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Abstract: Automatic reconstructing of neural circuits in the brain is one of the most crucial studies
in neuroscience. Connectomes segmentation plays an important role in reconstruction from electron
microscopy (EM) images; however, it is rather challenging due to highly anisotropic shapes with inferior
quality and various thickness. In our paper, we propose a novel connectomes segmentation framework
called adversarial and densely dilated network (ADDN) to address these issues. ADDN is based on the
conditional Generative Adversarial Network (cGAN) structure which is the latest advance in machine
learning with power to generate images similar to the ground truth especially when the training data is
limited. Specifically, we design densely dilated network (DDN) as the segmentor to allow a deeper
architecture and larger receptive fields for more accurate segmentation. Discriminator is trained to
distinguish generated segmentation from manual segmentation. During training, such adversarial
loss function is optimized together with dice loss. Extensive experimental results demonstrate that
our ADDN is effective for such connectomes segmentation task, helping to retrieve more accurate
segmentation and attenuate the blurry effects of generated boundary map. Our method obtains
state-of-the-art performance while requiring less computation on ISBI 2012 EM dataset and mouse
piriform cortex dataset.

Keywords: electron microscopy images; connectomes segmentation; adversarial training; densely
dilated network; cGAN

1. Introduction

The analysis of micro-circuitry is an indispensable foundation in neurobiological research.
However, the anatomical connection linking the function of the brain in the nervous system is still
poorly understood [1,2]. Electron Microscopy (EM) is a strong acquisition technique for reconstructing
connectivity between neurons because it can provide high resolution that enables us to identify the
synapses possible [3]. Unfortunately, the complexity of these images makes it a labor-intensive enterprise
requiring an impractical amount of time on manual labeling. Therefore, automatic reconstruction methods
are in high demand [4].

The first step of neuronal circuit reconstruction focuses on detecting neuron membranes, which is
also treated as neuron segmentation task. These boundaries can help distinguish individual neurons
that are essential to form a complete neuron [5]. A two-dimensional example is illustrated in Figure 1:
raw EM image, its corresponding segmentation result (individual neurons are labeled in different
colors) and neuron membrane detection result. The task poses a difficult challenge, due to several
issues: (1) the complex intracellular structure makes it difficult to identify the neuron membrane,
(2) local noise and ambiguity caused by imperfections in the staining and imaging may blur the
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membrane boundary, and (3) the physical topologies of cells have large variations, especially in the
thickness [3,5–7].

Figure 1. An example of EM image (a) and segmentation annotation (b) and the ground truth of
connectomes segmentation result (c), respectively.

Recently, many methods have been adopted to tackle this problem. The majority of neuron
membrane segmentations heavily rely on deep learning. Early approaches [8] used deep neural
network to predict each pixel in a fixed window which dramatically limits the contextual information.
For this reason, researchers sought to find a more efficient and scalable deep neuron network in
such segmentation task. Fully convolutional network (FCN) [9] and its variants have gained much
attention [10,11], using encoding and decoding phases for the end-to-end semantic segmentation.
Besides, they use residual connections in order to increase network depth to gather more contextual
information [12–14]. The defects of these CNN-based segmentation methods are obvious: on one hand,
the receptive field is always limited due to inflexible kernels of convolution layers [15]; on the other
hand, most of these existing methods only employ the traditional pixel-wise loss (e.g., SoftMax) to
optimize the model with certain disadvantages, such as image blur and sensitivity to outliers due to
insufficient learning of local and global contextual relations between pixels [16].

To address these problems, we propose our adversarial and densely dilated network
(ADDN) inspired by the power of conditional Generative Adversarial Network (cGAN) in image
translation [17,18]. For one thing, a fully connected CNN in generation network, which is known as
“Segmentor”, is applied to provide the segmentation result. Without using a particular task-specific
loss function, we specify a high-level goal for the network to produce realistic images that are
indistinguishable for the “Discriminator” from the ground truth. In this case, blurry images will
be avoided with the adversarial training loss. For another, without using the basic encoder-decoder
network as the “Segmentor” unit, we propose an extension of U-Net [11] by using dilated dense
blocks [19–21] in each level of the network with skip connections to make the entire network extend its
perceptual regions with limited trainable weights as well as convolutional layers. Furthermore, dense
connections have a regularizing effect, which reduces overfitting on this EM image segmentation task
with small training set sizes [20].

Overall, (a) to overcome the limitation of receptive fields, we carefully design our segmentor
with dense connection and dilated network based on U-Net architecture. The U-shape structure is
flexible and can capture low-level and high-level information via skip connections. Besides, auxiliary
dense connection and dilated network further enlarge the receptive fields without adding any training
burdens. Therefore, our network makes full use of the contextual information. (b) To overcome the local
objective problem, our GAN-based model utilizes the adversarial training instead of single traditional
loss which sets a high-level goal and greatly promotes the segmentation performance. We evaluate
our method on two publicly available EM segmentation datasets: ISBI 2012 EM segmentation
challenge and mouse piriform cortex EM dataset. Our model tends to achieve comparable accuracy to
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other state-of-the-art EM segmentation methods but requiring much fewer parameters than existing
algorithms. The main contributions of our work are as follows:

1. As far as we know, adversarial neural network is at the first time applied to connectomes
segmentation with EM images. The adversarial training approach enhances the performance
without adding any complexity to the model used at test time.

2. For connectomes segmentation problem, we combine U-Net architecture with dilated dense block
which takes the advantage of dense connection and dilated network. Compared with other
U-net-based models, it enlarges the receptive fields and saves computation expenses.

3. In contrast to the classic GAN with a single loss function, we combine the GAN objective with the
dice loss for alleviating the blurry effects. Therefore, the tasks of the segmentor are to fool the
discriminator as well as to generate more accurate images.

4. The ADDN is an end-to-end architecture trained and with can achieve favorable results
without further smoothing or post-processing. We demonstrate that ADDN performs greatly by
comparing the state-of-the-art EM segmentation methods on two benchmark datasets.

The rest of the paper is organized as follows. The related work will be introduced in Section 2.
Section 3 describes our ADDN architecture and methodology. In Section 4, the associated experiments
as well as the obtained results are described in detail. Finally, Section 6 concludes the paper.

2. Related Work

Image segmentation. In the field of computer vision, image segmentation is the process of
segmenting a digital image into multiple image sub-regions based on position, color, brightness,
texture, etc. One popular method for image segmentation is level set method (LSM) introduced by
Osher et al. [22] which can track interfaces and shapes without parameterizing the object. Particularly,
it has been widely used to overcome the difficulty of image intensity inhomogeneities [23,24].

Another problem in image segmentation is that segmenting every pixel is harder due to
growing size of images and computational expenses. Superpixels [25] are a collection of perceptually
similar pixels sharing low-level image properties which is beneficial for extracting local features and
representing structural information. Therefore, it greatly reduced representational and computational
complexities and was applied to many different fields. There are many available superpixel
segmentation algorithms. For example, the basic idea of the classical watershed algorithm [26,27] is to
construct a watershed to divide the different collection basins from the local minimum of the image
along the gradient ascent. Although the algorithm is fast, the severe over-segmentation makes it less
efficient. Levinshtein et al. [28] proposed Turbopixel algorithm. In order to make superpixels regularly
distributed, the image is segmented into meshed superpixels by progressively expanding the seed
point using geometric-flow-based LSM. It is also good for its speed but its edge fits undesirably.

Connectomes segmentation. Several authors have contributed to the neuron boundaries
detection problem for direct reconstruction from EM data. Earlier works focus more on interactive
membrane delineation in 2D EM images [29,30], which are involved with too much experts’ knowledge.
More recent works [3,5,6,31] rely on machine learning techniques for automatic membrane detection.
For example, in [31], the random forest classifier was proposed with geometrical consistency constraints.
In [5], neural networks were carefully trained using certain feature vector which was the image
intensities filtered through a stencil neighborhood.

Currently, deep learning methods have shown their advantages on automatic segmentation.
For EM segmentation, Ciresan et al. [8] firstly trained a deep convolutional neural network as a pixel
classifier, which decided pixel values in a square window centered on it. The method preserved 2D
information and high-level features well and it won the 2012 ISBI EM segmentation challenge by a
large margin. Recently, medical image segmentation approaches have been based on FCN [9,32] that
is an effective approach to generate dense predictions. Chen et al. [10] proposed a deep contextual
network, a variant of FCN, by leveraging multi-level contextual information from the deep hierarchical
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structure. Ronneberger et al. [11] modified and extended the FCN architecture by adding successive
layers to a usual contracting network. The contracting path aimed to explore contextual information
meanwhile the symmetric expending path enabled precise localization. Residual connection [33]
demonstrates its efficiency in image classification task. These shortcut connections have been applied
to segmentation areas [12–14]. Quan et al. [12] leveraged the summation-based skip connections to
allow a much deeper network architecture than [11]. Similarly, in [13], Michal et al. extended Residual
Network to FCN for semantic image segmentation of hundreds of layers. Ahmed et al. [14] proposed
residual deconvolutional neuron network which was formed with similar informative paths for fully
extracting image features. Detailed comparisons of each method can be seen in Table 1.

Table 1. An overview of related work in terms of pros and cons.

Author Year Approach Pros(+) and cons(−).

Vu et al. [30] 2008 Graph cut algorithm (+) The algorithm was direct and execution
time was very short.
(−) The final result depended too much on
experts’ editing.

Jurrus et al. [5] 2008 Optimal-path
approach

(+) Such machine learning algorithms helped
identify cells automatically considering
variability or inconsistency.
(−) Priority principle for finding path made it
less effective especially when neuron numbers
are increasing.

Kaynig et al. [31] 2010 Random forest (+) Adding geometrical consistency constraints
improved the accuracy of cluster method.
(−) Geometries were not easily extracted and
feature selection by users greatly impacted final
results.

Ciresan et al. [8] 2012 Deep neuron network (+) It was the first time using DNN in this filed
and improved the speed and accuracy.
(−) The filter was fixed thus limited information
was unitized.

Ronneberger et al. [11] 2015 Convolution neuron
network

(+) The structure was flexible and symmetric
which could gain multi-level information.
(−) The depth was always limited.

Chen et al. [10] 2016 Convolution neuron
network

(+) Hierarchical features were extracted
for discriminating and localizing such that
improved segmentation result.
(−) The receptive fields were limited by the
fixed kernel sizes and its auxiliary classifiers
needed careful selections.

Quan et al. [12] 2016 Convolution neuron
network

(+) Summation-based skip connection was
used inspired by residual network and to some
extent eased training burden.
(−) The receptive filed was not significantly
increased due to the kernel size and depth.

Drozdzal et al. [34] 2018 Convolution neuron
network

(+) Utilizing a new FCN for data normalization
as preprocessor and designing bottleneck block
for increasing depth helped improve results.
(−) The two FCN took so much processing
power.

Fakhry et al. [14] 2017 Convolution neuron
network

(+) It took the advantages of ResNet.

(−) The results were not promising and heavily
relied on post-processing.



Symmetry 2018, 10, 467 5 of 18

Overall, most of these deep learning-based methods are for the purpose of obtaining more
contextual information with minimum additional computation. Despite of the abovementioned
algorithms, EM image segmentation problem still contains much for improvement. For this reason,
we introduce adversarial training in our work. Many recent methods have achieved state-of-the-art
accuracy by employing GANs. GANs have a critic network optimized to distinguish real images
from fake ones such that the generator network will be motivated to synthesize more realistic images.
Similar adversarial training approaches have been explored in different academic fields, such as
text-to-image translation [35], image-to-image translation [17], single image super-resolution [36]
and image segmentation [37]. Applying similar segmentation to medical imaging is popular e.g.,
segmentation for brain MRI [38,39], organs in chest X-rays [40], and prostate cancer MRI [41].

In the paper, we propose a new connectomes segmentation network using adversarial training
to enhance segmentation outcomes inspired by conditional GAN [42] which is an extension of
traditional GAN model. In contrast to aforementioned work, we design a U-Net based network
as our segmentor whose convolutional layers are replaced by dilated dense blocks to achieve more
contextual information.

3. Proposed Method

Given the special challenges of EM image segmentation problem, we design the network based
on the experimental results and best practices. In this section, we start with explaining the general
design of our ADDN model. Then, the detailed architecture of each component is elaborated.

3.1. Overview

Figure 2 shows the overall architecture of the proposed ADDN which consists of segmentor and
discriminator network. Typically, the segmentor is composed with encoders and decoders network.
To tailor to the connectomes segmentation problem, the standard convolution layers in the network are
replaced by dilated dense blocks. It is similar to the generator in traditional GANs which produces a
probability label map, while conditioned on the input image. The discriminator takes the ground truth
label maps or predicted label maps along with original EM images as input. It is trained to discriminate
the synthetic labels from ground truth labels meanwhile making them as similar as possible. These two
networks can be trained jointly through optimizing the segmentor and discriminator in turn.
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Figure 2. An overview of our proposed ADDN connectomes segmentation method. ADDN consists of
the segmentor (Section 3.3) and the discriminator (Section 3.4). We estimate the segmentation label
using the proposed densely dilated network, followed by the discriminator to distinguish segmented
images from ground truth along with input EM images. Forward propagations are drawn in black, red
and yellow lines, backward propagations are drawn in purple dotted lines.

3.2. Training Objectives

We firstly define S, D as segmentor and discriminator network. The data contains input image x
and its corresponding ground truth y. The size of x is H × W × 1 where H and W are for image height
and width respectively, and single channel means grayscale. Accordingly, y is H × W × C which has
the same image size and C different classes. We use xi, yi to denote input and ground truth value at
pixel position of i. S(xi) denotes the class probability predicted by S.

The cGAN in this case defines the optimization problem as follows:

min
S

max
D

LcGAN(S, D) =Ex,y∼pdata(x,y)[log D(x, y)]

+Ex∼pdata(x)[log(1 − D(x, S(x)))],
(1)

where x is not only the input image which replaces random noise in traditional generator network, but
also the observed image. S tries to minimize this objective while an adversarial D tries to maximize it.

Previous work [17] has demonstrated that combining cGAN loss with a more traditional loss is
effective for encouraging less blurring. Given our segmentation task, we add an additional dice loss in
our proposed method. Therefore, our objective is

S∗ = arg min
S

max
D

LcGAN(S, D) + λLdice(S), (2)

where the dice loss is
Ldice(S) = 1 − 2 · ∑

i
xiyi/(∑

i
xi + ∑

i
yi). (3)

Here, λ is a constant value which means the weight for balancing two losses. We can solve Equation (2)
by alternatively optimizing between S and D via using their respective loss functions.
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Training discriminator network. The inputs of the discriminator network interactively switch
between xg and xs during training: xg denotes the concatenation of the annotation and the input, and
xs denotes that of the segmented map and the input. The loss function of the discriminator L(D) is
composed of two binary cross-entropy losses and its calculation formula as follows:

L(D) = Lbce(D(xg, yg), 1) + Lbce(D(xs, ys), 0), (4)

where
Lbce(x, y) = ∑

i
yi log xi + (1 − yi) log(1 − xi). (5)

The discriminator is trained by minimizing L(D) and when concerning D, the S is fixed.
Training segmentor network. The loss function of the segmentor is composed of dice loss and

the adversarial loss. In particular, given certain D, the segmentor is trained by minimizing the
loss function:

L(S) = Lbce(D(xs, ys), 0) + λLdice(S). (6)

Only the xs is related to gradient, therefore, it is engaged in the first loss term Lbce.

3.3. Segmentation Network

We use a DDN which is an adaptation of DenseNet for semantic segmentation [21].
The architecture has an encoder-decoder structure including downsampling path and upsampling path.
In Figure 2, the red lines are the downsampling path which recovers the abstract image representing
by gradually reducing spatial resolution and increasing semantic dimensionality. The yellow lines are
the upsampling path aiming at predicting pixel-level class probabilities. Besides, we follow the design
of U-Net by adding the skip connections to share the low-level information between input and output
(e.g., boundary information). The black dashed lines in segmentor are such skip connections that
help capture context and local features simultaneously. The segmentor architecture (see in Figure 3)
has three main blocks: dilated dense block (b), transition down (c) and transition up (d). A dilated
dense block (DDB) has four dense layers (e). Each dense layer is formed with BN, ReLu, dilated
convolutional layer and dropout layer. Here, ReLu is our activation function, the learning rate is
set as 0.2. In particular, the BN and dropout layer are added to reduce over-fitting during training.
Transition Down (TD) contains one dense layer and an additional max pooling layer. Transition Up
(TU) modules have a transposed convolution to upsample the previous feature maps.

Notice that DDBs are adopted as the core module in the segmentation network. For one thing,
we use dense connection in this block. Formally, assume xl is the output of the lth layer, f (·) is the
convolution function and it can be computed by:

xl+1 = f (xl) ◦ xl . (7)

The reason to use dense connection lies in that it can alleviate the effect of vanishing gradients.
It overcomes the difficulty of gradient propagation through lower layers in the network. It can also
maximize information flow because the input of each layer consists of feature maps output from
all preceding layers. For another, we utilize dilated convolutions, which help the layer weights
sparsely distributed so that enlarging the receptive fields. Proper dilation factor helps capture wider
context information.

In Figure 3a we summarize all segmentor network layers. This structure is built from a first
convolution layer on the input, four DDBs and four TDs in the downsampling path, one DDB in
bottleneck (last layer of the downsampling path), four DDBs as well as four TDs in the upsampling
path. The number of feature maps produced by each dense layer is called growth rate which is defined
as parameter k and is set to 16. If not otherwise mentioned, every convolution has a kernel size of
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3 × 3 and each DDB has the dilation factor of {1,2,4,8}. Skip connections are between mirror-symmetry
convolutional and deconvolutional layers which are not shown in the figure.

Figure 3. The block diagrams of our segmentor in the experiments. Overall segmentation network
architecture (a), dilated dense block (b), Transition Down (c), Transition Up (d), and single dense
layer (e). We use the following notations: DDB for dilated dense block, TD for Transition Down, TU
for Transition Up, BN for Batch Normalization, l for number of layers in each DDB and df for dilation
factor in each dense layer. See text for details.

3.4. Discriminator Network

Our discriminator structure is illustrated in Figure 4. It is designed for differentiating between the
segmented images and ground truth to further refine segmentation results. Therefore the input is the
concatenated pairs of original EM images and estimated segmentation or manual segmentation images.
Note that, the PatchGAN [17] is used in this architecture as the classifier, which tries to distinguish if
the image is natural or generated through such N × N patch.

Figure 4. CNN architecture used in the discriminator.

In Table 2, it shows the configuration of discriminator network in detail. Four convolution layers
along with batch normalization layers and LeakyReLU activation layers (except for the last layer) act
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as the feature extractor. In this case, there are no pooling layers used in discriminator, instead, images
are downsampled using convolution layers with stride 2. The sigmoid function is stacked at the end of
these convolution layers to regress a probability score of each pixel ranging from 0.0 to 1.0. If the value
is close to 1.0, the input is real otherwise is fake. The patch size is set to 32 × 32.

Table 2. Configurations of the discriminator model.

Layer Type No. of Filter Feature Map Size Kernel Size No. of Stride No. of Padding

Image input layer 128 × 128 × 1
128 × 128 × 1

Concatenation 128 × 128 × 2

Conv-1 64 64 × 64 × 64 3 × 3 2 × 2 1 × 1
BN 64 × 64 × 64

Leaky ReLU 64 × 64 × 64

Conv-2 128 32 × 32 × 128 3 × 3 2 × 2 1 × 1
BN 32 × 32 × 128

Leaky ReLU 32 × 32 × 128

Conv-3 256 32 × 32 × 256 3 × 3 1 × 1 1 × 1
BN 32 × 256 × 256

Leaky ReLU 32 × 256 × 256

Conv-4 1 32 × 32 × 1 3 × 3 1 × 1 1 × 1

Output patch 32 × 32 × 1

3.5. Evaluation Metric

For evaluating segmentation quality, we adopt the standard metric maximal foreground-restricted
rand score after thinning (Vrand) described in [43]. We assume S to be the segmentation result and T be
the annotated images. Here pij denotes the joint probability that a pixel belongs to segment i in S and
segment j in T.

VRand
split =

∑ij p2
ij

∑j(∑i pij)2 VRand
merge =

∑ij p2
ij

∑i(∑j pij)2 (8)

Foreground-restricted Rand F-score is the most frequently used for such datasets and it is also
introduced by the official ranking system that weights VRand

split and VRand
merge equally.

Vrand = VRand
Fscore =

2 · VRand
merge · VRand

split

VRand
merge + VRand

split
(9)

3.6. Implementation Detail

In our experiment, we pre-train the segmentor via dice loss because it is beneficial for training
GANs and greatly accelerating the procedure. All the convolution layers were initialized with
HeUniform [44]. We randomly cropped a region of 128 × 128 from the original images as the input
and used Adam optimizer with an initial learning rate of 0.0002 to optimize the objective function.
The model is trained for 100 epochs with mini-batch size 2. When training involves discriminator, in
order to slow down its speed, we perform two optimization steps on the segmentor and one step on
discriminator in one batch. We implemented the model in Keras [45] with NVIDIA GTX 1080 GPU.

4. Experiment

In this section, we employ relative experiments to testify the effectiveness of our model on two
EM image datasets.
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4.1. Datasets

ISBI 2012 EM segmentation dataset. The dataset is from ISBI 2012 EM segmentation challenge [43]
which is still open for new contribution. For training, the provided set contains a stack of 30 grayscale
slices collected from Drosophila first instar larva ventral nerve cord (VNC) which is through the new
techniques ssTEM. For testing, another set of 30 images is included while segmentations are held out
by the organizers for evaluation.

Mouse piriform cortex dataset. The datasets are assembled from the piriform cortex of an adult
mouse prepared with aldehyde fixation and reduced osmium staining [46]. The 2D EM images are
assembled into 3D stacks (total 4 stacks) and manually annotated. In our experiment, we use stack 2, 3,
4 for training and stack 1 for testing.

4.2. Data Augmentation

Data augmentation is a practical method which is aimed at generating more useful data during
the deep neuron network training. Therefore, we utilize it to enrich our data by forming about
10 times larger of the raw images and their labels. There are two simple approaches in our experiments
for transformation including rotation by four different angles (0◦, 90◦, 180◦, 270◦) and flipping with
different axes (up-down, left-right, no-flip). We also adopt elastic distortion which is suitable for EM
images and thus with no requirements of other complex deformations.

Elastic distortion. It is a commonly used strategy in machine learning to enrich dataset, with
the ability of emulating some autonomous biological conditions [47], e.g., uncontrolled oscillations of
hand muscles in handwritten digit recognition task. Elastic distortion applies a displacement field
to the target image, which is built by convolving a randomly initialized field with a Gaussian kernel.
Then, the field is interpolated to the original size of the image, and forms the new one. Figure 5 is the
example of the transformation. Slight distortion can be seen in the figure, which is coincident with the
variation of cells physical topology.

Figure 5. Elastic distortion examples: before and after transformation of training image (a), before and
after transformation of training label (b).



Symmetry 2018, 10, 467 11 of 18

4.3. Ablation Study

To explore the effectiveness of different modules, we perform the following ablation studies.
Note that, in our experiment, we take use of 30 images in ISBI 2012 EM training set by splitting into
24 training images and 6 validation images. For mouse piriform cortex dataset, we preserve parts of the
images and use stack 2 for training and stack 3 for validation. Validation set is utilized to demonstrate
the performance of adversarial training as well as our DDBs in segmentor network, then tune our
hyperparameters to select our final model.

4.3.1. The Effectiveness of Adversarial Training

To verify the importance of adversarial training, we compare our proposed ADDN with DDN.
Here, DDN is the segmentor network without adversarial training thus the training objective is only to
minimize the dice loss for connectomes segmentation.

The experimental results are shown in Figure 6. As the yellow circles show, borders appear
fuzzy in DDN without adversarial training. It well demonstrates that with adversarial training, the
segmented images are less blurry. Overall, ADDN produces a more accurate segmented image.

Figure 6. Visualization of segmentation results. First column: input image; Second column: ground
truth; Third column: ADDN segmentation result; Forth column: DDN segmentation result. From top
to bottom: images from ISBI 2012 EM dataset and mouse piriform cortex dataset. The blue arrows are
complex intracellular regions, the red boxes are ambiguous regions, and the yellow circles are regions
where ADDN images are less blurry than DDN.

Then, we conduct further experiments to exploit the best loss function yielding to better
performance during adversarial training. We train four different models: densely dilated network
which is treated as the baseline, densely dilated network with only cGAN loss (DDN+cGAN), densely
dilated network with both cGAN loss and L1 loss which is a more traditional loss in computer vision
(DDN+cGAN+L1) and ADDN with both cGAN loss and dice loss. As shown in Table 3, the best result
is in bold which is similarly applied in the following tables. cGAN loss together with dice loss achieves
the best rand score. L1 loss seems to make little difference in this task and single cGAN loss is not
sufficient to boost the segmentation result.
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Table 3. Performance comparisons by using different loss functions.

Vrand DDN DDN+cGAN DDN+cGAN+L1 ADDN

ISBI 2012 0.971 0.933 0.778 0.989
Mouse piriform cortex 0.711 0.890 0.709 0.892

To further explore the performance of different losses, we analyze their training accuracy in
Figure 7. We can find out that no matter training or validation, DDN has the best training efficiency.
Comparing GAN-based models, training with cGAN loss or both cGAN and L1 loss are less stable
than ADDN and their training efficiency is almost similar.

Figure 7. Training efficiency comparisons by using different loss functions. (a)Accuracy of training set;
and (b) accuracy of validation set.

4.3.2. The Effectiveness of Proposed Segmentor Network

As mentioned in the previous section, we design our segmentor network in order to refine our
segmentation result by capturing more contextual information during training. The evaluation is
performed on some baseline models where the segmentor networks are all the variants of U-Net
architecture. The discriminator and training loss keep the same, while the segmentor networks are
divided: U-Net architecture(AUN), Dense-U-Net architecture (ADN), Res-U-Net architecture (ARN),
dilated FCN (ADFN) and our ADDN.

First, for training AUN, we replace the DDBs in segmentor with standard convolution layers with
64, 128, 256 and 512 filters as in [17], which is commonly used in relative fields. Then, we use residual
blocks in ARN where convolution layers are connected with residual connection. For ADFN, we
follow the design of [38] which consists of 16-layer FCN and dilated network. Finally, we additionally
train the ADN without dilation to explore the effect of dilated network. The achieved rand scores are
described in Table 4.

The comparison of all the networks demonstrates that our proposed segmentor is able to obtain
the highest rand score in both two datasets. Besides, comparing AUN, ARN and ADN, we can find
that convolution with dense connection achieves more favorable segmentation results than that with
residual connection and only traditional convolution. We also can find that FCN structure is relatively
too coarse to achieve good results in this case. Furthermore, the comparison of ADN and ADDN
verifies the effectiveness of dilated convolution.
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Table 4. Performance comparisons by using different segmentor networks.

Vrand ADN ADDN AUN ARN ADFN

ISBI 2012 0.980 0.989 0.977 0.974 0.963
Mouse piriform cortex 0.880 0.892 0.744 0.800 0.720

By analyzing Table 5, we can obtain the computation expenses of all the networks. It can be
observed that our proposed architecture uses the least parameters. It is only 8.9 M, almost 12 times
less than ADFN, 7 times less than ARN and 5 times less than AUN.

Table 5. Parameters comparisons by using different segmentor networks.

Method ADN ADDN AUN ARN ADFN

parameters (M) 8.9 8.9 42.0 65.6 109.3

4.3.3. Hyperparameter Study

Selection of λ. λ is the hyperparameter in Equation (6). In order to choose the optimum value,
comparable experiments have been performed on two datasets. As shown in Figure 8, we find that the
best rand score is obtained at λ = 100. Vrand rises rapidly because the weight of dice loss becomes more
significant compared to Lbce loss. However, when it far outweighs Lbce loss, the rand score decreases
instead. Thus, we empirically assign 100 to λ in our following experiments.

Selection of growth rate. The growth rate (k) is an important parameter for densely connected
networks which decides the amount of passing information of each layer. Theoretically [20], growth rate
is with no requirements to be too large thus we compare four different values using ISBI 2012 training and
validation set and all the results are obtained by averaging 5 results in ISIB 2012 validation set. As shown
in Table 6, with k increasing, the rand score is higher however it is limited by consumption of GPU
memory (when k = 24). Therefore, in our final model, we utilize 16 as our growth rate.

Figure 8. Performance comparisons for different λ values on validation set.

Table 6. Performance comparisons by using different growth rate on ISBI 2012 validation set.

Growth rate 8 12 16 24

Vrand 0.975 0.979 0.986 -
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4.4. Performance Comparison

Qualitative comparison. Figure 6 demonstrates the qualitative results of two datasets without
boundary refinement. Pixels with darker color denote higher probability of being membrane.
Our ADDN can identify the complex intracellular structures and accurately remove mitochondria or
vesicles shown by blue arrows. The red boxes are the regions where the contrast of membrane is low,
however by gaining more contextual information, our ADDN architecture is relatively robust to such
image noise and successfully predicts accurate probability map. The proposed methods well tackle the
previously mentioned problems.

Quantitative comparison. We compare our model with several state-of-the-art approaches on
two benchmarks. Quantitative results are summarized in Table 7 and Table 8.

In Table 7, we firstly evaluate the performance of our ADDN by comparing with existing published
entries on ISBI 2012 EM dataset. The performance of different submitted methods will be reported on
the leader board. Besides, for fair comparisons, we employ some approaches under the same conditions
with ours: the same training data with same augmentation methods, the same testing data and all
results without any post-processing. We can see from the table that we surpass all the deep learning
methods and achieve 0.9832 rand score without any post-processing methods. From the second
column, many approaches with high ranking rely on post-processing to boost their performance, such
FusionNet [12] used 2D median filter for each slice, CUMedVision [10] used watershed algorithm
and averaged 6 trained model to improve the results. That can also be seen in the third column.
We find that FusionNet and U-net [11] perform worse which may be caused by lacking post-processing.
However M2FCN [48] achieves better result in our environment which is most likely due to our
augmentation methods.

Table 7. Comparison with published entries on ISBI 2012 EM dataset. On http://brainiac2.mit.edu/
isbi_challenge/leaders-board-new. you can check all the submitted approaches.

Method Vrand in Published Entities Vrand in Our Experiments

ADDN (Ours) 0.9832 0.9832
PolyMtl [34] 0.9806 -
M2FCN [48] 0.9780 0.9800

FusionNet [12] 0.9780 0.9736
CUMedVision [10] 0.9768 -

U-net [11] 0.9727 0.9694

Table 8 indicates comparisons on mouse piriform cortex dataset. Our model can process image
of arbitrary size. However the images of this dataset have different resolutions in different stacks.
Therefore, we still pick 128 × 128 from original images and use them to train our networks. We use the
same stack for testing as [46,48]. And we still compare some experiments in our environment. We can
observe that our approach gains higher result when comparing with other state-of-the-art models
which are mostly recursive-based model. Besides, VD2D3D [46] took a 2D convolutional network
followed by a 3D network to segment. Our model only takes 2D context information while even has
higher rand score than the 3D method.

Table 8. Comparison with state-of-the-art methods on mouse piriform cortex dataset.

Method Vrand in Published Entities Vrand in Our Experiments

ADDN (Ours) 0.988 0.9881
M2FCN [48] 0.986 0.9866

VD2D3D [46] 0.972 -
VD2D [46] 0.946 -

http://brainiac2.mit.edu/isbi_challenge/leaders-board-new.
http://brainiac2.mit.edu/isbi_challenge/leaders-board-new.


Symmetry 2018, 10, 467 15 of 18

5. Discussion

ADDN is proposed with novelty to overcome connectomes segmentation challenges of EM
images. The approach achieves accurate segmentation performance by utilizing adversarial training
which sets a high-level goal instead of traditional segmentation objectives. In this min-max game, the
segmentor will struggle to improve its segmentation ability under the simulating of the discriminator.
With the popularity of GANs, some studies have the similar concept with us. Dai et al. [40] proposes
SCAN architecture for chest X-ray organ segmentation problem utilizing adversarial training and
residual connections. The main difference of us is that it is based on ordinary GAN which may
frequently incur ill-posed problems but our model is on cGAN that is specifically designed to solve
that. Moeskops et al. [38] has the same cGAN framework and dilated network with us however the
segmentor network architecture and loss function definition are quite different. Firstly, dilated FCN is
a coarse architecture without skip connection or only with shallow networks thus not fully capturing
contextual information. The experimental result in Table 4 verifies that its segmentor network (dilated
FCN) is not powerful and performs worst among all methods. DDN has larger receptive fields and
gains more context so that the result is best. Secondly, its cGAN loss and another loss are actually
separated during training while we combine them together and add a hyperparameter λ as the weight
sum to increase or decrease the effect of dice loss which can make the objective more flexible. To sum
up, our architecture is based on cGAN framework but also special in designing segmentor network,
designing objective function.

In Table 7 and Table 8, we have compared with existing methods in connectomes segmentation
field. According to the final rand score in testing image, we outperform all the mentioned approaches.
Then we further analyze them in theory. For FusionNet [12], CUMedVision [10] and U-Net [11], the
three methods utilize certain techniques such as residual connections, multi-level features fusion or
skip connections to increase the network depth and receptive fields while it is not thorough enough due
to the limitation of training ability and improper information flow. Therefore they all need the help of
post-processing. For PolyMTL [34], it bounds two FCNs together, one as pre-processor for normalizing
images and the other is for segmenting. The structure is not so convenient meanwhile the pre-processor
contributes too much and makes the segmentation network less effective. For M2FCN [48], the main
defect is that dealing with sequential input is time-consuming and heavily increases computational
expenses. Compared with them, our architecture takes the advantage of dense connection which
has proved superior than residual connection and simple convolution, and dilated network to avoid
the training burden and to gain more contextual information. Besides, it is trained end-to-end with
arbitrary input size and when testing, only segmentor network will be involved. It is more convenient
than PolyMTL. Moreover, it considerably saves its computational expenses.

There are still some limitations of our approach: (1) The dataset for training and testing in our
experiment is a little small; (2) During training, the densely connected network generates many
intermediate features which consumes large quantities of GPU memory. However, they can be solved
by (1) utilizing more large-size images and considering using transferred images from other domain
and (2) changing the storage ways for intermediate features as in [49] recommended. Besides these,
in the future, we will additionally try more various architectures of the segmentor network or
discriminator network which may help boost the final performance. Secondly, the ADDN can be
extended to 3D model so that we deal with 3D inputs for EM image sections.

6. Conclusions

In this work, we propose the ADDN framework that applies adversarial training to develop an
accurate segmentation model for the connectome segmentation using EM images. ADDN extends
U-Net structure with DDB as segmentor architecture to better gain contextual information between pixels.
GAN objective and dice loss are jointly optimized to attenuate blurry effect. Extensive experiments
indicate that our method achieves superior performance and requires less computation.
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