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Abstract: Plague is an ancient disease that continues to be of concern to both the public health and
biodefense research communities. Pneumonic plague is caused by hematogenous spread of Yersinia
pestis bacteria from a ruptured bubo to the lungs or by directly inhaling aerosolized bacteria. The fatality
rate associated with pneumonic plague is significant unless effective antibiotic therapy is initiated
soon after an early and accurate diagnosis is made. As with all bacterial pathogens, drug resistance
is a primary concern when developing strategies to combat these Yersinia pestis infections in the
future. While there has been significant progress in vaccine development, no FDA-approved vaccine
strategy exists; thus, other medical countermeasures are needed. Antibody treatment has been shown
to be effective in animal models of plague. We produced fully human polyclonal antibodies in
transchromosomic bovines vaccinated with the recombinant F1-V plague vaccine. The resulting human
antibodies opsonized Y. pestis bacteria in the presence of RAW264.7 cells and afforded significant
protection to BALB/c mice after exposure to aerosolized Y. pestis. These data demonstrate the utility
of this technology to produce large quantities of non-immunogenic anti-plague human antibodies to
prevent or possibly treat pneumonic plague in human.

Keywords: Yersinia pestis; antibodies; transchromosomic bovine; plague; mice; opsonization; recom-
binant F1-V vaccine

1. Introduction

Yersinia pestis is a gram-negative Tier 1 select bacterial biothreat agent that can cause
rapidly fatal infections [1–3]. While bubonic plague is the most common form of the disease,
pneumonic plague is the primary concern in the context of biodefense scenarios [4,5]. Y. pestis
is a major biothreat due to its capacity for aerosol dissemination and its contagious nature in
the pneumonic form. The illness can be treated with several different classes of antibiotics,
including aminoglycosides (e.g., streptomycin) and quinolones (e.g., ciprofloxacin) [6,7].
However, antibiotic treatment options could become limited if the bacteria acquire antibiotic
resistance either through natural means or if engineered by an adversary [8,9]. Recent
outbreak events in Madagascar and documented examples of naturally acquired antibiotic
resistance emphasize the need for novel therapeutics that can be used either alone or in
combination [10–13].

Two protective antigens have been used to make subunit vaccines, including the F1
capsular antigen and the LcrV antigen [14,15]. The F1 protein is encoded by the caf1 gene

Antibodies 2023, 12, 33. https://doi.org/10.3390/antib12020033 https://www.mdpi.com/journal/antibodies

https://doi.org/10.3390/antib12020033
https://doi.org/10.3390/antib12020033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibodies
https://www.mdpi.com
https://orcid.org/0000-0003-4431-6448
https://doi.org/10.3390/antib12020033
https://www.mdpi.com/journal/antibodies
https://www.mdpi.com/article/10.3390/antib12020033?type=check_update&version=1


Antibodies 2023, 12, 33 2 of 16

located on a large plasmid (pMT) and is robustly expressed at 37 ◦C [16,17]. F1 inhibits the
uptake of the bacteria by macrophages by creating an anti-phagocytic capsule [18–20]. It
is also thought to play a role in bacterial transmission because it inhibits the adhesion of
the bacteria to human epithelial cells [21]. However, strains of Y. pestis that are F1 negative
(e.g., C12 strain) have been identified and retain their virulence in mice [22–26], thereby em-
phasizing the need for combination vaccine strategies, including other protective antigens
such as the LcrV protein [27,28]. The LcrV antigen is encoded with other type-3 secretion
system (T3SS) proteins on pCD1 and is a major virulence factor that localizes to the tip of
the T3SS [29,30]. This antigen facilitates Yop translocation, which results in the inhibition
of phagocytosis, induction of apoptosis, and Yersinia-induced immune suppression [31–34].
The LcrV antigen has also been demonstrated to be a multifactorial protein as it can be
translocated into host cells and plays various roles in bacterial pathogenesis [31,35,36]. The
protective epitope of the LcrV antigen has been mapped by several groups and includes
amino acids 135 to 275 [31,37]. Active immunization with recombinant LcrV protein was
previously shown to confer protection against both the bubonic and pneumonic models of
plague caused by both the encapsulated CO92 strain and the F1 negative strain C12 [28].
However, the level of protection against non-encapsulated strains remains equivocal. The
combination of both F1 and LcrV vaccine antigens resulted in improved protection in mice
infected with Y. pestis. The dual antigens were theorized to be able to protect against emerg-
ing/engineered threats that may be F1 negative in spite of known heterogeneity amongst
the LcrV proteins from different isolates [38–40]. Researchers in the United States have
pursued a chimeric protein strategy (i.e., rF1-V), whereas researchers in the United Kingdom
focused their efforts on a vaccine with both distinct protein entities (i.e., F1 + V) [41–46].
However, to date, there is no FDA-approved vaccine to prevent or ameliorate plague.

The vaccine studies using the F1 and LcrV antigens suggest that antibodies play a role
in protection. When administered prophylactically or 48 h post-infection, either alone or in
combination, passive immunization with two monoclonal antibodies (mAbs) generated
against Y. pestis LcrV (mAb 7.3) and F1 (mAb F1-04-A-G1) antigen is protective in mouse
models of bubonic and pneumonic plague [47]. The in vivo protection afforded by the
anti-LcrV antibody has been shown to correlate in vitro with increased phagocytosis by
macrophages and reduced macrophage cell death following infection with Y. pestis [31].

Passive protection has been accomplished using antibodies directed against either the
F1 or the LcrV antigen [37,44,48–54]. Both mouse- and human-derived anti-F1 mAbs have
been demonstrated to protect mice against Y. pestis infection [48,49,55]. The anti-LcrV mAb
7.3 antibody is an IgG1 and also protects against plague disease [37,47,56]. Both anti-F1 and
anti-LcrV antibodies increased phagocytic uptake of Y. pestis by macrophages and protected
macrophages from Y. pestis-induced cell death. The observed in vitro phenotype, however,
is dependent upon the culture conditions used to grow the bacteria in the laboratory, as
these conditions affect the expression of these protective antigens by the bacteria.

In this report, we characterize and evaluate anti-plague polyclonal antibodies generated
in transchromosomic (Tc) bovines using ELISA, functional macrophage assays, and in vivo
mouse models of pneumonic plague. Tc bovines endogenously produce fully human IgG
polyclonal antibodies in response to environmental and vaccine-delivered antigens [57–59].
When hyperimmunized with one or more antigens, very high titers can be achieved in their
plasma, and the IgG antibodies can be highly purified into a specific immunoglobulin with
mainly IgG1 subtype. Experimental therapeutics derived from Tc bovines have shown ex-
cellent efficacy in preclinical studies to other select agents and virulent pathogens including
Ebola virus, Venezuelan equine encephalitis virus, severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), and Middle East respiratory syndrome coronavirus (MERS-CoV),
among others [57–62]. This approach could potentially be used to develop a polyclonal
plague countermeasure using F1, LcrV, and/or other antigens in combination.
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2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

The Y. pestis pgm- pPst- strain was generated at USAMRIID and was kindly provided by
Susan Welkos (USAMRIID, Frederick, MD, USA) [49]. Y. pestis pgm- pPst- is an attenuated
strain derived from the fully virulent Y. pestis CO92 strain, which is cured of the pPst
plasmid containing the plasminogen activator (Pla) virulence locus (pla) and is pigmentation
locus (pgm)-deficient [63,64]. Y. pestis was grown on Remel® Sheep Blood Agar (SBA) plates
(Thermo Fisher Scientific, Waltham, MA, USA) and incubated at 28 ◦C or 37 ◦C for 24 h.
Bacterial colonies were harvested and used to inoculate 10 mL of brain heart infusion (BHI)
broth (BD Biosciences, San Jose, CA, USA) and incubated in the BHI medium for 2 h at
37 ◦C with shaking at 200 rpm prior to infecting the macrophages. To ensure the bacteria
are harvested in the log phase of growth, the OD600 of the culture post-incubation was not
allowed to exceed 1.0 prior to incubation with antibodies. For in vivo challenge studies the
fully virulent Y. pestis CO92 was used. Broth cultures were inoculated using growth from
freshly inoculated tryptose blood agar base (BD Biosciences, San Jose, CA, USA) slants
(grown at 28–30 ◦C for approximately 48 h) which were suspended in Heart Infusion broth
(BD Biosciences, San Jose, CA, USA) + 0.2% Xylose (Sigma Aldrich, St. Louis, MO, USA)
(HIBX) and incubated approximately 24 h at 28–30 ◦C and shaking at 150 rpm.

2.2. Mouse Monoclonal Antibodies

The anti-F1 mouse IgG1 monoclonal antibody (mAb) F1-04-A-G1 was provided by
James Burans and Jennifer Aldrich (Naval Medical Research Center, Silver Spring, MD,
USA) [49]. The anti-LcrV mouse IgG1 mAb (7.3) was provided by Jim Hill (DSTL Porton
Down, Salisbury, UK) and has been described previously [31,37,47,49,56].

2.3. Production of Anti-rF1-V Human Polyclonal Antibodies SAB-183 from Transchromosomic
(Tc) Bovines

Tc bovines were produced as previously described [65,66]. The Tc bovines used in this
study are homozygous for triple deletion in the endogenous bovine immunoglobulin genes
(bIGHM−/−, bIGHML1−/−, bIGL−/−) and carry a human artificial chromosome (HAC)
vector labeled as isKcHACD with an IgG1 production bias. This HAC vector consists of
human chromosome 14 fragment and 2 fragment. The 14 fragment contains the entire
human immunoglobulin heavy chain locus except that the IGHM constant region remains
bovine, and the key regulatory sequences were bovinized. The 2 fragment contains the
entire human immunoglobulin k light chain locus [65,66].

2.4. Tc Bovine Immunization and Plasma Collection

Two Tc bovines were immunized with 2 mg recombinant F1-V (rF1-V), a fusion protein
of the F1 capsular antigen and the virulence-associated LcrV gene product, formulated with
SAB’s proprietary adjuvant formulation (SAB-adj-1) for the first vaccination (V1) and the
second vaccination (V2) at a 3-week interval. The bovines were then boosted with 5 mg
rF1-V formulated with SAB-adj-1 for third vaccination (V3) to seventh vaccination (V7) at
4-week intervals. Recombinant F1-V, produced with fermentation and expressed in E. coli
and purified, was provided by DynPort Vaccine Company (Frederick, MD, USA) through
the Joint Program Executive Office (JPEO) for Chemical and Biological Defense. Up to 2.1%
of body weight of hyperimmune plasma per animal was collected from immunized Tc
bovines on days 8, 11, and 14 after vaccination V3 throughV7. Plasma was collected using an
Autopheresis C, Model 200, automated plasmapheresis system (Baxter Healthcare, Deerfield,
IL, USA). Plasma samples were stored frozen at −20 ◦C until purifications were performed.

2.5. cGMP Purification of SAB-183

SAB-183 (lot PD2001332PG) was purified from pooled Tc bovine plasma from V3 to
V7 as previously described [67]. Negative control antibody preparation (PR1701041NC)
was purified from Tc bovine pre-immune plasma.
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2.6. Cell Culture

RAW264.7 murine macrophage-like cells derived from an Abelson murine leukemia
virus tumor (ATCC TIB-71) were grown at 37 ◦C in 5% CO2 in low glucose Dulbecco’s Mod-
ified Eagle Medium (DMEM) containing (Corning, Manassas, VA, USA) 1% L-glutamine,
1% non-essential amino acids, 1% HEPES buffer (Sigma-Aldrich, St. Louis, MO, USA), and
10% fetal bovine serum (Hyclone, Thermo Fisher Scientific, Waltham, MA, USA). Cells
were used before passage 15 and seeded in 96-well plates using an automated Multidrop
Combi Reagent Dispenser (Thermo Fisher Scientific, Waltham, MA, USA).

2.7. Quantification of Viable Intracellular Y. pestis (Gentamicin Protection Assay)

A schematic representation of this assay is provided in Figure 1. Bacterial cultures were
suspended in DMEM from cultures grown in BHI broth, and multiplicity of infection (MOI)
was estimated for an OD600 of 1.0 (~5.34× 108 colony forming units (CFU) per milliliter). De-
pending upon the targeted protein, the in vitro assays were performed using bacteria grown
under different temperatures to adequately characterize the antibody–bacteria interactions.
Y. pestis requires at least 4 h of growth at 37 ◦C prior to infection to produce enough capsule
to prevent phagocytosis [18], while an hour or less at 37 ◦C is sufficient to observe T3SS-
inhibited phagocytosis [68,69]. For macrophage infection assays, cells (1.5 × 104 cell/well)
were seeded into 96-well plates one day prior to infection. Y. pestis, at 8 × 106 CFU/mL was
pre-incubated with 10 µg/mL or 100 µg/mL antibodies in DMEM for 1 h at 37 ◦C prior to
infection. Macrophages were then infected at an MOI of approximately 10, in triplicate wells.
The plates were centrifuged at 200× g for 5 min to initiate infection and then incubated at
37 ◦C with 5% CO2. After 1 h of infection, gentamicin (8 µg/mL) (Sigma-Aldrich, St. Louis,
MO, USA) was added to the wells to kill extracellular bacteria, and the plates were incubated
for an additional hour at 37 ◦C with 5% CO2. After incubation macrophages were washed
two times in PBS and lysed using 0.1% Triton X-100 in PBS. Serial dilutions of lysates were
plated in duplicate on SBA plates and incubated for 2 days at 28 ◦C for CFU enumeration.
Additional control wells were also infected with Y. pestis that was not pre-incubated with
any antibody (Yp only).
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2.8. Exposure of Mice to Aerosolized Y. pestis

Aerosolized challenge doses of virulent Y. pestis CO92 (pneumonic plague model)
were prepared as previously described [70,71]. The cultures were harvested with centrifu-
gation and suspended in HIB medium (no xylose) to the estimated concentration yielding
the desired number of LD50 equivalents. Exposure of mice to aerosolized bacteria was
accomplished as previously described [70,71]. Briefly, 7- to 9-week-old female BALB/c mice
(Charles River, Frederick, MD, USA) were transferred to wire mesh cages and placed in a
whole-body aerosol chamber within a Class III biological safety cabinet located inside a
BSL-3 laboratory. Mice were exposed to aerosolized Y. pestis strain CO92 (encapsulated)
created with a three-jet collision nebulizer. Samples were collected from the all-glass im-
pinger (AGI) vessel and analyzed with CFU calculations to determine the inhaled dose of
Y. pestis. The median lethal dose for Y. pestis CO92 in female BALB/c mice is approximately
6.8 × 104 inhaled CFUs [26,72].

2.9. ELISA

Immunoglobulin (Ig) class IgG titers (IgG, IgG1, IgG2a) from vaccinated bovines
were determined with an ELISA performed in 96-well, Immulon 2 HB, round-bottom
plates (Thermo Fisher Scientific, Waltham, MA, USA). Recombinant F1-V (cGMP; DynPort
Vaccine Company, Frederick, MD, USA), F1 (BEI Resources, Manassas, VA, USA), and LcrV
(BEI Resources. Manassas, VA, USA) were individually used as antigens diluted in 0.1 M
carbonate buffer, pH 9.5, to a concentration of 2 µg/mL. Irradiated temperature-shifted
Y. pestis CO92 (TS CO92) and its non-encapsulated derivative strain Y. pestis C12 (TS C12)
were diluted, as described above, but at a concentration of 10 µg/mL [24,64]. Plates were
covered and stored overnight at 4 ◦C. The plates were washed five times with wash buffer
(PBS, 0.05% Tween 20) with a Biotek ELx405ts plate washer (Bio Tek, Winooski, VT, USA),
and incubated with blocking buffer (1% Casein in PBS, Thermo Fisher Scientific, Waltham,
MA, USA) for 30 min at 37 ◦C. Blocking buffer was removed with washing as stated above,
then twofold serial dilutions of bovine sera were made with antibody assay diluent (BS,
0.25% Casein) in triplicate, and plates were incubated for 1 h at 37 ◦C. Then the plates were
washed as previously mentioned; diluted anti-IgG horseradish peroxidase conjugate at
1:5,000 (Southern Biotechnology Associates, Inc., Birmingham, AL, USA) was added to
each well and plates were incubated for 30 min at 37 ◦C. After the plates were washed as
previously stated, buffered hydrogen peroxide and 3,3′,5,5′-tetramethylbenzidine solution
(Thermo Fisher Scientific, Waltham, MA, USA) was added to each well, and plates were
incubated for 20 min at 37 ◦C. The reaction was stopped with 2 N sulfuric acid, and the
amount of bound antibody was determined colorimetrically with readings at 450 nm with
a reference filter (570 nm) using a Biotek ELx808 plate reader (Bio Tek, Winooski, VT, USA).
The results are reported as the reciprocal of the highest dilution giving a mean OD of at
least 0.1 (which was at least twice the background) ±1 SD.

2.10. Flow Cytometry

Approximately 4× 105 Y. pestis CO92 pgm-/pPst- (Yp pgm-/pPst-) cells were treated with
anti-F1 or anti-LcrV antibodies as described above. The inoculum samples were centrifuged
at 2800× g for 10 min and resuspended in 350 µL dPBS (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA). The samples were then read on a FACSCanto II flow cytometer (BD
Biosciences, San Jose, CA, USA), gating on Y. pestis pgm-/pPst- untreated cells in the FSC vs.
SSC dot plot and noting the aggregation and shift of subsequent antibody-treated Y. pestis
pgm-/pPst- bacterial cells outside of that gate.

For assessment of F1 and LcrV levels on bacterial surface, Yp pgm-/pPst- cells were
resuspended in 1X dPBS, then diluted to 8 × 106 CFU/mL in DMEM and pre-incubated
with 10 µg/mL primary antibody (F1-04-A-G1 or 7.3) for 1 h at 37 ◦C. After washing in FACS
buffer (DPBS + 1% bovine serum albumin [HyClone]), cells were resuspended in FACS
buffer with secondary goat anti-mouse antibody (Alexa Fluor 488 conjugate, Invitrogen) at
10 µg/mL. After 30 min at room temperature, cells were washed, resuspended in FACS
buffer, and read on a FACSCanto II.
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2.11. Statistics

For ELISA, an exact, one-sided, two-sample Wilcoxon test was performed between
treatments. No adjustment was applied for multiple comparisons. The comparison was
made between the three technical replicates taken on each animal. For in vitro macrophage
assays and gentamicin protection assay, results were compared using a Wilcoxon rank
sum test, stratified by date of experiments. The survival rates at selected time points were
compared using Fisher exact test. The log-rank test was used to compare mouse survival
curves post challenge. The ED50 is estimated at selected time points with logistic regression.
In addition, a predicted value at each day postexposure is given with accelerated failure
time model. Any p values of ≤ 05 were considered significant. Analyses were performed
in SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).

3. Results
3.1. Mouse Anti-F1 and Anti-LcrV mAbs and Polyclonal Anti-rF1-V Antibodies Derived from
Transchromosomic (Tc) Bovines Are Opsonic In Vitro

We initially compared the human polyclonal anti-rF1-V antibodies (SAB-183), pro-
duced in Tc bovines immunized with the recombinant F1-V fusion protein vaccine, to the
well-characterized mouse monoclonal (mAbs) anti-LcrV (7.3) and anti-F1 (F1-04-A-G1),
which have previously been shown to be highly protective in mice against Y. pestis challenge.
Furthermore, in an effort to discern how the human polyclonal antibodies affect phagocy-
tosis and/or growth of Y. pestis pgm-/pPst- within host macrophages, we first optimized
the Y. pestis growth conditions to induce expression of selective temperature-dependent
virulence factors. For instance, at low or ambient temperature (26–28 ◦C), similar to that in
the flea vector, there is little to no expression of the F1 capsule protein [18–20]. Subsequent
transition to 37 ◦C, a temperature that mimics a mammalian host, results in the induction
of F1 expression. It has been previously shown that Y. pestis needs to be grown at 37 ◦C
for >2 h before the anti-phagocytic activity of the capsule is appreciable [18,31]. In order
to capitalize on this temperature-dependent bacterial growth characteristic, Y. pestis was
initially grown at 28 ◦C or 37 ◦C for 24 h on SBA plates and then was sub-cultured in BHI
medium and grown for an additional 2 h at 37 ◦C. Y. pestis grown at 28 ◦C for 24 h followed
by 37 ◦C for 2 h (28–37 ◦C) expresses a very limited F1 capsule that would not likely obscure
the LcrV antigen, a component of the T3SS, on the surface of the bacterial cell. In contrast,
Y. pestis grown at 37 ◦C for 24 h followed by 37 ◦C for 2 h (37–37 ◦C) expresses a much
more robust F1 capsule and also appreciable levels of the LcrV antigen. These bacterial
cell descriptions based upon the previous literature were confirmed in our laboratory with
Western blot and flow cytometric analyses (Supplementary Figure S1).

In order to evaluate if anti-F1, anti-LcrV, or polyclonal anti-rF1-V antibodies affected
bacteria post-incubation we incubated Y. pestis grown at 28–37 ◦C or 37–37 ◦C with mouse
monoclonal anti-F1 (F1-04-A-G1), anti-LcrV (7.3) mAbs, or with human polyclonal anti-rF1-
V antibodies (SAB-183) derived from Tc bovines. Changes in the bacterial population, such
as alterations in size or granularity, were assessed with flow cytometry. Incubation of Y.
pestis grown at 28–37 ◦C with antibodies resulted in no overt change in bacteria relative
to Y. pestis cells in the absence of antibodies (Yp only) or human polyclonal antibody from
non-immunized Tc bovines (SAB Neg Ctrl) (Figure 2-Top). After incubation of Y. pestis
grown at 37–37 ◦C with 10 µg/mL or 100 µg/mL of F1-04-A-G1 mAb, there was a noticeable
change in size and granularity of the bacterial population. Further supporting the lack of
availability of the LcrV protein to interact with antibodies (compared to the F1 protein),
the bacteria grown at 37 ◦C −37 ◦C and incubated with 100 µg/mL of anti-LcrV antibody
7.3 exhibited an appreciable alteration as detected using flow cytometry, but the degree of
aggregation was clearly less than that observed when the bacteria were incubated with the
anti-F1 mAb, and this observation is not consistent between iterations. Although no change
in bacteria was observed in the presence of 10 µg/mL of polyclonal SAB-183 antibodies,
there was a marked shift in the bacterial population in the presence of 100 µg/mL of
polyclonal SAB-183 material (Figure 2-Bottom).
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SSC (granularity, y-axis). The numbers denote the percentage of the bacterial cells outside of the
gate. Red arrow demarcates bacterial population size and granularity shift relative to no Ab (Yp
only) pre-incubation. Shown here are data from one representative experiment from a total of three
independent experiments, all with similar results.

Mouse anti-LcrV mAb (7.3) enhanced initial opsonization and phagocytosis of Y. pestis
28–37 ◦C at 2 h post-infection. The level of bacterial internalization was more pronounced
with Y. pestis pre-incubated with 100 µg/mL of mAb compared to Y. pestis preincubated
with 10 µg/mL. The levels of phagocytosis enhancement were also similarly observed with
SAB-183 polyclonal antibodies relative to the anti-LcrV mAb (7.3) (Figure 3).

Mouse anti-F1 mAb (F1-04-A-G1) opsonized and enhanced phagocytosis of Y. pestis
37–37 ◦C at 2 h post-infection. Both capsule production and T3SS upregulation are induced
at 37 ◦C, therefore enhancement of bacterial uptake is observed with both anti-F1 (F1-04-A-
G1) and anti-LcrV (7.3). However, the increase in phagocytosis is substantially greater in
the presence of the anti-F1 mAb relative to the anti-LcrV mAb, likely due to increased F1
production and overall epitope availability. The levels of phagocytosis enhancement also
reached statistical significance post-incubation with SAB-183 relative to the Y. pestis only or
the SAB Negative Control. (Figure 4).
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Figure 3. The mouse and human anti-LcrV antibodies are opsonic in vitro. Y. pestis CO92 pgm-
pPst- (28–37 ◦C) was incubated for 1 h with 10 µg/mL (orange) or 100 µg/mL (grey) of antibodies
prior to infection of RAW264.7 cells at an MOI of approximately 10 CFU. Two hours post-infection,
macrophages were lysed plated in duplicate on SBA plates for CFU enumeration. The box-plots
depict the median value, each technical replicate in that iteration, and the 1st and 3rd quartile values.
This is a representative experiment of five similar experiments. Statistical analyses of two iterations
are provided in Supplementary Table S1.
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Figure 4. The mouse and human anti-F1 antibodies are opsonic in vitro. Y. pestis CO92 pgm- pPst-
(37–37 ◦C) was incubated for 1 h with 10 µg/mL (orange) or 100 µg/mL (grey) of antibodies prior
to infection of RAW264.7 cells at an MOI of approximately 10 CFU. Two hours post-infection,
macrophages were lysed plated in duplicate on SBA plates for CFU enumeration. The box-plots
depict the median value, each technical replicate in that iteration, and the 1st and 3rd quartile values.
This is a representative experiment of five similar experiments. Statistical analyses of two iterations
are provided in Supplementary Table S1.
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3.2. Transchromosomic (Tc) Bovines Immunized with rF1-V Elicit a Strong Human
Antibody Response

Previous studies identified that alterations in vaccine formulations, such as inclusion of
various adjuvants, aside from impacting antibody titers can also change the epitope binding
profile of the polyclonal antibody responses, with some epitopes conferring superior
protection versus others on the same antigen [73,74]. In an effort to discern how the bovine
rF1-V vaccination formulation and immunization schedule impact antibody response, we
measured total antibody response by means of indirect ELISA against F1- and LcrV-protein
antigens, along with irradiated whole-cell Y. pestis temperature-shifted CO92 (TS CO92) and
irradiated whole-cell Y. pestis temperature-shifted non-encapsulated C12 (TS C12) strains.

During antigen preparation both strains of Y. pestis were grown at 28 ◦C and then
temperature switched (TS) to 37 ◦C for approximately 3.5 h in order to upregulate the
expression of the bacterial capsule and T3SS components. The anti-F1 and anti-LcrV antibody
responses were significantly increased in the SAB-183 material relative to the SAB Negative
Control (p < 0.05 vs SAB Negative Control). The antibody response was substantially greater
against the LcrV antigen (8.3× 104–2.4× 105) relative to the F1 antigen (1.6× 104–2.4 × 104)
(Table 1). In addition, a significant antibody response (p = 0.05 vs SAB Negative Control)
was also elicited against Y. pestis TS CO92 and Y. pestis TS C12. The antibody response was
higher against Y. pestis TS CO92 (4.2 × 103–8.8 × 103) relative to Y. pestis TS C12 (1.3 × 103–
1.4 × 103) (Table 1), likely due to the presence of the immunodominant F1 protein on the
surface of the irradiated TS CO92 cells used as capture antigen.

Table 1. Total IgG antibody response against F1, LcrV, Y. pestis CO92 cells or Y. pestis C12 cells.

SAB-183 Neg. Ctrl. SAB-183 a

Antigen Antibody Titer b

Median (Q1, Q3) GEO Mean (GSE) Median (Q1, Q3) GEO Mean (GSE)

F1 5.0 (5.0, 5.0) 5.0 (1.0) 16,612.6 (16,612.6, 16,612.6) 16,612.6 (1.0)
LcrV 10.0 (10.0, 20.0) 12.6 (1.3) 83,063.0 (83,063.0, 83,063.0) 83,063.0 (1.0)

TS CO92 320.0 (320.0, 320.0) 320.0 (1.0) 4153.2 (4153.2, 4153.2) 4153.2 (1.0)
TS C12 160.0 (160.0, 320.0) 201.6 (1.3) 1038.3 (1308.3, 2076.6) 1308.2 (1.3)

a Antibody titers against all antigens for SAB-183 reached significance (p = 0.05) relative to SAB-183 Negative
control. b Values represent median titers with the first and third quartiles (Q1, Q3) and geometric mean (Geo
Mean) antibody titer with geometric standard error (GSE) against F1 protein, LcrV protein, Y. pestis temperature
shifted CO92 (TS CO92) irradiated cells or Y. pestis temperature shifted C12 (TS C12) killed cells.

3.3. Human Anti-rF1-V Antibodies Derived from Transchromosomic (Tc) Bovines can Protect Mice
after Exposure to Aerosolized Y. pestis

Mice were treated with antibodies approximately 12 h pre-exposure to aerosolized Y.
pestis CO92. Mice received 0.5 mg, 1.0 mg, or 2.0 mg of IgG purified antibodies derived
from Tc bovines vaccinated with the rF1-V vaccine. Mice were then estimated to have
inhaled approximately 8.6× 105 CFU of Y. pestis CO92 (approximately 13 LD50 equivalents).
While all mice that received 0.5 mg of this polyclonal antibody succumbed to infection,
there was a statistically significant delay in time-to-death or euthanasia compared to mice
receiving PBS alone (p = 0.0003) or mice receiving purified IgG derived from Tc bovines not
vaccinated with rF1-V (SAB Negative Control, p < 0.0001) (Figure 5). There was a significant
dose-dependent response as survival correlated with the amount of anti-rF1-V polyclonal
antibodies administered to the mice (See Figure 5). Day 21 survival rates were significantly
greater when comparing the 0.5 mg treatment group with the 1.0 mg treatment group
(p = 0.033) or with the 2.0 mg treatment group (p < 0.001). Likewise, there was a significant
increase in survival rate when comparing the 1.0 mg treatment group with the 2.0 mg
treatment group (p = 0.033).
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Figure 5. Anti-rF1-V antibodies derived from Tc bovines can protect mice from pneumonic plague.
Mice were treated with 2.0 mg, 1.0 mg, or 0.5 mg of polyclonal IgG derived from Tc bovines vaccinated
with the rF1-V plague vaccine (n = 10 for each group). Negative control animals (SAB Neg) were
treated with 2.0 mg of polyclonal IgG derived from naïve Tc bovines (n = 7) or PBS (n = 4). There
were no differences between the negative control groups, and the data coincide exactly on the graph.
The positive control antibodies used were 0.2 mg anti-F1 (F1-04-A-G1) mouse-derived mAb (n = 3),
or 0.1 mg anti-LcrV (7.3) mouse-derived mAb (n = 3). For clarity, the positive control antibodies are
not depicted on the graph, but each protected 100% of the mice. All antibodies were delivered via
intraperitoneal injection approximately 12 h prior to exposure at approximately 13 LD50 equivalents
of aerosolized Y. pestis CO92.

For the animals that did succumb to infection or that were euthanized in accordance
with early endpoint euthanasia criteria the time-to-death was similarly significant in a
dose-dependent manner. When comparing the 0.5 mg treatment group with the 1.0 mg and
2.0 mg treatment groups, these differences in time-to-death were statistically significant
(p < 0.001 in both comparisons and p = 0.012 when comparing 1.0 mg and 2.0 mg treatment
groups) (Figure 5). Mouse-derived monoclonal antibodies were used as positive controls.
Mice (n = 3) received either 0.1 mg of anti-LcrV mAb 7.3 or 0.2 mg of anti-F1 mAb F1-04-A-
G1 and all positive control mice survived the infection.

The median effective dose (ED50) of the polyclonal material was calculated for days 5,
10, 15, and 21 postexposure to aerosolized Y. pestis (Figure 6). Through day 5 postexposure
the ED50 is approximately 0.5 mg. For the remainder of the time points the ED50 was
determined to be approximately 1.0 mg. The response to the treatment could change as
the disease progresses or as the immune system mounts a response. The treatment is most
effective early in the course of the disease, as indicated by the lower ED50 on day 5 compared
to the higher ED50 on day 14 and 21. Overall, the variation in the ED50 over time suggests
that the timing and dosing of the treatment may be important factors in achieving the
desired prophylactic or therapeutic effect.
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4. Discussion

Having the ability to screen for promising antibody candidates in vitro could reduce
the number of animals that would have to be utilized in passive transfer studies, expedite
the timeline of the screening process, reduce the initial quantity of the antibody required for
initial evaluation, and significantly lower the overall discovery cost. This study encompassed
two main objectives. First, to expand our knowledge of the well-characterized anti-F1 (F1-
04-A-G1) and anti-LcrV (7.3) mAbs that have previously been shown to be highly protective
in vivo, and to use the antibodies as benchmarks that may later be used to rapidly screen
potential novel antibody therapeutics directed against F1 or LcrV antigens. Second, to assess
in vitro function and in vivo protective efficacy of a novel anti-plague human polyclonal
antibody therapeutic (SAB-183) from genetically engineered cattle, which were vaccinated
with the recombinant F1-V subunit vaccine, relative to the anti-F1 (F1-04-A-G1) and anti-
LcrV (7.3) mAbs.

Mouse anti-LcrV (7.3) antibody enhanced bacterial uptake by RAW264.7 macrophages.
This enhancement was more pronounced when Y. pestis was grown at 28 ◦C for 24 h
followed by 37 ◦C for 2 h (28–37 ◦C). These growth conditions promote the induction
of the T3SS and hence the LcrV antigen production but limit the formation of a robust
F1 capsule [18,68]. The level of opsonization of the 28–37 ◦C grown bacteria after 2 h of
invasion was less prominent with anti-F1 (F1-04-A-G1) due to low levels of the F1 capsular
protein. The bacteria pretreated with the anti-rF1-V SAB-183 antibodies were phagocytosed
to a significantly greater extent than the negative control Abs from unvaccinated Tc bovines
(SAB Negative Control, PR1701041NC) (Figure 3). The same trends were observed in the
presence of anti-F1 (F1-04-A-G1) mAb pre-incubated with Y. pestis grown at 37 ◦C for
24 h followed by 37 ◦C for 2 h (37–37 ◦C), growth conditions that promote a more robust
F1 and LcrV production (Figure 4). Since the anti-F1 (F1-04-A-G1) and anti-LcrV (7.3)
mAbs are mouse-derived mAbs, it is possible that these mouse IgGs interact with the
murine-derived RAW264.7 cells more efficiently than the fully human polyclonal SAB-183
antibodies. Furthermore, since the SAB-183 antibodies are the purified fraction of total IgG
from plasma and are not affinity purified against the vaccine antigen, it should come as no
surprise that only a fraction of the polyclonal antibodies are directed against the targeted F1
or LcrV antigens. In addition, it is plausible that the chimeric forms of F1 and LcrV in the
rF1-V vaccine contain inclusions or exclusions of some of the epitopes that would normally
be present in native F1 and LcrV antigens, which may further reduce binding efficacy of
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the anti-F1 and anti-LcrV fractions of SAB-183. Of note, the LcrV antigen (~326 aa) is more
than twice the size of F1 antigen (~150 aa), thereby potentially garnering a greater number
of epitopes for immune response after rF1-V vaccination. This size difference in proteins
may contribute to the greater antibody titers against LcrV relative to F1 in the SAB-183
antibodies post-vaccination. In addition, antigen availability also needs to be considered
since LcrV antigen is naturally expressed at much lower levels relative to F1 antigen. The
impact of SAB-183 concentration (100 µg relative to 10 µg) is more pronounced on Y. pestis
(37–37 ◦C) relative to Y. pestis (28–37 ◦C). This could be due to overall lower titers against
the F1 protein compared to titers directed against LcrV (Table 1). Additionally, the amount
of F1 that is produced and released from the bacteria in vivo could result in a decoy effect;
thus, requiring a greater concentration of antibody to be effective.

It appears that Y. pestis (28–37 ◦C), due to a lack of a robust capsule along with other
temperature-induced factors, is potentially more susceptible to nonspecific antibody binding
as seen with much higher invasion in the presence of SAB Negative Control antibodies 2 h
post-invasion. However, this enhancement attributed to the SAB negative control is less
pronounced with Y. pestis (37–37 ◦C), suggesting the robust F1 capsule formed is obscuring
possible cross-reactive antigens on the surface of the bacteria (Figures 3 and 4). Furthermore,
in the presence of SAB Negative Control antibodies, this enhancement is also concentration
dependent, with an increase in invasion at 100 µg/mL relative to 10 µg/mL for Y. pestis
(28–37 ◦C) that is likely attributable to cross-reactive antibodies or possibly endogenous
antibodies against other species of Yersinia.

Importantly, the human polyclonal antibodies derived from Tc bovines can protect
mice from a substantial challenge with aerosolized Y. pestis. The studies reported here exam-
ined a single administration of antibodies approximately 12 h pre-exposure to aerosolized
Y. pestis. In future studies it would be important to examine the effect of multiple doses of
the antibodies, to determine if these antibodies could be used as postexposure prophylaxis
or as a therapeutic, or if the efficacy can be improved with direct delivery to the lungs.

Although a larger amount of this polyclonal antibody material is required to achieve
complete protection in the BALB/c mouse model of pneumonic plague (relative to mouse-
derived mAbs), even the lower dose (0.5 mg) did significantly increase time-to-death or
euthanasia. Whereas mAbs required less material in this mouse model, neither the im-
munogenicity nor the half-life of mouse-derived mAbs versus fully human antibodies was
addressed in this study. Furthermore, the concept of Tc bovines producing antibodies
against emerging pathogens is important due to the rapidity of the production and the
large amount of material that can be generated. Due to the heterogeneity amongst the LcrV
proteins from different isolates [30,75], the level of protection afforded by mAb 7.3 may
drastically diminish if that specific epitope is altered; however, greater epitope coverage by
polyclonal antibodies derived from Tc bovines may mitigate those possibilities. Additionally,
novel antibody-based medical countermeasures will become increasingly more important
strategies to combat anti-microbial resistance [76–78]. Drug-resistant isolates of Y. pestis have
been isolated in several regions of Madagascar during relatively recent plague outbreaks
and multi-drug resistant isolates continue to be of the utmost concern in both public health
and biodefense arenas [79,80]. Thus, novel medical counter measures that limit or prevent Y.
pestis infection and subsequent plague disease are urgently needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/antib12020033/s1, Figure S1: Y. pestis grown overnight at 37 ◦C has a robust F1 capsule, which is
not seen in Y. pestis grown for only two hours at 37 ◦C, Table S1: Statistical analyses for Figures 3 and 4.
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