb(unsigned long

int n, unsigned long int k)

{

unsigned long int r = 1;

if (k > n-k)

k = n-k;

for (int i=0; i<k; ++i)

{

r*= (n - i);

r/= (i + 1);

}

return r;

}

unsigned long int cat(unsigned long int

n)

{

unsigned long int c = comb(2*n, n);

return c/(n+1);

}

unsigned long int catdisplay(unsigned

long int L)

{

for (unsigned long int i=0; i<L; i++)

{

cout <<"c("<<i+1<<")"<<<<" :

"<<cat(i) << endl;

}

cout<<endl;

}

unsigned long int ans(unsigned long
int L)
{
unsigned long int i,j,k,a[i];
a[0]=2;
for (i=1; i<L; i++)
{
a[i]=cat(i+1)+cat(i);
}
for (i=0; i<L; i++)
{
cout<<"h"<<i<<" = "<<a[i];
cout<<"\t";
cout<<endl;
}
for (k=0; k<(L+1)/2; k++)
{
cout<<"M"<<k+1<<"="<<endl;
for (i=0; i<k+1; i++)
{
for (j=0; j<k+1; j++)
{
cout<<a[i+j];
cout<<"\t";
}
cout<<endl;
}
}
cout<<endl;
}
int main()
{
unsigned long int L, mat[N][N];
cout<<"Enter L: "<<endl;
cin>>L;
catdisplay(L);
ans(L);
cout<<endl;
return 0;
}

Figure 1. C++ Program to generate Cn, hn.

4. Variations of Cn, and Prime Numbers

We probe the hidden relationship between Cn, primes and twin primes. We know that n ∈ N is a
prime iff (n− 1)! ≡ −1 (mod n), a Wilson’s contribution. An easy consequence of this is 2n ≡ 2 (mod n)
when n is a prime. However the reverse is false as n = 341 obeys this congruence and n is not a prime.
We call such numbers as pseudoprimes.
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It is interesting to note that if n is prime and odd, then (−1)
n−1

2 C n−1
2
≡ 2 (mod n) . To see this

first observe that (n− 1) can be thought of
[
( n−1

2 )!
]2

(−1)
(n−1)

2 as (n − j) ≡ −j (mod n) for all j.

So C n−1
2

= 1
n+1

2

(
n−1
n−1

2

)
= 2

n+1
(n−1)!

[( n−1
2 )!]

2 ≡ 2(−1)
n−1

2 . Notice that a converse of this is false. That is if

n = 5907 then C n−1
2
≡ −2 (mod n) but n is a composite. One can call such n′s as Catalan pseudoprimes.

It is known that if n is non composite and 2n ≡ 2(mod n2) then n is called Weiferich prime.
So far only 1093 and 3511 are known as Weiferich primes. It is not known whether they are finitely
many or not. Also it is known that only 5907, 1194649(= 10932) and 12327121(= 35112) are the
Catalan psuedoprimes. Also if n ∈ N then n and n + 2 are both non composite if and only if
4(n− 1)! + n + 4 ≡ 0 (mod n(n + 2)) by Clements result. From this one can observe easily that if n
and n + 2 are both non composite then 2n+2 ≡ 3n + 8(mod n(n + 2)).

Another interesting fact is that if n ∈ N and n, n + 2 are both non composite then 8(−1)
n−1

2 C n−1
2
≡

7n + 16(mod n(n + 2)). This is because (−1)
n−1

2 C n−1
2
≡ 2(mod n) ⇒ 8(−1)

n−1
2 C n−1

2
≡ 8.2 = 16 ≡

7n + 16(mod n). Now,
C n−1

2
C n+1

2

= n+3
4n ⇒ 8(−1)

n−1
2 C n−1

2
= 8(−1)

n−1
2 n+3

4n C n+1
2
≡ − (n+3)

n 2(−1)
n+1

2

≡ −4( n+3
n )C n+1

2
≡ 2 ≡ 7n + 16(mod n + 2). As we are aware of only three Catalan pseudoprimes “So

far, we also note that x + 2, x − 2, y + 2, y− 2, z + 2, z− 2 are not primes if x = 5907, y = 1194649,
z = 12327121.” That is Catalan pseudoprimes and their ±2 successors do not form Catalan
twin pseudoprimes.

5. Hankel Transform of Catalan Sequence

Suppose that A = {an}n≥0. Let H = (hn), a matrix generated by A of order n × n with the
property that (i, j)th entry of H is given by ai+j for 0 ≤ i, j ≤ n− 1. We call H a Hankel matrix. By the
Hankel transform H of A = {an} we mean the det((hn)) generated by A where det(.) indicate the
determinant of (.).

Let hn =
( 2n

n )
n+1 +

( 2n+2
n+1 )
n+2 . Then hn is the sum of nth and (n + 1)th Catalan numbers. A first few (hn)

are: h0 = 1
1 +

2
2 = 2; h1 = 2

2 +
6
3 = 1+ 2 = 3; h2 =

( 4
2 )
3 +

( 6
3 )
4 = 6

3 +
20
4 = 2+ 5 = 7; h4 =

( 6
3 )
4 +

( 8
4 )
5 =

5 + 70
5 = 17. Now the H (hn) are obtained as follows: H (h0) = |(h0+0)| = |2| = 2.

H (h1) =

∣∣∣∣∣
(

h0+0 h0+1

h1+0 h1+1

)∣∣∣∣∣ =
∣∣∣∣∣
(

h0 h1

h1 h2

)∣∣∣∣∣ =
∣∣∣∣∣
(

2 3
3 7

)∣∣∣∣∣ = 5.

A C++ program for computing hn are given in Figure 1. We used MATLAB to compute H (hn).
A few H (hi) are as follows: H (h0)= 2; H (h1)= 5; H (h2)= 13; H (h3)= 34; H (h4)= 89; H (h5)= 233;
H (h6)= 610; H (h7)= 1597.

Interestingly Layman [24], see A001906) from his intuition raised the conjecture that H (hn)

includes every other Fibonacci number. However, Cvetkovic et al. in [25] positively settled
this conjecture.

6. On k-Catalan Numbers

Jacob Bobroswski in [26] defined the nth Catalan number in terms of all realizable length 2n
sequences endowed with the features: (a) Every term is equal to either 1 or –1; (b) The value of every
partial sum is greater than or equal to 0; (c) Grand total of all terms of such a sequence is 0. Jacob [26]
then called a sequence with length a multiple of k as k-Raney sequence where every term is equal to 1
or 1− k, The value of every partial sum is greater than or equal to 0, and grand total of all terms of
such a sequence is 0. Finally he defined the nth k-Catalan number, Ck(n) as all realizable length kn,
k-Raney sequences. Following Lobb’s idea [22], Jacob [26] considered only the features (a) and (c) for a
k-Raney sequences anddenoted by Lk

n,m the number of realizable sequences with the characteristic that
the number of terms that are 1 is (k− 1)n + m and the number of terms that are 1− k is n−m. Jacob
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then by taking m = 0, defined the nth k-Catalan number as Ck(n) = Lk
n,0 =

(
kn
n

)
− (k− 1)

(
kn

n−1

)
.

Table 1 shows the initial values of k-Catalan numbers for k = 2 to 7 through a C++ program shown in
Figure 2.

Table 1. Computation of k-Catalan number.

j C2(j) C3(j) C4(j) C5(j) C6(j) C7(j)

1 1 1 1 1 1 1
2 2 3 4 5 6 7
3 5 12 22 35 51 70
4 14 55 140 285 506 819
5 42 273 969 2530 5481 10472
6 132 1428 7084 23751 62832 141778
7 429 7752 53820 231880 749398 1997688
8 1430 43263 420732 2330445 9203634 28989675
9 4862 246675 3362260 23950355 115607310 430321633

10 16796 1430715 27343888 250543370 1478314266 6503352856

#include<iostream>
using namespace std;
unsigned long int comb(unsigned long int
n, unsigned long int k)
{
unsigned long int r = 1;
if (k > n-k)
k = n-k;
for (int i=0; i<k; ++i)
{
r *= (n - i);
r /= (i + 1);
}
return r;
}

int main()
{
unsigned long int I,J,K,L,M,N;
cout<<"Enter K: "<<endl;
cin>>K;
cout<<endl;
for(N=1;N<=10;N++)
{
L=K*N;
I=combf(L,N);
J=comb(L,N-1);
M=I-(K-1)*J;
cout<<M<<endl;
}
return 0;
}

Figure 2. C++ program to generate kth Catalan numbers.

7. Computation of χ(G) of Catalan Number Distance Set

Consider the distance graph G(Z, D = {d1 < d2 < ...}). Such objects were dealt in [27]. Suppose
that D = DCat(10) = {1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796} is a set of first 10 distinct Catalan
numbers. Form G(Z, DCat) where DCat consists of the Catalan numbers. A minimal graph to realize
each element of DCat as a distance between any two of its vertices exactly once is the simplest graph
P11. A coloring of the elements of V(G) is deemed proper if any two adjacent elements in it are colored
distinctly. The smallest number of colors used in such a process named as the chromatic number χ(G).

Let V (P11) = {u1, u2, . . . , u11}. Set l(u1) = 1, l(u2) = l(u1) + DCat(1), l(ui) = l(ui−1) + DCat(i−
1). As P11 is bipartite, χ(P11) = 2. Hence,

Proposition 1. Let G(Z, DCat(n)) be any Catalan number distance graph. Let |DCat(n)| < ∞ and n ∈ Z.
Then χ(G(Z, DCat(n))) = 2 as G(Z, DCat(n)) ∼= Pn+1, provided V(Pn+1) = {ui : 1 ≤ i ≤ n + 1} with
l(u1) = 1, l(ui) = l(ui−1) + DCat(i− 1).

Recall the following two results of Yegnanarayanan from [28].

Proposition 2. χ(G(Z, D)) = 2 if the elements of D are odd integers.
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Proposition 3. If for a given positive integer n, Dn consists all those elements of D built by integers divisible
by n, then χ(G(Z, D)) ≤ minn∈N n(|Dn|+ 1).

Theorem 1. Consider G(Z, DCat(15)) where DCat(15) denotes the distance set of first 15 distinct Catalan
numbers. Then 3 ≤ χ(G(Z, DCat(15))) ≤ minn∈N n(|Dn|+ 1) = 16 where Dn ⊂ Dn

Cat(15) is that subset
of Dn

Cat(15) built by integers divisible by n.

Proof. The graph G1 shown in Figure 3 namely G1({1, 2, ..., 10}, DCat(3)) is a subgraph of
G(Z, DCat(15)). We show in the next section that χ(G({1, 2, ..., 10}, DCat(3))) = 3. Therefore,
3 = χ(G({1, 2, ..., 10}, DCat(3))) ≤ χ(G(Z, DCat(15))) as χ is a monotone function. We now determine
the upper bound as follows using Proposition 3. Clearly, DCat(15) = {1, 2, 5, 14, 42, 132, 429, 1430, 4862,
16796, 58786, 208012, 742960, 2674440, 9694845} ⊆ Z. For n = 1, we get n(|Dn

cat(15)| + 1) =

1(|D1
cat(15)| + 1) = 1(15 + 1) = 16; For n = 2, 2(|D2

cat(15)| + 1) = 2(|{di ∈ D2
Cat(15) : 2|di, i =

1, 2, ..., 15}|+ 1) = 2(|{2, 14, 42, 132, 1430, 4862, 16796, 58786, 208012, 742900, 2674440}|+ 1) = 2(11 +
1) = 24; For n = 3, 3(|D3

cat(15)|+ 1) = 3(|{42, 132, 429, 2674440, 9694845}|+ 1) = 3(5 + 1) = 18;. For
n = 4, 4(|D4

cat(15)|+ 1) = 4(|{132, 16796, 208012, 742900, 2674440}|+ 1) = 4(5 + 1) = 24; n =5,6,7,9
to 15 are not improving the above bounds. Also n = 8 yields a bound same as that for n = 1. Hence
we conclude that χ(G(Z, DCat(15))) ≤ 16.

Figure 3. G1: C1 = Red, C2 = Green, C3 = Blue.

In general, in view of Theorem 1, we raise the following problem:

Problem 1. What is χ(G(Z, DCat(n))) for any n ∈ N?

Note 1. An easy upper bound for χ(G(Z, DCat(n))) is that |DCat(n)|+ 1.

Theorem 2. Consider G(Z, D) with D = {h1, ..., h15} = {3, 7, 19, 56, 174, 561, 1859, 6292, 21658, 75582,
266798, 950912, 3417340, 12369285, 11424336} where h′is are the sum of the ith and (i + 1)th Catalan numbers.
Then 3 ≤ χ(G(Z, D)) ≤ minn∈N n(|Dn|+ 1) = 16.

Proof. Voigt et al. in [29,30] have proved that if the elements of D includes two coprime elements of
distinct parity then χ(G(Z, D)) = 3. As (3, 6292) = 1 and 3, 6292 ∈ D, we infer that χ(G(Z, D)) is
more than or equal to 3. Now the upper bound can be found by using the Proposition 3. For n = 1,
n(|D1|+ 1) = 1(15 + 1) = 16. For n=2, 2(|D2|+ 1) = 2(9 + 1) = 20; It is easy to check that n = 3 to 16
has not improved the upper bound 16 provided by n = 1. Therefore 3 ≤ χ(G(Z, D)) ≤ 16.
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Theorem 3. Consider G(Z, D) with D = {H (h1), . . . , H (h8)} = {2, 5, 13, 34, 89, 233, 610, 1597} where
H (hi)

′s are the values of the Hankel transform of first 8 h′is of Theorem 2. Then 3 ≤ χ(G(Z, D)) ≤
minn∈N n(|Dn|+ 1) = 3.

Proof. The lower bound follows from the same reasoning of what is said in Theorem 2. We now find
the upper bound by using the Proposition 3. For n = 1, we get n(|Dn|+ 1) = 9. For n = 2, we get
2(|D|2 + 1) = 2(|{2, 34, 610}|+ 1) = 2(3 + 1) = 8; For n = 3, we get 3(|D|3 + 1) = 3(0 + 1) = 3.
Therefore χ(G(Z, D)) = 3.

Problem 2. What is χ(G(Z, D)) where D consists of any finite list of n h′is of Theorem 2.

Problem 3. What is χ(G(Z, D)) where D consists of any finite list of n H (hi)
′s of Theorem 3.

Note 2. In a similar manner as in Theorem 1 one can determine bounds ( both lower and upper) for
the chromatic number of generalized k-Catalan number distance graphs listed in Table 1. However
finding the bounds (both lower and upper) of χ(G(Z, D)) whose distance set elements are finite list of
n such k-Catalan number is an open question.

Note 3. Presume that the vertex set of a Catalan number distance graph is labelled arbitrarily and an
element from the Catalan distance set is allowed to repeat in the graph then we get several other non
trivial graphs. For instance, Figure 3 shows a Catalan number distance graph whose χ is 3. This raises
an interesting question: what is the χ of such an arbitrarily formed Catalan number distance graph?

8. Graph Coloring for Interference Networks

The problem of minimization of interference in wireless communication pose enormous challenges.
If a vertex x′s interference range includes another vertex y then one can say x may interfere with
y. This means the magnitude of interference on a vertex y can be measured by the magnitude of
interference produced by all those vertices whose transmission area embraces y. It is known that in
frequency division multiplexing of mobile networks the minimization of interference is directly related
to the bringing down of number of channels which then leads to the increasing of bandwidth of the
frequency channels. A small interference is useful to code overhead in systems where code division
multiplexing is employed. However, in the case of networks employing battery driven devices it is
better to minimize the interference to increase the longevity of the network. Interference can be kept
to a minimum by keeping vertices with limited transmission power. In such a case, the area covered
by such vertices result in low interference. However, then this action may lead to the disconnection
of communication links. So, it is prudent to estimate the amount of reduction of transmission power
of the vertices so that the connectivity characteristic of the network is preserved. Minimization of
Interference in networks results in non-collisions and packet retransmissions and this factor saves
power consumption and improves the longevity of the network.

Interference can be represented in the form of an Interference graph of a wireless network. Here
the edges denote the interference occurring in their respective end points. The problem of minimizing
the vertex collisions and signal clashes can be thought of as allotment of color to vertex task of the
associated graph of interference. Distinctly colored vertices are assigned distinct channel of radio
frequency. Robust graph vertex coloring methods suggest effective or correct channel picking ways
that decreases wireless interference. The graph vertex coloring method is useful as it bars vertices from
getting connected with other conflicting ones via radio frequency. These methods are pertinent as it
conforms to mathematical rigidity. Prudent allotment of channels aligns allotment of color to vertex
task and interference minimizing task in wireless network [31].

Suppose that η is the greatest number of vertices of equal degree j in a simple graph G with j ≥
b∆(G)+2

2 c. Let r = d η
η+1 (∆(G) + 2)e and d1 ≥ d2 ≥ ... ≥ dp be the degree sequence of G. If dr <

∆(G)+2
2
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then clearly dr < r as η ≥ 1. If dr ≥ ∆(G)+2
2 then for l = 1, 2, ..., r. dl ≤ ∆(G)− d l

η e+ 1 < ∆(G)− l
η + 2.

That is dr < ∆(G)− r
η + 2 . However, then this means that the G is r-degenerate or any subgraph of G

includes in it a vertex of degree < l. Further it is known that at most r colors are needed to color any
r-degenerate G properly. Hence,

Theorem 4. If G is simple then χ(G) is at most d η
η+1 (∆(G) + 2)e.

Discussion. Consider the task of assignment of wi-fi channel in the language of graph theory. If G has
k-colors as spectrum (also called k-channels). Let W be a k× k matrix of interferences associated with
each vertex of G. The aim is to find a minimum threshold t0 ∈ Z, t > 0 in such a way that (G, W) accepts
a k-coloring f (allotment of channels) with reference to which Iu(G, W, f ) = ∑w∈N(u) W( f (w), f (u)) ≤
t0 for all u ∈ V(G). t0 is called least k-chromatic threshold of (G, W), denoted by T∗k (G, W).

Consider the graph G1 in Figure 3 with V(G1) = {1, 2, ..., 10}, E(G1) = {(u, v) : d(u, v) ∈
DCat(3)}. Let f : V(G1) → {c1, c2, c3} be such that f (3i + 1) = c1 for 0 ≤ i ≤ 3; f (3i + 2) = c2 for
0 ≤ i ≤ 2; f (3i) = c3 for 1 ≤ i ≤ 3. Then f is a 3-chromatic coloring for G1.

Let W = (wij) = w(ci, cj) =

 (c1, c1) (c1, c2) (c1, c3)

(c2, c1) (c2, c2) (c2, c3)

(c3, c1) (c3, c2) (c3, c3)

 =

 0 1 1
1 0 1
1 1 0

 .

Then WT = W. Now I1(G1, W, f ) = ∑u∈N(1) W( f (u), f (1)) = W( f (2), f (1)) + W( f (3), f (1)) +
W( f (6), f (1)) = W(c2, c1) + W(c3, c1) + W(c3, c1) = 1 + 1 + 1 = 3; Similarly, I2(G1, W, f ) =

4; Ii(G1, W, f ) = 5 for 3 ≤ i ≤ 8; I9(G1, W, f ) = 4; I10(G1, W, f ) = 3. So here to = 5 and the least
3-chromatic threshold of (G, W), written as T∗3 (G, W) = 5.

In view of Theorem 4, the graph G, of Figure 3 has an upper bound for its χ as 5. Moreover the
presence of a K3 in G1 indicates 3 ≤ χ(G1) ≤ 5. This along with the fact that f is a 3-chromatic coloring
shows χ(G1) = 3.

As the problem of determination of T∗k (G, W) fixes the parameter k and focus on minimizing t0,
it would be interesting to look at its complementary problem where the threshold t0 ∈ Z, t0 > 0 is fixed.
The focus is on minimizing the number of colors k (channels) by allowing the size of the spectrum
to be the cardinality of V(G) in such a manner that (G, W) accepts a color function f with k-colors
(allotmentt of channels) where at any vertex the interference is ≤ t0. t0 is called as t0-interference χ of
(G, W), written as χt0(G, W). A main feature of this determination lies in finding the least number of
colors (or frequencies) to realize minimum throughput in the network for all users. Hence one can also
think of deeming it as a task of finding to ensure quality of service the actual resources requirement.

Suppose that for a given (G, W, f ) a color specific interference at a vertex u is defined as
follows: Ii

u(G, W, f ) = ∑w∈N(u) W( f (w), i). Then if f (u) = i then I f (u)
u (G, W, f ) = Iu(G, W, f ).

We call a k-coloring f of G as W-concrete if Iu(G, W, f ) ≤ I j
u(G, W, f )∀j ∈ {1, 2, ..., k}. Let I∗ =

∑(u,w)∈E(G) W( f (u), f (w)). Then one can clearly visualize that I∗ = 1
2 Iu(G, W, f ). Also if I0 = min{I∗}

for some specific coloring f0 then it will be W-concrete. If for some u ∈ V(G), I f (u)
u > I j

u then one can
attempt to recolor again and again to achieve I0. Please note that each step in the process contributes
I j
u(G, W, f ) to I∗ and decrements I f (u)

u (G, W, f ). This procedure results in the reduction of I∗ by a
quantity I f (u)

u − I j
u and terminates by achieving a W-concrete coloring of G. So

Theorem 5. A W-concrete coloring for (G, W, f ) with color spectrum cardinality atleast 2 exists. For the
graph G1 in Figure 3,
Ic1
1 (G, W, f ) = 3; Ic2

1 (G, W, f ) = 2; Ic3
1 (G, W, f ) = 1;

Ic1
2 (G, W, f ) = 2; Ic2

2 (G, W, f ) = 4; Ic3
2 (G, W, f ) = 3;

Ic1
3 (G, W, f ) = 3; Ic2

3 (G, W, f ) = 2; Ic3
3 (G, W, f ) = 5;

Ic1
4 (G, W, f ) = 5; Ic2

4 (G, W, f ) = 3; Ic3
4 (G, W, f ) = 2;

Ic1
5 (G, W, f ) = 2; Ic2

5 (G, W, f ) = 5; Ic3
5 (G, W, f ) = 3;

Ic1
6 (G, W, f ) = 2; Ic2

6 (G, W, f ) = 3; Ic3
6 (G, W, f ) = 5;
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Ic1
7 (G, W, f ) = 5; Ic2

7 (G, W, f ) = 2; Ic3
7 (G, W, f ) = 3;

Ic1
8 (G, W, f ) = 3; Ic2

8 (G, W, f ) = 5; Ic3
8 (G, W, f ) = 2;

Ic1
9 (G, W, f ) = 2; Ic2

9 (G, W, f ) = 3; Ic3
9 (G, W, f ) = 4;

Ic1
10(G, W, f ) = 3; Ic2

10(G, W, f ) = 1; Ic3
10(G, W, f ) = 2.

It is easy to see that Il(G, W, f ) > I j
l (G, W, f ) for 1 ≤ l ≤ 10 and hence f is not a W-concrete

coloring for G. Moreover, I∗(G, W, f ) = 22 = 1
2 Iu(G, W, f ) for u ∈ V(G1).

Suppose that t0 = 4 is fixed and DCat(2) = {1, 2} be a set of first two distinct Catalan numbers.
Let V(G2) = {1, 2, 3, 4, 5, 6} and E(G2) = {(u, v) : d(u, v) ∈ DCat(2)}. Then the graph G2 is shown in
Figure 4.

Figure 4. G2: C1 = Red,C2 = Green, C3 = Blue.

Clearly the matrix W = (wij) associated with G2 is the distance between the elements of V(G2).

That is W =

1 2 3 4 5 6
1
2
3
4
5
6



0 1 1 0 0 1
1 0 1 1 0 0
1 1 0 1 1 0
0 1 1 0 1 1
0 0 1 1 0 1
1 0 0 1 1 0


and W = WT . Define f : V(G2) → {c1, c2, c3}

as f (3i + 1) = c1 0 ≤ i ≤ 1; f (3i + 2) = c2 0 ≤ i ≤ 1; f (3i) = c3 0 ≤ i ≤ 2; Then f is a
3-chromatic coloring for G2. Now, I1(G2, W, f ) = 2; I2(G2, W, f ) = 3; I3(G2, W, f ) = 4; I4(G2, W, f ) =
4; I5(G2, W, f ) = 3; I6(G2, W, f ) = 2. Effortlessly Il(G2, W, f ) ≤ t0 = 4 for 1 ≤ l ≤ 6. Hence,
χt0=4(G2, W) = 4 is the 4-interference chromatic number.

If we alter t0 = 4 to t0 = 3 then we can alter the size of V(G2) from 6 to 4 as V(G2) = {1, 2, 3, 4}.
Then the resulting graph turns out to be K4, the complete graph on 4 vertices. G3 = K4 is shown in
Figure 5.
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Figure 5. G3: C1=Red,C2=Blue, C3=Green, C4=Purple.

W =

1 2 3 4
1
2
3
4


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 and W = WT . Define f : V(G3) → {c1, c2, c3, c4} as f (i) =

ci, 1 ≤ i ≤ 4. Then f is a 4-chromatic coloring for G3. Now Il(G3, W, f ) = 3, 1 ≤ l ≤ 4. So,
Il(G3, W, f ) ≤ t0 = 3. Hence, χt0=3(G3, W, f ) = 3 is the 3-interference chromatic number.

9. Some Lower and Upper Bounds for χ

For a simple graph G = (V, E) with |V(G)| = p, |E(G)| = q, let d(ui) be the degree of ui ∈ V(G)

and ∆(G) and δ(G) the maximum and minimum degree of G respectively. d(G) = ∑
p
i=1(d(ui)/p) is

the average degree of G. Clearly d(G) ∈ [0, p− 1] and d(G) need not always be an integer. In [19] the
authors have called the ceiling of d(G) (dd(G)e) as the top of G and denoted it as µ(G). It is easy to
see that for all i ∈ [1, p] and d(ui) ∈ [0, p− 1] there is a l ∈ [0, p− 1] with d(ui) = l. For any arbitrary
X ⊆ V(G) the authors called wX(l) = |{x ∈ X : d(x) = l}| as the frequency of degree ui. If X = V(G)

then the frequency of degree ui is denoted as w(l). From the First Theorem of Graph Theory that
∑u∈V(G) deg(u) = 2|E(G)|, it follows that ∑

p
l=1 lw(l) = 2q. They further called p-times the difference,

viz., p(µ(G)− d(G)) as the gap h(G). It is a trivial fact that if d(G) ∈ Z+ then h(G) is zero.
For instance consider the graph G1 of Figure 3. Please note that d(G1) = 4.4 and the top(G1) =

µ(G1) = 5. Furthermore, G1 has 2 3-degree vertices, 2 4-degree vertices, and 6 5-degree vertices. In
view of this it is easy to check that ∑10

l=1 lw(l) = 2× 3 + 2× 4 + 6× 5 = 44 = 2|E(G1)| = 2× 22. Also
the gap(G1) = h(G1) = 10(5− 4.4) = 6 and this verifies the fact that if d(G1) is not an integer then the
gap is non-zero.

Suppose that each vertex has a list of k colors endowed with G. A vertex proper coloring
allots every vertex a color from its list. Obviously adjacent vertices do not share the same color
in the said process. The smallest integer k, that results in a vertex proper coloring out of any
given list of length k is the list chromatic number written as χl(G). It is clear that χ(G) ≤ χl(G).
Moreover in [30] it is established that χl(G) ≤ α(d/log f ) where the NG(u) for any u ∈ V(G)

has the largest of d2/ f edges for some 1 < f < d2 and α is some constant. By a combinatorial
Laplacian operator L of G = (V, E), we mean a matrix L = D − A. Here D is diagonal
matrix and A is adjacency matrix of G. Clearly D(u, u) = d(u) for every u ∈ V(G). For any
V1, V2 ⊆ V(G), e(V1, V2) = {(v1, v2) : v1 ∈ V1, v2 ∈ V2, (v1, v2) ∈ E(G)}.

Theorem 6. Presume G = (V, E) as (p(G), q(G), d(G), σi) graph with σi, i ∈ [1, p] as the eigen values of
L. If the absolute difference of d and σi is bounded above by β for some β and i 6= 0 then d d

β e ≤ χ(G) ≤
O(| d

log(min{ p
d , d

β })
|).
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Proof. The authors proved in [32] that ( p
p−1 )(d − β) ≤ d(v) ≤ ( p

p−1 )(d + β) < d + β for each
v ∈ V(G). From this one can deduce that ∆(G) ≤ d + β. Moreover for any V1 ⊆ V(G), they proved
that |2e(V1, V1) − d|V1|(|V1|−1)

p | ≤ 2β
p |V1|(p1 − |V1|/2). So for any G1 ⊆ G with |p(G1)| ≤ d + β we

have |q(G1)| ≤ d(d+β)2

p + 2β(d + β). Now by letting 1
f = d

p + 2β
d we have by Vu’s Theorem [30] that

χl(G) = O(| d+β
log f |) = O(| d

log(min{ p
d , d

β })
|). Further the authors in [32] have also showed along with the

hypothesis that any independent subset V0 of V(G) satisfies |V0| ≤ (βp)/d + 1. So as χ(G) ≤ χl(G)

we have d d
β e ≤ χ(G) ≤ O(| d

log(min{ p
d , d

β })
|).

Again consider the graph G1 of Figure 3. The eigen values of the Laplacian matrix L of G1 is
calculated using MAtrix Laboratory called MATLAB. They are σi, 1 ≤ i ≤ 10 : 0, 1.8279, 3.4384, 4,
4, 4.7002, 5, 5.7818, 7.5616, 7.6901. By letting β = 5 as the upper bound for the absolute difference,
|d− σi| for 1 ≤ i ≤ 10 we have computed the lower bound, d d

β e = d0.88e = 1 and the upper bound

O(| d
log(min{ 10

4.4 , 4.4
5 })
|) = O(79.2545319) = O(79).

10. Conclusions

We used C++ programming and Matrix Laboratory (MATLAB) to generate Catalan numbers,
generalized Catalan numbers, Hankel transform of a transformed sequence of Catalan numbers,
exhibited the output and the nature of their distribution by means of graphs. While computing the χ

of certain distance graph class whose distance set elements are either of the above said numbers, we
also computed the least k-chromatic threshold of an interference graph that arose out of modeling the
problem of assignment of wi-fi channel. Then we proved for a given color specific interference graph
the existence of a concrete coloring with color spectrum. Further we computed the lower and upper
bound for χ(G) in relation to d(G) and Laplacian operator. We also raised several open problems and
hope to revert back on them elsewhere.
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