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Abstract: Antibody–drug conjugates (ADCs) constitute a rapidly expanding category of biophar-
maceuticals that are reshaping the landscape of targeted chemotherapy. The meticulous process of
selecting therapeutic targets, aided by specific monoclonal antibodies’ high specificity for binding to
designated antigenic epitopes, is pivotal in ADC research and development. Despite ADCs’ intrinsic
ability to differentiate between healthy and cancerous cells, developmental challenges persist. In this
study, we present a rationalized pipeline encompassing the initial phases of the ADC development,
including target identification and validation. Leveraging an in-house, computationally constructed
ADC target database, termed ADC Target Vault, we identified a set of novel ovarian cancer targets.
We effectively demonstrate the efficacy of Surface Plasmon Resonance (SPR) technology and in vitro
models as predictive tools, expediting the selection and validation of targets as ADC candidates
for ovarian cancer therapy. Our analysis reveals three novel robust antibody/target pairs with
strong binding and favourable antibody internalization rates in both wild-type and cisplatin-resistant
ovarian cancer cell lines. This approach enhances ADC development and offers a comprehensive
method for assessing target/antibody combinations and pre-payload conjugation biological activity.
Additionally, the strategy establishes a robust platform for high-throughput screening of potential
ovarian cancer ADC targets, an approach that is equally applicable to other cancer types.

Keywords: ovarian cancer; antibody–drug conjugates; bioinformatics; in silico; biomarkers; therapeutics;
internalization; SPR; Biacore

1. Introduction

Ovarian cancer (OC) is the leading cause of death from gynaecological malignancies.
OC is usually diagnosed at an advanced stage since early symptoms are vague and there
remains a lack of effective early-stage biomarkers to detect the disease [1]. Less than half
of women with OC survive five years from diagnosis, with many unresponsive to current
treatments [2]. Cytoreductive surgery and platinum- and taxane-based chemotherapy are
the first-line treatment options for ovarian carcinoma. Unfortunately, despite a positive
initial response to chemotherapy, 70–80% of patients with advanced stage OC subsequently
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develop recurrent disease, and about half of these patients eventually develop platinum
resistance, leading to an unfavourable prognosis [2].

Compared to conventional cancer treatments, targeted therapies are expected to be
more effective due to their enhanced precision which can negate detrimental side effects on
normal cells. Until recently, only two targeted therapies have been approved for treating re-
current OC: the anti-angiogenic immunotherapy Bevacizumab (antibody targeting vascular
endothelial growth factor (VEGF)) and PARPi (poly-ADP–ribose polymerase) inhibitors [2].
Whilst these agents have improved the prognosis of epithelial OC, issues around acquired
Bevacizumab and PARPi resistance have emerged in clinic [3,4]. VEGF isoform diversity
has been described as potential mechanism for OC cells to evade bevacizumab action [3].
In addition, significantly elevated levels of hypoxic-induced proteins involved in the forma-
tion of new blood vessels have been identified in patients with EOC who did not respond to
bevacizumab treatment [4]. Mechanisms of resistance to PARPi therapy include mutations
in PARP1 that diminish the binding of PARPi or allow PARP1 to maintain endogenous
functions, post-translational modifications of PARP1 which result in reduced binding by
PARPi, restoration of at least partial Homologous Recombination capabilities, stabilization
of replication forks, and upregulation of drug efflux pumps [5].

Additionally, platinum-resistant epithelial OC outcomes are extremely poor, with an
average of 12 months median survival [6]. To expand the efficacy of these agents and
improve OC outcomes, the need for novel therapeutic strategies and combination therapies
are urgent. One of the novel therapeutic strategies against ovarian and other forms of cancer
that show promising potential for targeted therapy is the use of antibody drug conjugates
(ADC). ADCs are designed to target malignant cells without harming healthy cells, while
reducing adverse effects and risk of recurrence to accelerate recovery time [7]. They are
typically composed of monoclonal antibody (mAb), linker, and cytotoxic payload. The
mAb enables the circulation of ADC within the bloodstream prior to binding to the tumour-
specific surface antigen. Following binding, the receptor–ADC complex usually internalizes
(although some ADCs may be cleaved extracellularly, causing bystander effect) through the
endocytosis pathway, leading to the death of cancer cells following proteolytic degradation
of the antibody and release of the payload into the intra-cellular environment [8]. Major
advantages of ADCs include specific binding to the target antigen, thus maximizing safety
and efficacy. A total of 13 ADCs have so far received regulatory approval by the FDA
for use in the USA, while four ADCs have been approved by the European Medicines
Agency (EMA) [9]. Last year, mirvetuximab soravtansine, an ADC-targeting folate receptor
was approved for the treatment of platinum-resistant ovarian cancer [10]. Currently, there
are several other ADC candidates developed against ovarian cancer at different stages
of clinical trials, including ABBV-428, a mesothelin-CD40 bispecific [11], PF-06650808,
an anti-Notch3 antibody-drug conjugate [12], and many other promising ADCs under
development [13].

This biomarker-driven therapeutic strategy can be applied to treat ovarian tumours,
which are characterised by differentially expressing tumour-antigens [14]. However, there
is an increasing need to enhance selection of early-stage molecules to mitigate late-stage
failures. For instance, the strength and selectivity of antigen binding, ADC internalization
efficiency, and tumour penetration dictates the effectiveness of ADC therapy and are
features that must be validated at the earliest stages of ADC development. The elucidation
of these characteristics falls to the optimization of biochemical and analytical techniques
used to study structural and functional characteristics such as affinity, kinetics, potency,
solubility, stability, immunogenicity, and pharmacokinetics, in addition to well-established
cell-based assays to study off-target effects and toxicity.

MAb–antigen affinity and stability properties of ADCs have been studied using sur-
face plasmon resonance (SPR) [15]. SPR is a well-established optical detection technique
utilised for the measurement of strength and rate of biomolecular interactions [16,17]. The
label-free detection negates the need for radioisotope tags or fluorescent reporter molecules
which can be expensive, time-consuming, and could influence the molecular interactions.
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The real-time measurement capability allows for the calculation of association (on-rate, ka)
and dissociation (off-rate, kd) rate constants and equilibrium dissociation constant (KD).
Specifically, the association rate measures how fast association of the ligand and analyte oc-
curs, while the dissociation rate measures the dissociation. The KD is the ratio between the
dissociation and association rate between the antibody and its antigen, which is inversely
correlated to the binding affinity. In addition, the microfluidic system of SPR platforms
enables the use of small amounts (microlitres) of reagents for assay development and is
advantageous when compared with other traditional endpoint-only equilibrium measure-
ment immunoassays for measuring antibody–antigen interaction such as enzyme-linked
immunosorbent assay (ELISA). The affinity characteristics of mAbs and ADCs have been
investigated using SPR previously [16,18,19]. In therapeutic antibody development, SPR is
part of a range of analytical methods also used to study drug-target binding interactions,
stability, and binding to Fc receptors [19].

An important aspect of ADC development is the identification of an appropriate
target molecule that is specifically overexpressed within cancerous tissue compared to
normal tissue [18]. Therefore, in this current study, we demonstrate a complete pipeline for
the selection of ADC targets. We highlight a novel bioinformatic strategy for identifying
novel potential ovarian cancer targets. Subsequently, we demonstrate a rigorous target
validation pipeline comprising target cellular localization, expression levels in normal vs.
cancer state, expression levels in 2D and 3D models, and the development of a simple and
refined methodology to analyse antibody–antigen binding via SPR and cellular antibody
internalization to identify ideal targets for ADC development. Specifically, we identify
and validate five targets overexpressed in ovarian cancer, of which three demonstrate
significant antibody internalization capacity, making them promising candidates for future
ADC development.

2. Materials and Methods
2.1. Online Tool/Public Data Source

The ADC target database is a MySQL database with a schema optimised for queries
which efficiently select and rank potential ADC target proteins in various cancers. Ideally,
potential targets should (1) be highly expressed in the cancer tissue, (2) have low expression
in healthy tissues, and (3) be localized to the cellular membrane.

Datasets for the ADC database for protein characteristics, including cellular localization
and protein expression in healthy and cancer tissues, were obtained from online databases:
(1) UniProt https://www.UniProt.orgl (accessed on 12 November 2018) [20], (2) ENSEMBL
https://www.ensembl.org/index.html (accessed on 12 November 2018) [21], and (3) the human
protein atlas (HPA) https://www.proteinatlas.org/ (accessed on 12 November 2018) [22,23]).
UniProt and ENSEMBL databases were queried programmatically using the REST API via
custom Python 3 scripts. For each known protein in the human proteome, UniProt was queried
for (1) Protein ID, (2) protein sequence, (3) ENSEMBL Gene ID (for gene encoding the protein),
(4) sub-cellular localization, and (5) whether the protein is transmembrane. ENSEMBL was
queried for gene symbols, based on the ENSEMBL Gene IDs obtained from UniProt.

Data relating to protein expression in healthy tissue and corresponding cancerous
tissues was obtained from the human protein atlas (HPA). HPA was queried program-
matically by iterating through each ENSEMBL ID obtained from UniProt via a custom
Python 3 script. For each ENSEMBL ID, an XML file containing all HPA annotations for the
corresponding gene was read into memory. Each XML file was parsed for (1) IHC protein
expression results for all healthy tissues and (2) IHC protein expression results for all
cancerous tissues. To obtain predictions of the number of transmembrane regions, protein
sequences downloaded from UniProt were concatenated into FASTA format and uploaded
to the TopCons web-server https://topcons.cbr.su.se/ (accessed on 28 January 2019) [24].
TopCons provided transmembrane prediction results from five separate transmembrane
prediction algorithms, with a sixth prediction performed using the TopCons consensus
procedure. All data were stored as text files or Python pickle files. The MySQL database

https://www.UniProt.orgl
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tables were generated, and the data were written to them using Python 3 scripts by utilising
the MySQL connector library. Following creation, the database was indexed to increase
search performance.

Finally, AbDesigner, an online tool used for identifying optimal immunizing peptides
for antibody production using a peptide-based strategy [25] https://esbl.nhlbi.nih.gov/
AbDesigner/ (accessed on 14 March 2019), was utilized for the identification and selection
of optimal peptide immunogen sequence for antibody selection against specific regions of
target proteins.

Images related to immunohistochemistry protein expression on ovarian and cancer
tissue were taken from the HPA [22,23] (representative IHC Images links: https://www.
proteinatlas.org/ENSG00000082556-OPRK1/pathology/ovarian+cancer#ihc, GABRB1 im-
ages taken from HPA October 2019 version, https://www.proteinatlas.org/ENSG0000007
0018-LRP6/pathology/ovarian+cancer#ihc, https://www.proteinatlas.org/ENSG0000012
0324-PCDHB10/pathology/ovarian+cancer#ihc, https://www.proteinatlas.org/ENSG0
0000113248-PCDHB15/pathology/ovarian+cancer#ihc) (accessed on 14 October 2019).

2.2. Pathway Analysis

Overrepresentation pathway analysis was performed using the WebGestalt 2019 web
(Houston, TX, USA) interface [26]. Ensembl gene IDs for genes encoding the 100 highest-
ranked target proteins were uploaded to identify enriched pathways in GO Biological
Process, KEGG, Panther, and REACTOME functional databases [27–30]. The ‘genome
protein-coding’ reference set was used for the reference gene list. Pathway analysis results
were plotted using the R ggplot2 package [31].

2.3. Cell Culture

SKOV-3 and OVCAR-3 wild-type (WT) cells, as well as HOSEpiC cells, were purchased
from the American Type Culture Collection (ATCC, Manassas, VA, USA), while cisplatin-
resistant SKOV-3 and OVCAR-3 cell lines were provided by Axis Bioservices (Coleraine, UK).
Both sensitive and resistant cells were cultured in McCoy’s media (Cat 26600-023, Gibco, Le-
icestershire, UK), containing 10% Fetal Bovine Serum (FBS) and 5% penicillin/streptomycin,
and RPMI 1640 media, containing 20% FBS, 1% penicillin/streptomycin, and 0.01 mg/mL
bovine insulin. HOSEpiC, UACC-1598, and UWB-1289 cell lines were cultured in Dul-
becco’s Modified Eagle Medium: Nutrient Mix F-12 (DMEM/F12), supplemented with 10%
FBS and 1% penicillin/streptomycin. COV644 was cultured in DMEM (Cat 10-017-CVR,
Corning, NY, USA) supplemented in 15% FBS and 1% penicillin/streptomycin. TOV112D
and TOV21G were both cultured in Medium 199 (Cat M4530, Sigma, Welwyn Garden City,
UK) and supplemented with MCDB105 (Cat M6395, Sigma, Welwyn Garden City, UK)
dissolved in sterile filtered water, 15% FBS, and 1% penicillin/streptomycin. A2780 WT
and cisplatin-resistant cell lines were cultured in RPMI 1640 media containing 10% FBS and
1% penicillin/streptomycin. During alternate cell passages, media for cisplatin-resistant
cell lines was additionally supplemented with cisplatin at final concentrations of 3 µM for
SKOV-3cis, 1.5 µM for OVCAR-3cis, and 1 µM for A2780cis cells. Cells were subsequently
maintained at 37 ◦C in a 5% CO2 humidified incubator.

Three dimensional spheroids derived from SKOV-3 WT cell lines were cultured by the
liquid overlay technique [18]. SKOV-3 cells grown as a two-dimensional monolayers were
resuspended with trypsin, and 5 × 103 cells were seeded in 200 µL of appropriate culture
medium and cultured in Ultra-Low Attachment Multiple Well Plate (Cat 7007, Corning, NY,
USA) to obtain a single spheroid per microwell. Spheroids were subsequently harvested
72 h post-culture for immunofluorescence assay.

Brightfield images were acquired from Zeiss PrimoVert light microscope equipped
with Axiocam ERc 5 s camera (Carl Zeiss Microscopy GmbH, Jena, Germany). All cell
lines were verified with the MycoAlert mycoplasma detection kit (Lonza, Castleford, UK)
and experiments involving these cell lines were conducted between passages 4 and 20
following thawing.

https://esbl.nhlbi.nih.gov/AbDesigner/
https://esbl.nhlbi.nih.gov/AbDesigner/
https://www.proteinatlas.org/ENSG00000082556-OPRK1/pathology/ovarian+cancer#ihc
https://www.proteinatlas.org/ENSG00000082556-OPRK1/pathology/ovarian+cancer#ihc
https://www.proteinatlas.org/ENSG00000070018-LRP6/pathology/ovarian+cancer#ihc
https://www.proteinatlas.org/ENSG00000070018-LRP6/pathology/ovarian+cancer#ihc
https://www.proteinatlas.org/ENSG00000120324-PCDHB10/pathology/ovarian+cancer#ihc
https://www.proteinatlas.org/ENSG00000120324-PCDHB10/pathology/ovarian+cancer#ihc
https://www.proteinatlas.org/ENSG00000113248-PCDHB15/pathology/ovarian+cancer#ihc
https://www.proteinatlas.org/ENSG00000113248-PCDHB15/pathology/ovarian+cancer#ihc
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2.4. Western Blot

Protein quantification was performed (Bradford assay) and equal amounts (20 µg)
were resolved by SDS-PAGE, transferred to PVDF membranes, and blocked overnight
with 5% BSA in 0.1% Tween-20-TBS (TTBS). For recombinant protein detection, 15 ng was
loaded, due to the high sensitivity during antibody detection. Subsequently, membranes
were incubated at 4 ◦C with the appropriate primary antibodies diluted 1/1000 in 5%
BSA-TTBS buffer. Blots were further incubated for 1 h with IgG horseradish peroxidase
secondary antibody diluted 1/2000 in 5% BSA-TTBS buffer. Between incubation steps,
membranes were washed 3 × 10 min with TTBS. Blots were analysed for GAPDH levels
(GAPDH rabbit polyclonal antibody FL-335, Santa Cruz Biotechnology, Dallas, TX, USA) to
normalise protein loading in each well. Immunoreactive bands were visualized using a
ChemiDoc System Bio-Rad Imager (Bio-Rad laboratories; Hertfordshire, UK).

2.5. Gene Expression Analysis

Gene expression analysis was carried out by interrogating the GEPIA2 public portal
database, which references TCGA datasets and GTEx datasets. Expression levels of the
OPRK1, GABRB1, LRP6, PCHDB10 and PCDHB15 were addressed in biopsies of ovarian
cancer vs. the matched healthy tissue, with a significance threshold set at p < 0.05, according
to the tool: Expression analysis/Expression DIY/Box plot, in GEPIA2 portal. qRT-PCR
experiments were also performed to identify expression levels of the targets using healthy
and ovarian cancer cell lines, as described before [18]. Briefly, RNA was extracted from cell
lines using the RNeasy® Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer
protocol, from which cDNA was generated using the High-Capacity cDNA Reverse Tran-
scriptase Kit (Applied Biosystems by Thermo Fisher Scientific, Loughborough, UK). Reverse
transcription reactions were performed using the T100™ Thermal Cycler (Bio-Rad labora-
tories, Hertfordshire, UK). Samples were analysed by qPCR in triplicate using the iTaq™
Universal SYBR® Green Supermix (Bio-Rad laboratories, Hertfordshire, UK), run on the
CFX96 Real-Time PCR Detection System (Bio-Rad laboratories, Hertfordshire, UK), using
specific primers for RPS18 (forward: 5′-ATTGCCGACAGGATGCAGAA-3′, reverse: 5′-
GCTGATCCACATCTGCTGGAA-3′), OPRK1 (forward: 5′-CTGCTGTCGTCATCTGTTGG-
3′, reverse: 5′-GCACTCAATGACATCGACGT-3′), GABRB1 (forward: 5′-AATCCCACTGA
ACCTCACCC-3′, reverse: 5′-TGACCCCATGCACAAATGAT-3′), LPR6 (forward: 5′-ATGC
AAACAGACGGGACTTG-3′, reverse: 5′-AAACACAAAGTCCACCGCAG-3′), PCDHB10
(forward: 5′- AACTACACGATCAGCCCCAA-3′, reverse: 5′-TCCAGTGCTTTGTCCAACA
C-3′), and PCDHB15 (forward: 5′-CCATCACAGACTTGGGGACT-3′, reverse: 5′-CGAACA
GGGTGTAGGAGGTT-3′). Serial dilutions of cDNA were used to plot a calibration curve,
and gene expression was quantified by plotting threshold cycle values. Expression levels
were normalised to values obtained for the reference gene RPS18. Relative expression was
expressed as the average ± standard deviation.

2.6. Healthy Tissue Lysates

The following healthy human tissue lysates were purchased; human brain whole-tissue
lysate (NB820-59177, Novusbio, Abingdon, UK), human breast whole-tissue lysate (NB820-
59203, Novusbio), human kidney whole-tissue lysate (NB820-59231, Novusbio), human
lung whole-tissue lysate (NB820-59239, Novusbio), human liver whole-tissue lysate (NB820-
59232, Novusbio), human pancreas whole-tissue lysate (NB820-59244, Novusbio), human
spleen whole-tissue lysate (NB820-59259, Novusbio), human ovary whole-tissue lysate
(NB820-59243, Novusbio), human uterus whole-tissue lysate (NB820-59274, Novusbio).
Upon delivery, lysates were aliquoted and stored at −80 ◦C. When needed, protein lysates
were used to perform western blot analysis, as described above.

2.7. Antibodies and Recombinant Proteins

Primary antibodies used for western blot, SPR off-rate screening, high content image
analysis using an INCell Analyzer 6000 (Molecular Devices, San Jose, CA, USA), and confo-
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cal microscopy (LSM 510, Carl Zeiss Microscopy GmbH, Jena, Germany) are recapitulated
in Supplementary Table S3. The corresponding recombinant proteins to each primary
antibody were utilized as follows: PrEST LRP6 [180 kDa (Sigma)], PrEST PCDHB10 [87 kDa
(Sigma)], PrEST PCDHB15 [86 kDa (Sigma)], rHuman OPKR1 [42 kDa (Abcam, Cambridge,
UK)], rHuman GABRB1 [54 kDa (Abcam)].

2.8. Off-Rate Screening

Biacore™ T200 system (Cytiva, Uppsala, Sweden) was used to perform SPR analysis
with Series S Sensor Chip CM5 (Cytiva, 29149603) and HBS-EP+ (0.01 M Hepes, 0.15 M
NaCl, 0.003 M ethylenediaminetetraacetic acid, and 0.05% Surfactant P20, pH 7.4) (Cytiva,
BR100669) as sample and running buffer. The analysis temperature at the sensor chip
surface and within the compartment was set to 25 ◦C. Firstly, pH scouting with 10 mM
sodium acetate buffer 4.0 (Cytiva, BR-1003-49), 10 mM sodium acetate buffer 4.5 (Cytiva,
BR-1003-50), 10 mM sodium acetate buffer 5.0 (Cytiva, BR-1003-51), and 10 mM sodium ac-
etate buffer 5.5 (Cytiva, BR-1003-52) was performed to identify the optimal pH required for
amine coupling of ligands to Series S Sensor Chip CM5. This was followed by diluting the
ligand (primary antibody) with the appropriate acetate buffer to at least 10 µg/mL. Amine
coupling of the ligand to Series S Sensor Chip CM5 was then performed using Amine Cou-
pling Kit (Cytiva, BR100050) containing 1-Etyhyl-3-(3-dimethylaminopropyl)-carbodiimide
hydrochloride (EDC), N-Hydroxysuccinimide (NHS), and 1.0 M ethanolamine-HCL, at
pH 8.5, in accordance with the manufacturer’s instructions. For each experimental run, the
ligand was immobilized in flow cells 2 or 4, while flow cells 1 or 3 were left unmodified.
Flow cells 2 and 4 were used as active flow cells while flow cells 1 and 3 were used as refer-
ence flow cells. Ligand was injected at a flow rate of 10 µL/min and a contact time of 300 s.
Analytes (recombinant proteins) were injected for 120 s with a flow rate of 30 µL/min and
dissociation time of 600 s, run in order of increasing concentration over the reference and
active flow cells using a multi-cycle kinetic approach with five–seven concentration range.
Following each binding cycle, the surface was regenerated with a 30 s injection of 10 mM
Glycine-HCl, pH 2.5 (Cytiva, BR-1003-56) at 30 µL/min, which removed the bound antigen.
Blank cycles (buffer-only injection followed by regeneration step) were also performed.
Data were double-referenced by first subtracting responses from the reference flow cell and
then subtracting the blank cycles. Data were then fitted to a 1:1 dissociation model using
BiacoreTM Insight Evaluation Software version 3.2.1 (Cytiva, Uppsala, Sweden).

2.9. Immunofluorescence Assay

The immunofluorescence assay was performed following standard procedures when
cells were cultured as 2D monolayers. Briefly, cells (1.5 × 104) suspended in 100 µL of
phosphate-buffered saline (PBS) were plated on 8-well chamber slides (155411, Thermo
Fisher Scientific) following cytospin at 800 rpm for 3 min. Once 80–90% confluency was
achieved, the cells were fixed in 4% paraformaldehyde, blocked with 3% BSA, and washed
in 3% BSA and 0.1% phosphate-buffered saline (PBS)–Tween-20 [18]. The cells were
incubated overnight at 4 ◦C with the appropriate primary antibody followed by secondary
Alexa Flour 594 cross-absorbed labelled antibody (Life Technologies, Loughborough, UK,
A11012) at 1:500 dilution and DAPI (Invitrogen, Loughborough, UK, P36962) at 1:2000
dilution.

The following protocol, according to Weiswald et al. [32], was used to assess im-
munofluorescent signal in 3D spheroids. Approximately 50 spheroids in suspension were
fixed and permeabilized for 3 h at 4 ◦C containing 4% PFA (Euromedex, Mundolsheim,
France) and 1% Triton X-100 (T8787-250 mL, Sigma-Aldrich, St. Louis, MO, USA) and
washed in PBS (2 × 10 min). The spheroids were subsequently dehydrated in an ascending
order in methanol at 4 ◦C in PBS (25%, 50%, 75%, 95%, 15 min each and 100% for 30 min).
Rehydration was performed in the reverse descending order and washed in PBS for 10 min.
Following blocking in PBST (0.1% Triton X-100 in PBS) containing 3% Bovine Serum Albu-
min (Cat P06-1391050 PAN Biotech, Issy-les-Moulineaux, France) overnight at 4 ◦C with
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washing in PBST for 10 min, spheroids were incubated with primary antibodies in PBST
on a low-speed rotator at 4 ◦C for 48–72 h and rinsed in PBST for 10 min. Spheroids were
then incubated in appropriate Alexa Fluor conjugated secondary antibodies, diluted in
PBST overnight at 4 ◦C. The spheroids were then transferred to 8-well chamber slides
and incubated in DAPI in 1:2000 dilution in PBS at room temperature for 30 min prior to
visualization.

Images were acquired from a Zeiss LSM 710 confocal microscope (Carl Zeiss Mi-
croscopy, Jena, Germany) and analysed with the Zen 2012 (blue/black edition) image
analysis software (Carl Zeiss Microscopy, Jena, Germany).

2.10. pHAb Amine Antibody Internalization Assay

Internalization of the appropriate antibodies was performed according to Healey et al. [18].
Antibody conjugation to the pHAb Amine Reactive Dye and DAR calculations were performed
according to the manufacturer’s recommendations (Cat. No. G983, Promega, Southampton,
UK). The pHAb Amine is a pH-sensitive dye that is non-fluorescent at neutral pH (extracellular,
culture medium) and fluorescent at acidic pH (lysosomes, intracellular, endosomes). OVCAR3
WT and OVCAR3 cisplatin-resistant cell lines were used to study internalization of pHAb
conjugated antibodies. Firstly, target antibodies were conjugated with the pHAb dye according
to manufacturer’s guidelines. The cells were then seeded (1 × 104 cells/mL) in a 96-well plate
(215006, Porvair, New Milton, UK) in 200 µL of appropriate media and cultured for 24 h in
a humidified, 5% CO2 incubator at 37 ◦C. Once 90–95% confluency was attained, cells were
washed in PBS and treated with pHAb conjugated antibodies at 10µg/mL, then incubated on
ice for 30 min. The cells were then transferred to the incubator at 37 ◦C for 240 min. To achieve
higher sensitivity, media were replaced with PBS before image acquisition. Control wells were
treated with only PBS, and DAPI and fluorescence signal was used as background from the
cells and subtracted from positive wells. Images were acquired on an INCell Analyzer 6000
(Cytiva, Uppsala, Sweden).

2.11. Cell Viability

A positive control, Staurosporine (J62837, Alfa Aesar, Ward Hill, MA, USA), was dis-
solved in DMSO (dimethyl sulfoxide) to make a 10 mM stock solution. Cells were seeded in
white-walled 96-well plates (Porvair Sciences, Wrexham, UK) at densities of 2500 cells/well.
Then, 24 h following seeding, the medium was removed and replaced with a medium
containing 1 µM of the drug or the 5 target antibodies. Subsequently, the treatment medium
was supplemented with RealTime-Glo MT Cell Viability Assay (Promega, Madison, WI,
USA) reagents, according to manufacturer-recommended concentrations (1:1000). Treated
samples were kept in a cell culture incubator, and luminescence per well was measured
every 24 h in a microplate photometer at 37 ◦C.

2.12. Statistics

Data were analysed for normality using the Kolmogorov Smirnov test. Normally
distributed data were analysed using the parametric Student’s t-test (2-tailed) method
(Minitab 16), and p-value ≤ 0.05 was considered statistically significant. The Chi2% value
was calculated by dividing the Chi2 from the 1:1 dissociation model by the Rmax from the
1:1 standard model and multiplying by 100 to convert to percentage. Values below 5% are
of high significance. The Chi2, Chi2%, and kd values were all calculated using Biacore™
Insight Evaluation Software, version 3.2.1 (Cytiva, Uppsala, Sweden).

3. Results
3.1. Identification of Candidate Targets via ADC Database
3.1.1. In Silico Database Development

To identify potential targets for ADCs in OC, an in silico approach was implemented,
taking advantage of the extensive range of bioinformatics databases and tools available
online (Figure 1). The following properties were taking into consideration for selection of
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effective ADC target proteins: (i) transmembrane proteins to enable antibody binding at
the extracellular domain, (ii) overexpression in target cancer cells, and (iii) low expression
in healthy cells.

Figure 1. Creation of MySqL Database. (A) Schematic representation of the steps applied in the cre-
ation of MySqL database, ADC Target Vault, providing a list of ADC ovarian cancer target candidates.
(B) Enriched pathways for gene-encoding proteins associated with the top 100 targets identified
using the ADC database. ORA results indicating significantly enriched pathways (FDR < 0.1) from
GO Biological Process, KEGG, Panther, and REACTOME functional databases for top 100 highest-
ranked targets.
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We created a MySQL database, termed ADC Target Vault, with a schema designed
to optimize queries relating to the above-mentioned ADC properties (Supplementary
Figure S1). Tables were populated with data obtained from online databases and from
results obtained from running transmembrane prediction tools on human protein sequences
(Supplementary Tables S1 and S2). Briefly, human protein sequences were obtained from
UniProt. And Protein/Gene mapping data were obtained from ENSEMBL. Data relating
to protein expression levels for both healthy tissue and OC tissue (from IHC experiments)
were obtained from the human protein atlas (HPA). Finally, transmembrane prediction
results (predicting the number of transmembrane domains that potential targets contain)
were obtained from six transmembrane prediction algorithms by uploading all known
proteins found in the human proteome to TopCons webserver. For full details of database
initialization and population, see Methods section. Since the ADC target database contains
expression data for all cancer types annotated in HPA, it may be queried for suitable
ADC targets for any of these cancers. In the present study, we illustrate the pipeline from
bioinformatic analysis to in vitro target validation and antibody selection for ovarian cancer
targets.

To generate a list of potential ovarian cancer biomarkers suitable for ADC targeting,
the database was queried for proteins with >50% of patients exhibiting high or medium
expression in OC. Potential targets were ranked by (1) Lowest number of healthy tissues
with high and medium expression of combined proteins, (2) Lowest number of healthy
tissues with high expression of protein, (3) Lowest number of healthy tissues with medium
expression of protein, (4) Highest percentage of patients with high and/or medium ex-
pression of protein in cancerous tissue. Query results were written to csv format with
a query time of approximately 20 s. Querying for ovarian cancer targets returned 1207
possible targets, with the top 20 targets further investigated and validated as suitable ADC
targets. Results were filtered to only include proteins with a single transmembrane span-
ning domain, as predicted by at least five out of six transmembrane prediction algorithms,
including TOPCONS [24], Philius [33], PolyPhobius [34], SPOCTOPUS [35], OCTOPUS [36]
and SCAMPI [37]. Overrepresentation analysis was performed to identify enriched path-
ways for the genes encoding the top 100 target proteins in GO Biological Process, KEGG,
Panther, and REACTOME functional databases (FDR < 0.1). Enriched pathways are shown
in Figure 1B. The three pathways with highest enrichment from the GO Biological Process
database were cell–cell adhesion via plasma membrane adhesion molecules pathways.
Interestingly, ERK1 and ERK2 cascade pathways are also enriched. ERK dysregulation is
associated with tumorigenesis [38].

For KEGG, the three pathways with higher enrichment are ‘Cell Adhesion Molecules’,
‘Thyroid cancer’, and ‘Hemetopoietic cell lineage’. From Panther, the ‘Cadherin signaling
pathway’ and ‘Wnt signaling pathway’ are enriched. For REACTOME, the three pathways
with highest enrichment were Nectin/NEcl trans heterodimerization, Defective LFNG
caused SCDO3, and Pre-NOTCH Processing in the Endoplasmic Reticulum.

3.1.2. Target Expression in Healthy and Ovarian Cancer Tissues

Data from These Top 20 Targets Was Obtained from HPA (Figure 2A). The Intensity
and Distribution of Staining within the Tumour Sections Was Also Scored Using the HPA
Published Slides (Figure 2B–D).

Data obtained from these 22 ovarian carcinoma slides revealed a medium to high
level of expression for all the top 20 targets selected and a strong to moderate intensity
of staining in all patient samples (Figure 2A,B). Moreover, the distribution of staining of
these biomarkers within the tissues showed that PCDHB15 was homogenously expressed
within the sections, with more than 75% of cells expressing the target in all patient samples
(Figure 2C). GABRB1, PCDHB10, and LRP6 also showed that 80% to 90% of the patients
exhibited expression of the biomarker in more than 75% of tumour cells. Only 65% of
patients exhibited a high distribution of staining for OPKR1 in the tissue slides (Figure 2C).
Next, we selected OPKR1, GABRB1, LRP6, PCDHB10, and PCDHB15 as targets of interest
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based on antibody availability for validation. Because our database does not filter targets
according to their mRNA levels, we also interrogated the gene expression levels of these
targets using the public GEPIA2 database (Figure 2E). No statistically significant differ-
ences between cancer and healthy ovarian tissue were observed for the targets (except for
PCDHB15), nor was a correlation between gene expression levels and protein levels for
these targets.

Figure 2. Target expression characteristics in ovarian cancer vs. healthy tissue. (A) Expression data
of the 5 targets in ovarian cancer tumours obtained from HPA (B) Target expression, (C) Staining
intensity, and (D) Staining distribution. (E) Gene expression levels between ovarian cancer (red,
n = 426) and healthy ovary tissue (grey, n = 88) were obtained from GEPIA2. * p-value < 0.05.

We also analysed the mRNA levels of the targets in healthy (HOSEpiC) and ovarian
cancer cell lines by qRT-PCR (Figure 3A). Gene expression levels for OPRK1 and GABRB1
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were extremely low in healthy cells and upregulated in ovarian cancer cisplatin-sensitive
and -resistant cells. LRP6 mRNA levels were significantly upregulated in ovarian cancer
cells compared to healthy ones (Figure 3A). No significant differences were observed for
PCDHB10 or PCDHB15 mRNA levels between healthy and OC cells.

Figure 3. Target expression in healthy versus ovarian cancer tissue and cell lines. (A) Analysis of
mRNA levels for all the targets was performed by qRT-PCR. (B,C) Protein expression analysis of the
targets was performed in healthy tissue lysates, ovarian cancer A2780 WT, A2780 cisplatin-resistant
cell lines (positive control), and evaluated via western blotting by utilizing primary antibodies
targeting the (B) N-terminus and (C) C-terminus of the targets. Results were normalized using
GAPDH as a housekeeping protein. The blue line reflects the approximate MW the target using the
MW marker as reference. * p-value < 0.05, ** p-value < 0.01.

One of the major advantages of ADC therapies is that they are designed to target anti-
gens overexpressed in cancer tissues and minimally expressed or absent in healthy tissues
to minimize systemic toxicities [9]. Commercially available protein lysates from healthy
tissue samples corresponding to vital human organs were analysed for the respective
target expression by western blotting. We utilized two different sets of antibodies targeting
different epitopes of each target (Supplementary Table S3); one targeting the N-terminus
(extracellular domain) and another targeting the C-terminus (intracellular domain) were
used to evaluate the expression of the different isoforms of the targets and confirm the
homogeneity of the targets. We reveal that there was no expression of targets in all the
healthy tissue samples using either the N-terminus- (Figure 3B) or C-terminus-binding
antibodies (Figure 3C), while varying expressions were observed in a range of ovarian
cancer cells also used as positive controls.

Overall, these results demonstrated the effectiveness of the in silico selection process,
as all selected targets fulfil one of the desirable properties of suitable ADC targets by the
homogenous absence of protein expression in healthy tissues.

3.2. Off-Rate Screening via SPR Platform as a Strategy to Enhance Antibody Selection

Next, we performed a sequence alignment and immunogenicity analysis of the iden-
tified proteins with the online software platforms NHLBI-AbDesigner and UniProt to
facilitate the development of novel ADCs for gynaecological cancers [16,18]. We utilised
commercial antibodies containing immunogen sequences that target the amino acid se-
quence located within the extracellular region of the target antigen. The location of the
amino acid sequence within the target structure was identified using NHLBI-AbDesigner
and basic local alignment search with the Basic Local Alignment Search Tool (BLAST)
https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 14 March 2019) to analyse sequence
alignment of these peptides, in order to verify the location of the conserved region. The
analysis enabled the identification of antibodies with the appropriate immunogen sequence

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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that corresponded to the extracellular domain regions of the target antigens as well as
within the transmembrane and cytoplasmic regions (Figure 4, bottom panels).

Figure 4. Antibody–antigen dissociation rate (koff) profile of targets via SPR analysis. Antibodies were
directly attached onto Sensor Chip CM5 via amine coupling. Multi-cycle kinetics experiments were
performed. LRP6 antibody (A), PCDHB10 antibody (B), PCDHB15 antibody (C), OPKR1 antibody
(D), and GABRB1 antibody (E) were all exposed to the corresponding recombinant target protein
(rLRP6; 31.3 to 250 nM, rPCDHB10; 7.8 to 250 nM, rPCDHB15; 7.8 to 250 nM, rOPKR1; 7.8 nM to
62.5 nM and rGABRB1; 7.8 nM to 125 nM). Dissociation rates were determined using one-to-one
dissociation model with global Rmax. Representation of the target protein structure highlighting
the extracellular, transmembrane, and intracellular regions, as well as immunogen sequence (both
antibody and recombinant proteins), are also provided at the bottom of each panel.
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To explore the antibody–antigen interaction, we evaluated the dissociation rate (off-rate,
koff) for the recombinant (r) target proteins binding to their respective antibody using a Biacore™
T200 instrument. We employed a strategy where antibodies (ligand) were directly immobilized
to Sensor Chip CM5 via NHS–EDC chemistry. Experiments were performed by injecting
concentration series of recombinant targets proteins rLPR6 (31.3 to 125 nM), rPCDHB10 (7.8 to
250 nM) and rPCDHB15 (7.8 to 250 nM) over the corresponding immobilized antibodies. The
resultant binding profiles for anti-LRP6-rLRP6 (Figure 4A, top panel), anti-PCDHB10-Rpcdhb10
(Figure 4B, top panel), and anti-PCDHB15-rPCDHB15 (Figure 4C, top panel) calculated from
the 1:1 dissociation model revealed that binding of the recombinant proteins to their respective
antibody was very stable, with off-rates ranging from 4× 10−4 to 8× 10−5 s−1. A full kinetics
table is also provided (Supplementary Table S4).

Off-rate analyses between anti-OPKR1 and anti-GABRB1 were also performed with
rOPKR1 (7.8 to 62.5 nM) and rGABRB1 (7.8 to 125 nM) (Figure 3B,C, top panels), which
revealed no binding with the corresponding antibodies, possibly due to comparatively
short N’ extracellular domains of these two proteins (Figure 4D,E, bottom panels).

3.3. Target Localization and Basal Expression Patterns in Ovarian Cancer Cell Lines
3.3.1. Target Localisation and Basal Expression in Confluent 2D Monolayers

We also sought to confirm the basal expression levels and cellular localization of the
target proteins via immunofluorescence assays and confocal microscopy. In ADC devel-
opment, epitopes on the extracellular region of membrane proteins are usually targeted
to facilitate antigen-driven ADC internalization [8]. Using Wheat Germ Agglutin (WGA)
staining as a membrane marker, we observed that targets localise at the cell membrane as
well as within the cytoplasm in a panel of eight ovarian cancer cell lines (Figure 5). All
targets were highly expressed in the eight different ovarian cancer cell lines (Figure 5), but
not in the control experiments (Supplementary Figure S2).

Figure 5. Cont.
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Figure 5. Basal expression and cellular localization of targets in ovarian cancer cell lines. (A)
Confocal immunofluorescence staining reveals localization of LRP6 (Red), WGA (Green), DAPI
(Blue). (B) Localization of PCDHB10 (Red), WGA (Green), DAPI (Blue). (C) Localization of PCDHB15
(Red), WGA (Green), DAPI (Blue). (D) Confocal immunofluorescence staining reveals localization of
OPKR1 (Red), WGA (Green), DAPI (Blue). (E) Localization of GABRB1 (Green), WGA (Red), DAPI
(Blue). Magnification: 40×, Scale bars: 20 µm.

3.3.2. Expression of Target Proteins in 3D Spheroids

Target expression was also determined in 3D SKOV3 spheroid models to assess
biomarker expression and internalization in conditions that simulate tumour configu-
ration. SKOV-3 spheroids were chosen due to their ability to form compact spheroids
without disaggregating over a prolonged period (Supplementary Figure S3). Expression of
all the targets was observed in 3D spheroids (Figure 6); however, GABRB1 exhibited the
lowest expression which was mainly confined to the outer layers of the spheroid (Figure 6B,
bottom panel).

Figure 6. Basal expression of targets in 3D models. Three-dimensional spheroid cultures of SKOV-3
WT were stained with (A) anti-LRP6 (top panel), anti-PCDHB10 (middle panel), and anti-PCDHB15
(bottom panel) and (B) anti-OPKR1 (top panel), anti-GABRB1 (bottom panel). Cell nuclei were
counter stained with DAPI (blue). Stained spheroids were observed under the confocal microscope
and merged images are presented.
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3.3.3. Antibody Penetration in 3D Spheroids

Further antibody penetration analysis via confocal z-stacking analysis of the expression
and location of LPR6, PCDHB10, and PCDHB15 targets showed that LRP6 was uniformly
distributed within the tumour spheroid, whereas PCDHB10 and PCDHB15 localised from
the second bilayer of cells to the core of the spheres (Figure 7).

Figure 7. Antibody penetration of spheroids. Z-stack images (15 cross-sectional slices) of SKOV-3-
derived spheroids, taken by confocal microscopy, showing antibody penetration of (A) anti-LRP6,
(B) anti-PCDHB10, and (C) anti-PCDHB15. Spheroids were stained using immunofluorescence assay
with antibodies (Red) and DAPI (Blue) and visualized via confocal microscopy. Magnification: 10×,
Scale bars: 50 µm.

3.4. Antibody Internalization in Ovarian Cancer Cells

Next, we sought to investigate the rate of antibody–antigen internalization in platinum-
sensitive and platinum-resistant OVCAR-3 cells (Figure 8). Here, pHAb-labelled antibodies
were used for OPKR1–pHAb (Dye to Antigen Ratio = 3.8), GABRB1–pHAb (Dye to Antigen
Ratio = 3.1), LRP6–pHAb (Dye to Antigen Ratio = 4.5), PCDHB10–pHAb (Dye to Antigen
Ratio = 5.2), PCDHB15–pHAb (Dye to Antigen Ratio = 8), and internalization monitored in
OVCAR3 WT and cisplatin-resistant cells. In this current study, the DAR (Dye to Antibody
Ratio) refers to how much pHAb fluorescent dye attaches to an antibody. All recovered
conjugated antibodies were within the concentration range for cell-based internalization
experiments [35,36]. The internalization assay is based on the pH-sensitive pHAb dye,
which has low or no fluorescence at pH > 7, but becomes highly fluorescent at the acidic
pH < 7 typically present in early endosomes and lysosomes [18]. Following a 4 h incubation
period, internalization was evidenced by the presence of red punctate structures for anti-
LRP6, anti-PCDHB10, and anti-PCDHB15, suggesting they had been trafficked to the acidic
organelles, including lysosomes and endosomes (Figure 8A). INCell analysis revealed that
these antibodies effectively internalized in both OVCAR3 wild-type and cisplatin-resistant
cell lines (Figure 8C). OPKR1–pHAb (Figure 7B, top panel) and GABRB1–pHAb (Figure 8B,
bottom panel) exhibited no internalization which reflects the lack of target binding revealed
via SPR. As a result, further investigation on these two targets was discontinued.
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Figure 8. Target antibodies are rapidly internalized and trafficked to the endosomal compartment.
(A) OVCAR-3 WT and OVCAR3 cisplatin-resistant cell lines were treated with medium containing
anti-PCDHB15 (top panel), anti-PCDHB10 (middle panel), and anti-LRP6 (bottom panel) and (B) anti-
OPKR1 (top panel) and anti-GABRB1 (bottom panel) primary antibody conjugated to a pH-sensitive
dye for 4 h. Dotted boxes indicate enlarged cells. Arrows indicate positive (red) internalisation signal
(C) Histogram showing the quantity of internalization quantified via Cell Profiler software expressed
as mean (SD) from 3 independent experiments. Images were acquired on an INCell analyzer 6000
microscope and analysed with ImageJ software. ** p-value < 0.01; *** p-value < 0.001.

The relationship between antibody–receptor interaction kinetics and receptor-mediated
antibody internalization dynamics was also investigated by comparing the antibody–
antigen off-rate constant and the quantification of internalization signal for anti-LRP6 and
anti-PCDHB10 (Figure 8A,C). PCDHB15 was not included in the analysis as the DAR
obtained after conjugation with pH dye was almost double that obtained for LRP6 and
PCDHB10 antibodies (Figure 8C). DAR values for anti-LRP6-pHAb (DAR 4.5) and anti-
PCDHB10-pHAb (DAR 5.2) were similar, as these were the antibody–antigen on-rate value
(Anti-LPR6/recombinant LRP6 ka = 3.68 × 105 1/Ms and Anti-PCDHB10/recombinant
PCDHB10 ka = 3.64 × 105 1/Ms). Interestingly, quantification data for internalization of
these antibodies revealed a 2.4-fold increase in internalization of anti-LRP6-pHAb conju-
gates compared to anti-PCDHB10-pHAb conjugates. Additionally, the antibody–antigen
off-rate constant value for LRP6 was 5.5-fold higher than the one reported for PCDHB10
(Figure 4A,B). These results suggests that antibody/antigen dissociation kinetics could also
influence internalization dynamics for antibodies with similar target affinities.

3.5. In Vitro Antibody-Mediated Ovarian Cancer Cell Toxicity

Finally, we evaluated whether there was any inherent cytotoxicity associated with
the target antibodies following the exposure of HOSEpiC, OVCAR3 WT, and OVCAR3
cisplatin-resistant cell lines. Cells were cultured in the presence of 1 µM target antibodies
and staurosporine for 72 h, and the cell viability was determined using the Real-time Glo™
MT Cell Viability Assay. Cells treated with staurosporine showed very low luminescence



Antibodies 2023, 12, 65 17 of 26

indicating cell death, while treatment with the target antibodies did not cause any cytotoxic
effect on the cells (Figure 9A–C).

Figure 9. Antibody-mediated ovarian cancer cell toxicity. Cell viability was determined by Realtime-
Glo™ MT Cell Viability Assay. OVCAR-3 WT (A) and OVCAR-3 cisplatin-resistant (B) cells and
HOSEpiC healthy ovarian cells (C) were treated with Staurosporine, anti-LRP6, anti-PCDHB10,
anti-PCDHB15, no treatment, and Staurosporine, anti-OPKR1, anti-GABRB1, no treatment. All cells
were treated for 72 h.

4. Discussion

In this study, we created an in silico database “ADC Target Vault” to identify potential
targets for ADC development cancer. Our bespoke bioinformatic approach aggregated data
from online sources to create this comprehensive database for querying potential ovarian
cancer (OC) candidate targets suitable for ADC development. We successfully identified
five targets overexpressed in ovarian cancer compared to healthy ovaries, with low or no
expression in healthy tissues using a combination of publicly available data and our in vitro
data. These candidates were then subjected to validation through in vitro pipelines before
proceeding to the ADC conjugation phase (Figure 10). Our SPR platform was successfully
applied to identified antibody–target pairs with good affinity and enhance internalisation
capacity, validating the database target predictions. Additionally, the use of 3D cultures
provided an insight into the target expression in vitro that could aid the design of in vivo
cell line-derived xenograft (cdx) models to assess ADC efficacy and tumour penetration.

From the list of targets generated, we focused on five targets that were linked to
biological processes which, when impaired, promote tumour progression and metastasis.
From these targets, LRP6 is involved in the Wnt-signalling pathway, which is prominent
in colorectal cancer, but has also been implicated in ovarian cancer. Additionally, the
LRP6-mediated Wnt pathway is significant in ovarian cancer progression due to its ability
to promote cancer stemness and metastasis, the latter being a major feature in ovarian
cancer [39]. PCDHB10 and PCDHB15 are members of the cadherin superfamily of calcium-
dependent cell–cell adhesion molecules; PCDHB10 is involved in the establishment and
maintenance of neuronal functions in the brain and is implicated in paediatric malig-
nancies [40]. PCDHB15 is involved in cell adhesion, and it is epigenetically regulated
in melanoma and breast cancer cells [41,42]. Furthermore, OPRK1 has been implicated
in facilitating the migration of breast cancer cells, while the low expression of GABRB1
correlated with a poor prognosis in colon adenocarcinoma [43,44]. None of these proteins
have been previously identified as targets for ADC development. In addition to the bioin-
formatic approach adopted in this study to identify candidate targets, the use of ‘reverse
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immunology’, which involves the implementation of specific algorithms that predict the
tumour-associated antigen (TAA) epitopes of the target receptors, thereby reducing the
presence of extracellular loops, can be considered as a bioinformatic improvement.

Figure 10. Schematic representation of the preliminary stages of target identification and validation
prior to ADC conjugation phase.

4.1. Target Selection Significance

Identifying the optimal target represents the pivotal first step towards achieving
success in ADC development. In this regard, in silico approaches such as the one described
here for our ADC Target Vault database, that can discern and comprehensively profile
potential antigen candidates, play a paramount role within the drug development process
for these therapies. These targets should exhibit high expression in one or more tumour
types while maintaining minimal expression in normal tissues. Achieving this balance
remains a considerable challenge in ADC development.

The novel targets disclosed in this study are part of a larger database of proteins that
could be targeted using ADC modalities. In particular, low-density lipoprotein receptor-
related protein 6 (LRP6), an essential receptor for Wnt signaling, directly interacting with
Wnt ligands, has been shown to be involved in multiple cancers [45]. Its extracellular
domain also directly interacts with Dickkopf proteins to antagonize binding of Wnts and
greatly reduces activity of Wnt-signalling pathways [46,47]. Hence, LPR6 targeting has
been considered as a therapeutic option for cancer and neurodegeneration. The role of the
Wnt/β-catenin pathway in ovarian cancer tumorigenesis, metastasis, immune evasion, and
chemoresistance is well documented [48]. It has been shown that LRP6 silencing in ovarian
cancer leads to a decrease in chemoresistance [39]. In this context, ADC targeting of LRP6
could be a promising approach in ovarian cancer but could also extend its translation as
therapeutic for other cancer types.

Our computational approach enables the analysis of vast databases of biological in-
formation to predict potential and previously unknown target candidates. For instance,
Protocadherin B10 (PCDHB10) was identified as potential ADC target based on its differen-
tial expression pattern. Despite its higher expression levels in multiple tumours’ biopsies
(HPA data), this cell adhesion protein has usually been described as a tumour suppressor
in colorectal, gastric, and pancreatic cancers [49]. Interestingly, it has also been shown to
be upregulated in glioblastoma [50], suggesting PCDHB10 may associate with different
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proteins, depending on cell type to exert its action. Currently, there are no data regarding
the effect of this protein on ovarian cancer proliferation, which could be important to
further warrant its translation into ADC modalities.

PCDHB15, another protocadherin identified by us, is expressed in all ovarian cancer
patient samples (Figure 2). However, similar to PCDHB10, it has been reported as a
tumour suppressor. Nonetheless, like other cell adhesion proteins altered in specific cancer
types, PCDHB15 can promote cancer cell proliferation and migration [41–43,51]. In vivo
experiments have shown that PCDHB15 overexpression in melanoma promote cell invasion,
cancer cell aggregation, and lung metastasis [43]. Interestingly, this gene was identified
in an elegant study conducted by Schilling and colleagues as a predictor of platinum
resistance. They employed a machine learning approach to identify biomarkers that can
predict the outcomes of ovarian cancer patients and determine their platinum resistance
status, leveraging publicly accessible gene expression data [52].

Although other databases like the one described by Schilling and colleagues filter
and rank targets according to their gene expression profile, we decided not to follow this
approach when selecting targets for ADC development. In fact, our mRNA data does
not correlate to the higher levels of target protein observed in patient samples and cell
lines. It is important to exercise caution when interpreting mRNA expression data, as
there may be cases in which mRNA is not translated into protein or protein is produced
but not presented on the cell surface. For example, LRP6 is a known target of microRNA
(miR)-1271 in papillary thyroid carcinoma [53]. miRNAs mediate the degradation of
mRNA target genes, but also regulate gene expression by regulating transcription and
translation through canonical and non-canonical mechanisms. Another example is the
post-transcriptional regulation of proto-cadherin 10 (PCDHB10) mRNA by miR-576-5p [54].
For this reason, we deliberately excluded RNA-seq data from our computational pipeline
for target identification, and our approach was focused on analysing protein expression
levels at the cell surface available for ADC binding.

A strict selection criterion was followed for the selection of the targets described here
and those contained within our ADC Target Vault database. Ensuring specificity in target
selection is critical for minimizing off-target toxicities and optimizing therapeutic efficacy.
However, few antigens are truly tumour-specific with no expression in healthy tissue [55].
The vast diversity in tumour types and the heterogeneity within individual tumours further
complicates ADC target selection, especially when targeting ovarian cancer, demanding the
identification of antigens with broad relevance or tailored approaches for specific patient
populations [55]. Here, we followed an approach where we identify targets based on their
differential expression but also according to their expression in multiple cancer types, with
those involved in multiple disease indications given priority in the ranking process.

One of the targets we identified as overexpressed in ovarian cancer was Gamma-
aminobutyric acid type A receptor subunit beta1 (GABRB1). This protein is a metabotropic
G-protein-coupled receptor that mediates the inhibitory effects of γ-aminobutyric acid
(GABA) [44]. Although no in vivo or in vitro data have been reported for this protein
in ovarian cancer, it has been shown that GABRB1is a prognostic biomarker of colon
cancer and it is important contributor to prostate cancer [44,56]. Its inhibition of GABA
signalling plays a crucial role in hepatocellular and pancreatic carcinomas [56]. Thus,
suggesting this protein may be a therapeutic target in other cancers. Similarly, expression
of OPRK1, an opioid receptor that belongs to the superfamily of G protein-coupled opioid
receptors, has been reported to be associated with a significantly poorer prognosis and
tumour migration in various cancers, such as breast, oesophageal squamous cell carcinoma,
metastatic liver cancer, and pancreas neuroendocrine tumours [57,58]. A recent in vitro
study conducted with OPRK1 antagonist and agonist identified OPRK1 as mediator of
chloroxine therapy, suggesting this target could be further exploited in combination with
other chemotherapies [59]. Although these two targets did not progress in our validation
pipeline, this was mostly due to limitations around availability of commercial antibodies
against these proteins.
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Target validation and ongoing curation of our database will entail a comprehensive
evaluation of the target’s expression levels in the target tumour, its accessibility to the
antibody, and factors like internalization upon binding and target heterogeneity within
the patient population. There is also increasing research into finding targets expressed in
cells in the tumour microenvironment, particularly the stromal compartments not currently
covered in our database [60]. Their inclusion into computational studies could further
expand the antigen selection pool available for ADC development.

4.2. Challenges in ADC Development

ADCs continue to exhibit a relatively limited therapeutic range and have encountered
challenges in achieving clinical success. The 10 main challenges in ADC development
include target selection, antibody selection, linker design, payload selection, optimal conju-
gation chemistries, tumour heterogeneity, off-target toxicity, optimal pharmacokinetics, and
pharmacodynamics (PK/PD) properties, overcoming resistance mechanisms and clinical
translation of ADCs [60].

As the cornerstone of ADCs, the choice of target sets the stage for the entire devel-
opment process, underscoring the need for meticulous evaluation. Additionally, antigen
availability and accessibility can be limiting factors, constraining the pool of viable targets.
In this context, in silico approaches are essential tools to accelerate target discovery and
selection. Identifying the right target antigen that is highly expressed on tumour cells but
minimally on normal cells is crucial. Here, we exemplified the power of our database
using five targets that are minimally or not expressed in healthy tissue; however, not all
our antibody–target pairs fulfil our selection criteria, with OPRK1 and GABRB1 failing
to internalise bound antibodies (Figures 3 and 4). Candidate-targeting antibodies must
possess the immunogen of interest which binds to the extracellular region of the target
antigen, facilitating cellular internalization, particularly in tumour cells [61,62]. Thus, this
supports the premise of utilizing antibodies of the same target but with different epitopes,
particularly in healthy tissue lysates, to identify target heterogeneity. A further issue in the
selection of ADC targets is related to the homogeneity or heterogeneity expression patterns
of the tumour marker on the tumour cell surface [61,63]. Homogenous expression of tu-
mour targets has been demonstrated to favour ADC targeting more than those expressed
heterogeneously [63]. Target distribution and expression within the tumour also needs to be
investigated using screening methods that include the use of 3D spheroids, shown here, as
they mimic cell–cell interactions between tumour cells [64]. Most importantly, since cellular
spheroids possesses a higher degree of morphological and functional similarity to tissues,
these models can be exploited to assess the tumour penetration efficiency of ADCs via a
quantum dot-labelled antibody approach and monitored via fluorescence microscopy [61].

Selection of mAbs for ADC generation is dependent on binding stability and tumour
penetrating ability [65]. Other factors include intracellular tracking of the ADC and epi-
tope selectivity. For instance, studies have revealed that 0.001% to 0.01% of an injected
unmodified antibody or an ADC, localizes to tumours in humans [66]. This limitation is
due to the physiology and architecture of solid tumours, which contributes to the limited
uptake of antibodies caused by the slow diffusion rates in poorly vascularized tumours.
Furthermore, this restricted uptake is compromised by the fact that tumours often lack
intratumour functional lymphatic vessels, which are restricted to the tumour margins and
peritumoral regions. Although antibody–antigen interactions are required to facilitate cellu-
lar and tumour internalization, a balance between internalization and dissociation rates of
antibody–antigen complexes is required to govern the effective delivery of the payload into
the tumour space. However, this might not always be the case due to the nature of some
target receptors possessing multiple spanning loops, which hinders antibody interaction
as observed in this study. For instance, using SPR, we reveal poor interaction between
anti-OPKR1-rOPKR1 and anti-GABRB1-rGABRB1, although antibodies still recognise the
denatured recombinant proteins by immunoblot as well as the ovarian cancer samples
(Supplementary Figure S4). This is in agreement with studies performed by Chu and
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colleagues, showing that challenges can occur using SPR to study multiple membrane
spanning proteins [67].

The extent of internalization following binding to the target antigen may also facilitate
bystander killing [68]. Here, we used SPR technology to select antibodies with good asso-
ciation constants (ka) to enhance target-mediated antibody internalisation. Interestingly,
the antibody targeting LRP6 also exhibited a higher dissociation rate (high kd value) while
internalising to greater levels in ovarian cancer cells, which warrants future investigation.
Antibodies that exhibit a higher off-rate at acidic pHs, mimicking the endosomal pH, can
undergo dissociation from the receptor within the endosome, leading to the lysosomal
trafficking of the ADC and release of the cytotoxic payload into the cell [69]. This is partic-
ularly important for receptors that are recycled back to the plasma membrane to reduce
the likelihood that the ADC will cycle back out of the cell with its receptor [69]. Although
we did not assess receptor recycling in our experiments, we did observe increased sig-
nalling of lysosomal location for our antibody pH–dye conjugates that exhibited a higher
dissociation rate from the receptor. Our data corroborate the importance of dissociation
kinetics, demonstrating a direct link between antibodies’ in vitro binding kinetics and in-
ternalization that can be exploited in identifying suitable candidates for ADC development
and could be relevant when assessing antibody tumour penetration. For instance, several
studies have reported that ADCs with a higher kd also exhibited high penetration and
distribution within solid tumours and increased efficacy, thus highlighting the importance
of antibody affinity for ADC development [69]. Tsumura and colleagues investigated the
effect of the dissociation rate constant on the intra-tumour distribution using anti-tissue
factor (TF) ADCs with different kd values [70]. Their data advocated for the selection
of high affinity antibodies but also demonstrated that antibodies with higher kd achieve
better tumour penetration, homogenous distribution, and better efficacy in animal models.
Rudnick et al. showed the effect of antibody affinity on antibody penetration on solid
tumours by comparing two anti-human epidermal growth factor receptor 2 (HER2) IgGs
trastuzumab (Herceptin®) and C6.5 (in IgG format, C6.5-IgG) [70]. They reported that C6.5
has a higher kd than trastuzumab and this faster off rate allowed a higher penetration in
solid tumours. ADCs must strike a balance between strong binding to the target antigen
(high ka) to facilitate internalization and efficient release of the cytotoxic payload. Anti-
bodies with appropriate kd values can achieve this balance, ensuring that the payload is
released within the tumour cell, leading to effective cell killing. Furthermore, Goldmacher
and Kovtun have proposed that the initial assumption of a positive link between ADC
target affinity and cytotoxicity is flawed, as ADCs with high target affinity strongly bind
to the vascular structures surrounding the tumour rather than achieving uniform binding
across all tumour cells [71]. Overall, these findings highlight the importance of SPR studies
in ADC design, suggesting that both ka and kd are important when selecting therapeutic
antibody modalities.

The interactions observed via SPR (in vitro binding) might not entirely translate to
target-mediated internalization in vivo. Factors such as cell surface target expression
need to also be considered. Moreover, the protein–receptor complex internalization rate
relative to the normal receptor turnover rate can cause post-treatment down-regulation
or upregulation of the receptor [72]. Further consideration regarding expression levels
and antibody internalization properties of targets needs to be considered when selecting
lead candidates. For instance, in tumour cells expressing high target expression, poor
internalization rate may be compensated with the excess amounts of target on the cell
surface to facilitate receptor-mediated ADC internalization. Therefore, for cells with low
target expression, antibody-mediated internalization is crucial to compensate for reduced
amounts of cell surface targets.

4.3. Clinical Implications

Although several therapies are approved as cancer treatments, from conventional to
targeted therapies, including VEGF inhibitors, immunotherapies, and PARP inhibitors,
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appearance of chemoresistance hinders the therapeutic benefits, highlighting the need
to develop biomarker-based therapies to address these challenges [2–6]. Ovarian cancer
remains a challenging disease to treat, especially for patients that progress on these treat-
ments. Its features include tumour heterogeneity, poor prognosis, and recurrence due to
chemotherapy resistance mostly associated with germline BRCA1/2 mutations [13].

Mirvetuximab soravtansine is the first and only FDA-approved ADC for ovarian
cancer [73]. The SORAYA study, a phase III clinical trial, evaluated the clinical activity
of this ADC in patients with FRα-positive (IHC score +2) platinum-resistant high-grade
serous epithelial ovarian who had received up to three prior lines of therapy [74]. Overall,
the study reported that 32% of patients achieved objective responses, with 5 (5%) complete
responses and 29 (28%) partial responses [74]. There are multiple ongoing clinical trials
evaluating ADCs in ovarian cancer, including those that target TROP2, mesothelin, and
HER2 [55].

Approximately 60% of serous epithelial ovarian cancer has high FRα overexpression [73].
Identifying targets with similar or better coverage among the patient population and able to
overcome the inherent heterogeneity of ovarian cancer remains a challenge. Among the targets
identified here, PCHDB15 was homogeneously expressed in 100% of patient samples, followed
by LRP6, with more than 90% of tumours expressing the target in more than 75% of ovarian
cancer cells. Similarly, 83% of tumours expressed PDCHB10 in more than 75% of ovarian
cancer cells, whereas this distribution of staining was observed in 75% of tumours assessed
for GABRB1 expression. In the case of OPRK1, only 50% of tumours expressed this antigen in
more than 75% of cells (Figure 2), but its expression profile against healthy tissue was excellent
compared to other targets, including FRα. Other targets selected form our database and in
development in our lab exhibited similar distribution within the ovarian cancer tumours and
against healthy tissue. Notably, all our targets were expressed in cisplatin-resistant cells, which
further address an area of unmet clinical need in ovarian cancer. The clinical implications of the
database as a tool for ADC development will be realised once these targets are validated using
larger number of patient samples, in vivo patient-derived xenograft models, and clinical trials.
Benchmarking these novel targets against approved ADCs, including FRα, HER2, Nectin 4,
and TROP2, will aid the identification of lead therapeutic candidates for treatment of solid
tumours [55].

4.4. Limitations of the Study and Future Research

One of the main limitations of our study includes the availability of commercial
antibodies and recombinant proteins for validation. For example, we did not observe any
internalization with the antibodies selected for the OPRK1 and GABRB1 targets, but these
should not rule out these targets, and future efforts should concentrate on developing
antibody libraries against these proteins with excellent expression profiles. Similarly, our
database identified novel targets for which experimental tools such as recombinant proteins
are yet to be available. Another limitation is the availability of patient samples to assess for
the in vitro antibody–target internalisation experiments. Finally, we were unable to assess
the conjugate versions of the antibodies tested in this study. Future research efforts will
be focused on validating more targets, assessing the potential of the ADC conjugates in
multiple cancer types, and making the ADC Target Vault database publicly available as a
resource to accelerate drug development in ovarian cancer as well as in other cancer types.

5. Conclusions

In this study, we present a bioinformatic pipeline approach for target identification
and antibody selection, which are pivotal in ADC development (Figure 10). Beyond
elucidating crucial criteria for target selection, such as significantly higher expression in
healthy cells than in cancer cells, cell surface immunogenicity, robust antibody–antigen
binding, and the capacity for antibody internalization, we underscore the value of dynamic
antibody–antigen interaction assessed through SPR. This dynamic insight holds promise in



Antibodies 2023, 12, 65 23 of 26

predicting antibody internalization within 2D models and tumour penetration in 3D cancer
cell models.

Of paramount significance, we identify three promising ovarian cancer targets suitable
for ADC development: LRP6, PCDHB10, and PCDHB15. The application of the method-
ologies described in this study will allow for better understanding of desirable properties
of ADC targets to overcome current limitations in ADC development and ultimately aid
discovery of new ADC targets, patient selection, and better clinical outcomes.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antib12040065/s1, Figure S1: ADC Target Vault Database
Schema; Figure S2: (A) Controls for immunofluorescence assay using monolayers. Ovarian cancer cell
lines were cultured as 2D monolayers in 8 well chamber slides and stained with nuclei marker (DAPI)
and secondary antibody. Magnification: 40×, Scale bars: 20 µm. (B) Quantitative analysis of target
fluorescence intensity in OVCAR3 WT cells was determined using ImageJ. Data are represented as a
mean of 40 individual cells under different conditions. Data are +/− SD. Figure S3: SKOV3 spheroid
formation and immunofluorescence controls (A) Representative brightfield micrographs of SKOV-3
derived spheroids for 24–72 h. Spheroid formation was observed using live cell microscopy. Cells
aggregated into a spheroid-like structure 24 h post-culture and became more compact with clear
boundaries at 72 h. (B) quantification of brightfield images. (C) SKOV3 spheroids were grown via
liquid overlay method and stained with nuclei marker (DAPI) and secondary antibody. Magnification:
40×, Scale bars: 20 µm. Figure S4: Internalisation controls and Recombinant protein detection. (A)
OVCAR3 WT and cisplatin resistant cell lines were cultured as 2D monolayers and treated for 4 h
with pH sensitive dye only. Cells were stained with nuclei marker (DAPI) and secondary antibody.
Magnification: 40×, Scale bars: 20 µm. Specificity of OPKR1 and GABRB1 antibodies was tested
using 15 ng of the targets recombinant proteins (B) rOPKR1 & (C) rGABRB1 respectively and equal
amount of recombinant rCDH20 protein (-ve), used as a negative control. Table S1: Description of the
data sources which we used to create the “ADC Target Vault” database. Table S2: List of tables that
are in the ADC Target Vault database, together with a description of the data that each table contains;
Table S3: List of antibodies used for the current study. Table S4: Kinetics and general data for LRP6,
PCDHB10 and PCDHB15 targets.
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