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Abstract: Fc-glycosite-specific antibody–drug conjugation represents a promising direction for the
preparation of site-specific antibody–drug conjugates (ADCs). In the present research, we con-
ducted a systemic evaluation of two endoglycosidase-catalyzed chemoenzymatic glycoengineering
technologies to prepare glycosite-specific ADCs. In the first two-step approach, the antibody was
deglycosylated and then reglycosylated with a modified intact N-glycan oxazoline. In the second one-
pot approach, antibodies were deglycosylated and simultaneously glycosylated with a functionalized
disaccharide oxazoline. For the comprehensive evaluation, we first optimized and scaled-up the
preparation of azido glycan oxazolines. Afterwards, we proved that the one-pot glycan-remodeling
approach was efficient for all IgG subclasses. Subsequently, we assembled respective ADCS using
two technology routes, with two different linker-payloads combinations, and performed systemic
in vitro and in vivo evaluations. All the prepared ADCs achieved high homogeneity and illustrated
excellent stability in buffers with minimum aggregates, and exceptional stability in rat serum. All
ADCs displayed a potent killing of BT-474 breast cancer cells. Moving to the mouse study, the ADCs
prepared from two technology routes displayed potent and similar efficacy in a BT-474 xenograft
model, which was comparable to an FDA-approved ADC generated from random conjugation. These
ADCs also demonstrated excellent safety and did not cause body weight loss at the tested dosages.

Keywords: endoglycosidase; glycan oxazoline; chemoenzymatic glycan-remodeling; antibody-drug
conjugates

1. Introduction

The conjugation of various functional molecules to antibodies are frequently used
and actively explored for a wide variety of applications within the life science sectors,
such as fluorescent labeled antibodies for the detection and imaging [1], antibody–drug
conjugates (ADCs) for cancer therapy [2–7], antibody–antibiotic conjugates for infectious
disease treatment [8,9], antibody–immunostimulant conjugates for the treatment of can-
cer and other diseases [10], and lysosomal-targeting chimera (LYTAC) for the targeted
degradation of proteins [11]. The need for stable, robust and controlled conjugation tech-
nologies are continuously growing within basic research, diagnostics, and therapeutic
development [7,12,13].

The most notable and exemplified application of antibody conjugation is the develop-
ment of ADC therapeutics. Over the past 10 years, ADCs have emerged as one of the most
powerful and successful avenues for the treatment of cancer. By conjugating to targeted an-
tibodies, highly toxic drugs are specifically delivered to tumor tissues to kill the cancer cells
while largely sparing normal tissue [2–7]. Currently, 15 ADCs have been approved by the
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FDA and the regulatory agencies of other countries (Table 1), while about 200 other ADCs
are being tested in various stages of human clinical trial towards different types of cancers
(https://worldadc-europe.com/ (accessed on 1 March 2023)). For most of the ADCs that
are on the market or currently in clinical trials, the payloads have been conjugated to anti-
body by non-specific random linkage to either cysteine or lysine, resulting in heterogenous
ADC regioisomers, with varied antigen affinity, aggregation potential, serum half-life, and
other limitations [7,14–16]. As a result, site-specific ADCs with more consistent quality
attributes, improved pharmacokinetics, and an enhanced therapeutic index have been
developed and evaluated in different stages [7,13]. Currently, a majority of the explorations
and developments to achieve site-specific ADCs were based on protein engineering, such
as engineered cysteines (ThioMabTM), enzyme-directed modification, and unnatural amino
acid incorporation [7,13]. Another approach is conjugation through the Fc N-glycan at
the conserved Asn-297 position to generate Fc-glycan-specific ADCs. The N297 position
appears to be an optimal position for the site-specific drug conjugation of antibodies, as
demonstrated in multiple preclinical reports. A Pfizer study indicated that among the
various antibody locations (N-terminal of light chain, C-terminal of heavy chain, etc.),
transglutaminase-catalyzed conjugation on the Q295 position, in close proximity to the gly-
cosylation site, produced the ADC with the highest stability in incubation in mouse plasma,
the best pharmacokinetic profile in mouse, and the most potent anti-tumor efficacy in a
xenograft mouse model of pancreatic cancer [17]. In another study with GlycoConnectTM

technology [18], in vivo site-scanning of a glycan-specific conjugation demonstrated that
the native N297 glycosylation site is the optimal conjugate position to achieve the best
anti-tumor effect [18]. Finally, reports from a Merck research group and researchers from
Binghamton University also corroborated that conjugation with Q295 demonstrated su-
perior stability and pharmacokinetics to a wide range of other locations [19,20]. Multiple
aspects of the advantages of site-specific Fc-glycan conjugation strategy can be explained:
(1) Conjugation with Fc N-glycan, which is distant to the Fab region, usually would not
interfere with the binding to the antigen; (2) The natural glycan linkage is usually stable
in the blood circulation. In contrast, the popular cysteine-maleimide conjugation may
incur retro-Michael additions, which would cause the detachment of linker-payload in the
circulation process [21–23]; (3) The N-297 site, as a spatially hidden position, partially or
fully shields the linker payloads to serum protease, depending on the length or chemical
nature of the linker.

Table 1. ADCs approved by global regulatory agencies.

Company/Partner
(Trade Mark)

Common
Name

INN Indications Approval Target
Antibody

Conjugation
DAR Linker Payload

Pfizer
(Mylotarg)

CDP-771
Gemtuzumab
ozogamicin

acute myeloid
leukaemia (AML)

2000/2017
(USA)

CD33
IgG4

(Lysine)
2~3

Cleavable
hydrazone-

disulfide
Calicheamicin

Seagen/Takeda
(Adcetris)

SGN-35
Brentuximab

vedotin

Hodgkin’s
Lymphoma (HL)
and anaplastic

large-cell
lymphoma (ALCL)

2011 (USA) CD30
IgG1

(Cysteine)
~4

Cleavable
Val-Cit

MMAE

Genetech
(Kadcyla)

T-DM1
Trastuzumab

emtansine
HER2 + metastatic

breast cancer
2013 (USA) HER2

IgG1
(Lysine)

3.5
Non-

cleavable
SMCC

DM-1

Pfizer
(Besponsa)

CMC-544
Inotuzumab
ozogamicin

acute lymphoblastic
leukaemia (ALL)

2017 (USA) CD22
IgG4

(Lysine)
~4

Cleavable
hydrazone-

disulfide
Calicheamicin

Astrazeneca
(Lumoxiti)

CAT-8015
Moxetumomab

pasudotox
hairy cell leukemia

(HCL)
2018 (USA) CD22 Fc/2 Ab 1

Fusion
protein

PE38

Genetech
(Polivy)

DCDS4501
/RG7596

Polatuzumab
vedotin

diffuse large-B-cell
lymphoma
(DLBCL)

2019 (USA) CD79b
IgG1

(Cysteine)
3.5

Cleavable
Val-Cit

MMAE

Daiichi Sankyo
(Enhertu)

DS-8201/
T-DXD

Trastuzumab
deruxtecan

HER2+ metastatic
breast cancer

2019 (USA) HER2
IgG1

(Cysteine)
7.6

Cleavable
GGFG

DXD

https://worldadc-europe.com/
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Table 1. Cont.

Company/Partner
(Trade Mark)

Common
Name

INN Indications Approval Target
Antibody

Conjugation
DAR Linker Payload

Seagen/Astella
(Padcev)

ASG-22ME
Enfortumab

vedotin
Metastatic

urothelial cancer
2019 (USA) Nectin-4

IgG1
(Cysteine)

3.8
Cleavable

Val-Cit
MMAE

Immunomedics/
Gilead

(Trodelvy)
IMMU-132

Sacituzumab
govitecan

Triple negative
breast cancer

2020 (USA) TROP2
IgG

(Cysteine)
7.6

Cleavable
CL2A

SN38

GSK
(Blenrep)

GSK2857916
belantamab
mafodotin

Multiple myeloma 2020 (USA) * BCMA
IgG1,

(Cysteine)
~4

Non-
cleavable

mc
MMAF

Rakuten
(Akalux)

RM-1929
Cetuximab
sarotalocan

Head and neck
squamous cell

carcinomas
(HNSCC)

2020 (Japan) EGFR
IgG1

(lycsine)
~3

Non-
cleavable

IR700

ADCT
(Zynlonta)

ADCT-402
Loncastuximab-

tesirine
Diffuse Large B-cell

lymphoma
2021 (USA) CD19

IgG1
(Cysteine)

2.3
Cleavable

Val-Ala
PBD dimer

Seagen
(Tivdak)

TF-011-
MMAE

Tisotumab
vedotin

Recurrent or
metastatic cervical

cancer
2021 (USA)

Tissue
factor

IgG1
(Cysteine)

4
Cleavable

Val-Cit
MMAE

RemeGen
(Aidixi)

RC48
Disitamab

vedotin
gastric cancer 2021 (China) HER2

IgG1
(Cysteine)

4
Cleavable

Val-Cit
MMAE

Immunogen
(ELAHERE)

IMGN-853
Mirvetuximab
soravtansine

Platinum-Resistant
Ovarian Cancer

2022 (USA) FRa IgG1 (lysine) 3.4
Cleavable

Sulfo-SPDB
DM4

Abbreviations: BCMA, B-cell maturation antigen; DM1, mertansine; DXD, deruxtecan; FRa, folate recep-
tor a; INN, international nonproprietary name; mc, maleimidocaproyl; MMAE, monomethyl auristatin E;
MMAF, monomethyl auristatin F; PBD, pyrrolobenzodiazepine; SMMC: N-succinimidyl-4-(N-maleimidomethyl)
cyclohexane-1-carboxylate; SPDB, N-succinimidyl 4-(2-pyridyldithio) butyrateTROP2, tumour-associated calcium
signal transducer 2. * Blenrep was withdrawn from market in November 2022.

In recent years, different methods have been developed for Fc-glycan remodeling-
based site-specific conjugation. Early attempts included the functionalization the Fc glycans
through the oxidation of adjacent diols of terminal monosaccharides [24,25]. The use of the
galactosyltransferase (GalT) mutants capable of accommodating modified UDP-galactose
derivatives as the donor substrates enabled the incorporation of a selected tag at the
terminal GlcNAc moieties on the Fc glycans for subsequent site-specific conjugation with
modified cytotoxic agents [7,13]. The GlycoConnect technology [18,26], which comprises
trimming Fc-glycan with endoglycosidase (Figure 1B) and the subsequent transfer of
a GalNAz or an azido-Gal moiety and subsequent click of a payload [18,26], has been
adopted by multiple clinical stage companies in the development of ADCs. However, there
are limitations to this technology route. First, the Gal- or GalNAc-transferase (GalT or
GalNAcT) is not a very efficient enzyme, requiring large quantities of enzymes (enzyme
to substrate (E:S) weight ratio up to 1:20) and taking a prolonged time (overnight) to
complete the full transfer [18,26]. Second, as the GalT or GalNAcT in this platform can
only transfer azide- or keto-based small Gal-GDP derivatives, the conjugation loading
points provided by this method is only 2 [18]. Third, the use of multiple enzymes may
entail multiple purification steps in the process, which significantly increases the cost of
the industrial manufactural process. In contrast, an endo-N-acetyl-β-D-glucosaminidases
(ENGases)-based transglycosylation method recently developed by Wang and co-workers
can overcome most of those limitations. As shown in Figure 1A, this approach utilizes the
transglycosylation activity of an ENGase, EndoS2 from Streptococcus pyogenes of serotype
M49, to transfer activated synthetic disaccharides with a conjugation tag (azide, etc.) to IgG
in a single-enzyme, one-pot manner [27]. In this remarkable approach, the deglycosylation
step (to trim out the heterogenous native glycan between two GlcNAcs within the chitobiose
core) and the transfer of the azido disaccharide (in the form of activated glycan oxazoline)
to the deglycosylated IgG occur simultaneously in the same reaction system, with just one
enzyme. As the disaccharide is an unnatural substrate for EndoS2, the transglycosylation
product of IgG-disaccharide-azide is highly resistant to hydrolysis by the enzyme due
to the truncated modification. The azide-functionalized antibody can be subsequently
conjugated with a functionalized payload through click reactions to produce a site-specific
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ADC [27]. Furthermore, it has been demonstrated that EndoS2 can also accommodate
drug-preloaded disaccharide oxazoline derivatives as a substrate for transfer, enabling
single-enzyme, one-pot ADC production [28,29].
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On the other hand, another relevant two-enzyme glycan-remodeling approach has
also been developed for the construction of ADCs. This approach consists of two enzy-
matic steps: deglycosylation of the antibody by an ENGase like EndoS2 to provide the
precursor with the first N-acetylglucosamine (GlcNAc), with the core fucose still attached
(antibody-GnF), and the subsequent attachment of a tagged (such as azide) biantennary
sialylated complex-type (SCT) N-glycan to the deglycosylated antibody by a glycosyn-
thase (ENGase mutant) such as EndoS-D233Q or EndoS2-D184M, which serves as the
loading points for the functional molecules [30–33] (Figure 1B). The core enzyme of this
platform, ENGase or glycosynthase, can transfer either disaccharide or a large glycan sub-
strate, such as full-length N-glycan with terminal sialic acid, conjugated with the extended
spacer-tag group [34,35]. In addition, either ENGase or glycosynthase can transfer the
reaction with very high efficiency, and an E:S of lower than 1:300, and complete the reac-
tion within two hours. This flexibility and efficiency are superior to other enzyme-based
platforms to generate site-specific ADCs, such as GalT/GalNAcT (GlyConnectTM), sortase
(SMACTM) [36], transglutaminase [37,38], and farnesyltransferase (ConjuAllTM) [39]. The
two-step glycan-remodeling technology (Figure 1B) was adopted by Daiichi Sankyo to
develop its next-generation ADC. An anti-CLDN6 ADC with a pyrrolodiazepine derivative
payload (DS-9606a) developed with this technology entered human phase 1 clinical trials
in 2022 for the treatment of various solid tumors [40,41].

In early publications by Wang and co-workers [27,28], research works were focused
on the glycan-remodeling, with limited in vitro characterization of generated ADCs. The
ADC prepared was limited to trastuzumab, and the amount of produced and evaluated
ADC was just a few milligrams. In current study, we further optimized, evaluated, and
compared two glycosite-specific chemoenzymatic technology routes. We optimized and
scaled-up the azido glycan oxazoline synthesis, prepared ADC with two different linker
payload combinations, and performed systemic in vitro and in vivo evaluations of the
azide-functionalized antibodies and the resulting site-specific ADCs. Our data indicate that
the site-specific ADCs synthesized by the two Fc glycan remodeling methods have potent
efficacy in cell-based assays and animal models, and they also have a high serum stability
with less than 2% aggregation.
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2. Results
2.1. Evaluation of the One-Pot Glycan-Remodeling Strategy for Different IgGs

For the one-pot transglycosylation, all research works to date only used trastuzumab
as the model antibody [27–29]. To validate the applicability of the one-pot technology
to other IgG1 mAb and other IgG subclasses, we tested the transglycosylation reaction
with anti-CD30 brentuximab and intravenous immunoglobulins (IVIG), and pooled hu-
man antibodies containing IgG subclasses 1-4. As shown in Figure 2A, using the same
condition established in ref. [27], also described in the experiment section, we achieved a
97% transfer of azido-disaccharide to brentuximab within two hours. The transglycosyla-
tion product did not show any hydrolysis by EndoS2 within 6 h. With overnight incubation
at room temperature, only 3% of the product was deglycosylated by EndoS2, confirming
the amazing deterrence of the product to EndoS2 hydrolysis (Figure 2A). Next, we tested if
this EndoS2-catalyzed one-pot reaction was equally applicable to other subclasses of IgG
by performing a transglycosylation study on IVIG, and a mixture of human IgG 1-4. As
shown in Figure 2C, using the same conditions for monoclonal IgG1, the overall transfer
rate achieved for IVIG was 92%. A careful examination of the ratio of different allotypes of
IVIG between the deglycosylated IVIG (IVIG-GnF, Figure 2B) and the transglycosylation
product (Figure 2C) did not show an apparent shift in the ratios among different allotypes
of IgG, indicating that EndoS2 is capable of glycan-remodeling IgG1-4 subclasses with
azide-disaccharide oxazoline of similar efficiencies.
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2.2. Optimization of the Synthetic Routes for Azido SCT Oxazoline

For the two-step Fc glycan remodeling route, the azide-functionalized disialyl complex-
type glycan oxazoline is the key intermediate, and was synthesized using the sialogly-
copeptide (SGP) as the starting material (Figure 3A) [43]. The synthetic steps from SCT
to azido SCT oxazoline was optimized and reported by Wang and co-workers [35]. Nev-
ertheless, the preparation of disalyl SCT from SGP is not optimal [35]. In the original
protocol, to manufacture azido SCT-Oxa from SGP (Figure 3B), three desalting steps were
used to remove the salts in EndoS2 digestion, NaCl from anion exchange (AEX) steps, and
organic salt in the final oxazoline reaction. These desalting procedures, which require long
and thin exclusion chromatography (SEC) column, posed a great challenge for scale-up
and dramatically reduced the overall yield. To establish a new and scalable protocol, we
used the ammonium bicarbonate (NH4HCO3) buffer in both enzyme digestions and AEX
process, which eliminates the relevant desalting steps, as ammonium bicarbonate could
be removed by lyophilization. We found that AEX on the HiTrap Q XL column with a
0–300 mM NH4HCO3 gradient could effectively remove monosialoglycan and undigested
SGP (Figure S1). We also discovered a cation exchange (CAE) step with a HiTrap SP column
that removes the positive peptide could improve the separation of mono- and disialylated
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glycan in the AEX procedure. With this improved protocol, we could produce 0.5 g of disial
SCT from 1 g of SGP in just 3 days (Figure 3C). During the process, we also observed that
residual ammonium (NH4+), after lyophilization, would react with the carboxyl group and
resulted in 10–30% mono azido-SCT (Figure S2). This problem was readily addressed by
the addition of 2 mol. eq. of sodium hydroxide before lyophilization. The sodium hydrox-
ide neutralized the ammonium and the resulting sodium bicarbonate did not negatively
impact the following azide-tagged-amine coupling and oxazoline reactions. As a result, a
new protocol for preparing azido SCT-Oxa from SGP was established (Figure 3C), which
reduced the SEC to only one time and could be proportionally scaled up to 100 grams, or
even kilograms.
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2.3. Preparation of Trastuzumab ADCs with Different Linker-Payload

After the optimization of the synthesis of azido glycan oxazolines, we employed two
bioconjugation approaches and strain-promoted alkyne−azide cycloaddition (SPAAC) [44]
to prepare glycosite-specific ADCs (Figure 1) with two different linker-payloads, an MMAE
payload with a cleavable valine–citrulline linker, and maytansinoid derivate DM1 (also
an inhibitor of tubulin polymerization) with a non-cleavable linker (Figure 4A). As the
intermediates and final ADCs made using this chemoenzymatic glycoengineering approach
are highly homogeneous, the whole process of glycan remodeling and SPAAC to assemble
the ADCs could be directly and conveniently monitored with intact antibody LC-MS
(Figure 4B,C). To prepare the ADCs with two-step remodeling, the trastuzumab (Tmab,
further abbreviated as T) was deglycosylated with immobilized EndoS2, resulting in T-
GnF, which was transglycosylated with EndoS2-D184M glycosythase to afford T-SCT-N3.
Finally, T-SCT-N3 was conjugated with the commercially available linker-payload that was
preassembled with clickable functional groups to generate the final ADCs (T-SCT-MMAE
and T-SCT-DM1) (Figure 4B).
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For synthesis of the ADCs using the azide–disaccharide substrate, we followed the
procedures reported by Wang and co-workers [27]. In brief, first, we scale up the synthesis
of azido-ManGlcNAc oxazoline to the 100 mg level. Subsequently, antibody Tmab was
one-pot tranglycosylated with azido disaccharide (Dis) oxazoline to afford T-Dis-N3; then, it
was conjugated with linker payloads to produce the final corresponding ADCs, T-Dis-DM1
and T-Dis-MMAE (Figure 4C). As shown in Figure 4B,C, the final prepared ADCs were
highly homogenous, with a main peak of DAR 4.

2.4. In Vitro Characterization of the ADCs with Different Payloads

With four site-specific ADCs in hand, we performed a series of in vitro characteri-
zations. First, we tested the stability and aggregation level of ADCs with size exclusion
chromatography (SEC) analysis. All four ADCs contained less than 2% of aggregates in
the PBS buffer, as analyzed with agarose-dextran particle-based SEC (Figure 5A). Similar
results were obtained with another high-porosity silica-particle-based SEC analysis. ADCs
were stable with 37 ◦C incubation for 7 days, without an increase in aggregation, as ana-
lyzed by SEC. We then tested the serum stability of the ADCs with cleavable linkers. As
shown in Figure 5B, ADC with either disaccharides or full-length glycan was exceptionally
stable in the rat serum, remaining intact for two weeks in 37 ◦C incubation. In contrast,
ADCs with popular cysteine–maleimide conjugation generally lose half of their payloads
in rat serum incubation assays due to the retro-Michael additional release of the maleimide
group [21–23]. Subsequently, we performed a cytotoxicity study of ADCs on BT-474, an
HER2-overexpressing breast cancer cell line. As shown in Figure 5C, all four glycosite-
specific ADCs (gADCs) demonstrated a potent and similar killing to the BT-474 cells, with
IC50 below 100 ng/mL. The gADCs with DM1 payloads demonstrated a slightly stronger
cancer cell-killing ability compared to T-DM1 (Kadcyla®), an FDA-approved ADC with
the same payloads and a similar DAR. Our final in vitro characterization of the gADCs
was their affinity with the FcRn, the serum half-life determinant of native or conjugated
antibodies. Using a LumitTM FcRn Binding Immunoassay kit, we determined that the
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affinities of four gADCs and two azido-functionalized mAbs are very similar to those of
trastuzumab (Figure 5D). This is expected, as the interaction area between the antibody and
FcRn is found on the interface between CH2 and CH3 domains of Fc, which is somewhat
distant from the N297 glycosylation site.
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Figure 5. In vitro evaluation of glycosite-specific ADCs prepared with two glycan-remodeling
approaches. (A) Aggregates analysis with size exclusion chromatography (SEC). (B) Rat serum
stability. ADCs with cleavable linkers were incubated in rat serum at 37 ◦C for two weeks. The
intergrity of ADCs at different timepoints was monitored with LC-MS. (C) Cytotoxicity of ADCs
towards BT-474 breast cancer cells with high HER2 expression. Data points were presented as
means ± SEM of triplicate measurements. (D) Affinities of ADCs, azido-functionalized Tmabs to
FcRn at pH 6, measured with a LumitTM FcRn Binding Immunoassay kit. Data are means of duplicate
measurements. SCT, sialylated full-length complex type glycan; Dis, disaccharide.

2.5. In Vivo Characterization of Glycosite-Specific ADCs with Different Payloads

After the systemic in vitro characterizations, we tested the gADCs with two differ-
ent linker-payloads in a BT-474 xenograft mouse model, with side-by-side comparison to
FDA-approved T-DM1. All ADCs were intravenously administered using a single injection
with various dosages. The tumor growth and mice body weight were continuously moni-
tored for three weeks. As shown in Figure 6, all ADCs showed a potent dose-dependent
inhibition of tumor growth (Figure 6A–E). At a dosage of 15 mg/kg for DM-1 ADC and
10 mg/kg for MMAE ADC, the one-time IV injection of the ADC induced tumor eradication
(Figure 6A–F). A lower dose, even at 1 mg/kg, still caused significant tumor shrinkage or
growth inhibition (Figure 6A–E). The ADCs prepared using two different routes demon-
strated almost identical anti-tumor efficacies, with different linker-payloads. Compared to
non-specific conjugated T-DM1, glycosite-specific ADCs demonstrated comparable effica-
cies at the highest dosage (Figure 6G,H). At a low dosage of 1 mg/kg, glycosite-specific
ADCs illustrated slightly better activity compared to T-DM1 (by day 12), although the
differences are not statistically significant (Figure 6J). At the tested doses, no ADCs caused
apparent weight loss in mice (Figure 6K).
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Figure 6. In vivo evaluation of glycosite-specific ADCs. (A–E) Dose responses of ADCs (n = 6).
DM1 ADCs were administrated once at day 0 with 1, 3, and 15 mg/kg, while MMAE ADCs were
administrated once at day 0 with 1, 3, and 10 mg/kg. Statistical analysis was performed with a
two-tailed Welch’s t-test. Data points are presented as means ± SEM. (F) Representative tumor
images of untreated and eradicated. (G–I) Comparison of different ADCs in the same dosage (n = 6).
Data points are presented as means ± SEM. (J) Body weight curves of control and treatment groups.
No significant bodyweight loss was observed for any treatment group.

3. Discussion

In the present study, we performed a systemic evaluation of two glycosite-specific
chemoenzymatic antibody–conjugation technology routes for the preparation of site-
specific ADCs. We optimized and scaled-up the preparation of azido glycan oxazolines.
The optimization and scale-up of azido-SCT oxazoline was very successful to a 500 mg
level, and can be further scaled-up proportionally. The synthesis of azido-ManGlcNAc
oxazoline was also scaled-up to 100 mg in the current study.

After optimization of the synthesis of azido glycan oxazoline, we assembled ADCs
with two technology routes, with two different linker-payloads combinations (DAR
of 4), and performed systemic in vitro and in vivo evaluations. All ADCs illustrated excel-
lent stabilities in buffers with minimum aggregates, exceptional stability in rat serum at
37 ◦C for two weeks, and potent killing of BT-474 breast cancer cell lines. The potency of
DM1 glycosite-specific ADCs is comparable with randomly lysine-conjugated and T-DM1
When comparing the payloads, MMAE ADCs are more powerful than those of DM1. In
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the final in vitro test, the ADCs showed a similar affinity with the FcRn receptors as that of
trastuzumab, which indicated that the gADC may maintain a long serum half-life in vivo,
at a similar level to its antibody precursors. Moving to the animal study, the ADCs pro-
duced using the two technology routes displayed a very potent and similar efficacy in a
BT-474 mouse xenograft model. The ADCs did not cause body weight loss at 15 mg/kg, the
highest test level. The MMAE gADCs with a cleavable linker showed similar levels to DM1
gADCs and randomly conjugated T-DM1, which is slightly distinct from the in vitro results.
The BT-474 model we used in the current study is a strong, positive HER2 model, in which
the bystander effect of the MMAE payload with a cleavable linker may not contribute to the
whole anti-tumor effect. When comparing glycosite-specific versus randomly conjugated
ADC, DM1 gADCs demonstrated similar anti-tumor activity compared to T-DM1, which
carries the non-cleavable linker.

During the course of this study, Huang and co-workers published a comprehensive
study of glycosite-specific ADCs with different linker configurations [45]. The study by
Huang’s group is more focused on the one-pot preparation of glycosite-specific ADC with
disaccharides oxazoline preassembled with a linker-payload. One interesting observation
from the Huang group is that while disaccharide-derived ADCs displayed reduced in-
teraction with Fcγ receptors, intact glycan-derived gADCs retained full affinity with Fcγ
receptors. This suggested that the two-step glycan remodeling approach may be well-
suited to the development of immunostimulatory antibody–drug conjugates (iADC) [46],
in which the interaction between iADC and Fc Fcγ receptors on the immune cells has to be
retained. It should be pointed out that while the one-pot synthesis of the ADCs with the
direct use of drug-preloaded disaccharide oxazoline as the substrates appears to be more
straightforward [28,29,45], the enzymatic conjugation efficiency using the drug-loaded dis-
accharide oxazolines is much slower than the corresponding azide–disaccharide enzymatic
conjugation method [28], requiring much more enzyme and a much longer incubation time
to complete the conjugation. As a result, scaling up the production of the ADCs could
be challenging.

In summary, in this study, we evaluated and demonstrated the remarkable efficiencies
and scalabilities of two chemoenzymatic glycan remodeling approaches for the develop-
ment of site-specific ADCs. The excellent in vitro and in vivo properties of the prepared
ADCs manifested in this research warrants further application of two approaches for the
development of therapeutic ADCs.

4. Materials and Methods
4.1. Reagents and Materials

Trastuzumab (Herceptin), T-DM1 (Kadcyla), and IVIG were purchased from RefDrug
(Hillsborough, NJ, USA). Brentuximab was produced by GeneMeta (German Town, MD,
USA). Egg yolk powder was bought from BulkFoods (Toledo, OH, USA). DBCO-PEG4-VC-
PAB-MMAE and BCN-PEG4-MCC-DM1 were acquired from BroadPharm (San Diego, CA,
USA). Other chemicals, reagents, and solvents were purchased from Sigma-Aldrich and/or
TCI, and used as-received unless otherwise specified.

4.2. Expression and Purification of Enzymes

EndoS2 and EndoS2-D184M was produced according to ref [47]. IgG-specific protease
IDeS was prepared as described in ref. [48].

4.3. Liquid Chromatography Electrospray Mass Spectrometry (LC-ESI-MS)

LC-MS analysis of glycans, glycopeptides and payload were performed on a HPLC-
SQ2 system (Waters, Milford, MA, USA) with a C18 column (XBridge C18, 2.1 × 50 mm,
3.5 µm, Waters) using water containing 0.1% formic acid as phase A, acetonitrile containing
0.1% formic acid as phase B. LC-MS analysis of intact antibody was conducted with on
a Q-Exactive OrbiTrap system (ThermoFisher, Waltham, MA, USA) with a C4 column
(Advantage 300+ C4, 2.1 × 50 mm, 5 µm, Analytical Sales and Services) with 5–90%
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acetonitrile (containing 0.1% formic acid) linear gradient. The raw data were deconvoluted
with MagTran (Amgen). The IDeS-treated IgG was analyzed with C8 column (Poroshell
300SB-C8, 1.0 × 75 mm, 5 µm, Agilent) with 25–35% acetonitrile (containing 0.1% formic
acid) gradient. The raw data were deconvoluted with MagTran.

4.4. Synthesis of Azido SCT Oxazoline

Sialylated complex type (SCT) glycan was prepared from sialylglycopeptide (SGP) that
was isolated from egg yolk powder [49]. In a typical protocol, 1 g of SGP was digested with
EndoS2 in 1:200 ratio (w/w) in 5 mM ammonium bicarbonate (NH4HCO3) buffer, pH 7.8 at
37 ◦C overnight to dissociate the glycan and peptide portions. After confirmation of the
cleavage with LC-MS, the digestion mixture was passed through a cation exchange column
(HiTrap SP HP, 5 mL, Cytiva, Marlborough, MA, USA) that removes the positively charged
peptide. Afterwards, the material was purified with anion exchange on two tandemly
connected HiTrap Q XL column (5 mL, Cytiva) with a 0–300 mM NH4HCO3 gradient which
can effectively remove monosialoglycan and undigested SGP. The purified SCT fraction
was added to 2 mol. eq. of NaOH and then lyophilized. The dried SCT was functionalized
with amino-PEG4-azide and converted to oxazoline following the reported protocol [35].

4.5. One-Pot Glycoengineering of Brentuximab and IVIG

A total of 1 mg of brentuximab or IVIG was mixed with 40 mol. eq. of azido Man-
GlcNAc oxazoline, 1 µg EndoS2 in 50 µL of 50 mM NaPO4 buffer, pH 7.0, and incubated at
room temperature. Aliquots of the reaction mixture were collected at indicated timepoints,
treated with IDeS, and subjected to LC-MS analysis.

4.6. Preparation of Trastuzumab gADCs with Different Linker-Payloads

The one-pot transglycosylation of trastuzumab (Tmab) with azido Man-GlcNAc oxa-
zoline was performed with linear enlargement to 50 mg, following the procedure described
in the above paragraph, and then purified with protein A affinity chromatography. Subse-
quently, the azido Dis-Tmab was conjugated with either BDCO-PEG4-VC-PAB-MMAE or
BCN-pEG4-MCC-DM1 though SPAAC [44], following published procedures [27]. The final
ADC was purified with protein A affinity chromatography and buffer changed to PBS. The
preparation of azido-SCT functionalized and conjugated ADC with same linker-payloads
was conducted following the procedure described in ref. [35], with linear enlargement.

4.7. SEC Analysis

The aggregation levels of four ADCs were determined with size exclusion chro-
matography (SEC) on two different types of SEC column. For an agarose–dextran-based
Superdex® 200 Increase 10/300 GL column (Cytiva) column, 50 µg of each ADC was
injected and analyzed on AKTA pure FPLC system with PBS as the mobile phase. In
another SEC analysis, 5 µg of each ADC was loaded on to a high-porosity silica particle-
based column (AdvanceBio SEC, 4.6 × 150 mm, 300 Å, 2.7 µm, Agilent (Santa Clara, CA,
USA) and analyzed with analytical Vanquish HPLC system (Waters) with 150 mM NaPO4,
pH 7.0 as the mobile phase.

4.8. Rat Serum Stability Test

The tests were conducted according to the procedures reported in ref. [23]. Aliquots of
ADC serum mixtures were taken at indicated timepoints, purified with anti-human IgG-Fc
agarose slurry (Sigma Aldrich), and analyzed with LC-MS.

4.9. Affinity to FcRn Receptors

The affinities glycan–remodel mAb intermediate and gADCs to FcRn were assayed
with a LumitTM FcRn Binding Immunoassay kit from Promega, following the manufac-
turer’s manual. The assay was conducted in doublets and the fluorescence was measured
with a multiplex mode microplate reader.
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4.10. Cancer Cell Killing Assay

BT-474 (ATCC, Manassas, VA, USA) cells were cultured in Hybri-Care medium
(ATCC), supplemented with 10% FBS, 50 U/mL penicillin, and 50 µg/mL streptomycin
(ThermoFisher, St. Louis, MO, USA), seeded at 20,000 cells/well into a 96-well plate and
grown overnight until 60% confluent. Cells were then washed with PBS and incubated
with fresh media containing the ADCs, starting at a concentration of 1 µg/mL and serially
diluted at a ratio of 1:2. Each compound was assessed in duplicate wells, and cells without a
compound served as control. Plates were incubated for 72 h and cell viability was analyzed
by CellTiter-Glo Luminescent Cell Viability Assay (Promega, Madison, WI, USA) as per
manufacturer’s instructions. In brief, a volume kit reagent equal to the media was added
to each well. Cells were then lysed and incubated for 10 min before luminescence was
recorded with a microplate reader.

4.11. Xenograft Mouse Studies

The animal study was contracted to Washington Biotechnology Inc. (Baltimore, MD,
USA). To establish the subcutaneous tumor xenograft, 2 × 107 BT-474 cells containing
Matrigel (50:50, v:v, BD Biosiences) were inoculated in the right flank subcutaneously into
5-week-old athymic nude mice. When the average tumor size reached approximately
150 mm3, the mice were injected intravenously with the indicated doses of ADCs. The
tumor sizes and weight of mice were continuously monitored for three weeks after the
initial injection of ADC.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antib12040071/s1, Figure S1: (A) LC-MS analysis of reaction product of
SGP digested by EndoS2. (B) Carbohydrate staining of AEX separation of di- and mono-sialyl glycans.
(C) LC-MS analysis of purified disalylglycan; Figure S2: Molecular structure of mono azido-SCT.
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