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Abstract: Monoclonal antibodies are a promising treatment for COVID-19. However, the emergence
of SARS-CoV-2 variants raised concerns about these therapies’ efficacy and long-term viability.
Studies reported several antibodies, that received authorization for COVID-19 treatment, are not
effective against new variants or subvariants of SARS-CoV-2, hence their distribution has to be paused.
Here, the authors reviewed the status of the currently available monoclonal antibodies for COVID-19
treatment, their potential as a therapeutic agent, and the challenges ahead. To address these issues,
the authors presented general information on SARS-CoV-2 and how monoclonal antibodies work
against SARS-CoV-2. The authors then focus on the antibodies that have been deployed for COVID-19
treatment and their current status, as well as the evidence supporting their potential as an early
intervention against COVID-19. Lastly, the authors discussed some leading obstacles that hinder the
development and administration of monoclonal antibodies for the treatment of COVID-19.
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1. Introduction

Human coronaviruses (hCoVs) were first characterized in the 1960s when an infectious
agent was found in organ culture from the respiratory tract of an adult with the common
cold. The term coronavirus was given due to the crown-like appearance on its surface [1].
The coronaviruses comprise multiple strains of human and animal viruses that cause
respiratory tract infections, which range from mild to lethal [2,3]. Members of coronavirus
share similarities in their structure. They are enclosed in a lipid bilayer envelope protein
that contains two or three glycoproteins, i.e., a matrix protein, a surface component, and a
haemagglutinin esterase, which is found in several betacoronaviruses. The RNA genome is
surrounded by a nucleoprotein and, together, they appear as a coiled tubular helix within
the lipid bilayer envelope [4]. Genes of the major structural proteins in all coronaviruses
occur in the 5′ to 3′ order as spike protein (S), an envelope protein (E), matrix protein (M),
and nucleoprotein (N) [5].

Infection with hCoV occurs more often during winter and spring in temperate cli-
mates [6–8]. During these past 20 years, numerous hCoVs have been identified; three among
them, named severe acute respiratory syndrome coronavirus (SARS-CoV), the Middle East
respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), are noticeably more contagious than other hCoVs and have
caused significant mortality worldwide [9–11]. Infection by SARS-CoV, MERS-CoV, and
SARS-CoV-2 results in acute lung injury, acute respiratory distress syndrome, septic shock,
and multiple organ failure [12,13]. However, the transmission rate of SARS-CoV and
MERS-CoV is lower and they were easily contained compared to SARS-CoV-2 [14].

Vaccination remains the primary option for the prevention of coronavirus diseases,
while antibody therapies may be still viewed as an “add-on” treatment. Despite this, the
rapid advancement of antibody research and development offers different insights and
renewed optimism for the use of antibody therapy for the treatment of coronavirus disease.
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This review presents an overview of the currently available antibody therapies, as well
as the challenges in addressing the coronavirus disease, particularly COVID-19, based on
published findings.

2. SARS-CoV-2

The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), the causative
agent of COVID-19, was first identified in Wuhan, Hubei Province, China at the end of 2019.
SARS-CoV-2 is a member of the family Coronaviridae, the subfamily Orthocoronaviridae, and
the genus betacoronavirus [15,16]. SARS-CoV-2 is a positive strand ssRNA animal virus; the
genome size of SARS-CoV-2 varies from 29.8 kb to 29.9 kb [17]. The SARS-CoV-2 genome is
non-segmented and has been reported to share a high similarity in the sequence identity
for essential enzymes and structural proteins; up to 82% with SARS-CoV and about >90%
with MERS [18]. The genome of SARS-CoV-2 encodes both structural proteins, which are
responsible for viral assembly and the maturation of viral particles, and non-structural
proteins that play crucial roles in viral RNA replication and immune evasion, including
aiding viral infection and transmission in host cells [19–21] (Figure 1).
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Figure 1. Diagram depicting the genome organization of SARS-CoV-2. The genome of SARS-CoV-2,
with a size of ~30 Kb, encodes 4 structural proteins, 16 non-structural proteins (nsps), and 6 accessory
proteins. The structural proteins, including spike glycoprotein (S), nucleocapsid (N), membrane (M),
and envelope (E) proteins, are important for virus assembly and infection and are the target for the
development of vaccines and therapeutics for COVID-19.

Among the SARS-CoV-2 viral proteins, the spike protein (S), envelope (E), membrane
(M), and nucleocapsid (N) proteins are the main target of the structural proteins-based
therapeutics for SARS-CoV-2 [22–24] (Table 1).
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Table 1. Available drugs and non-vaccine therapeutics, with their target proteins, up to November
2022.

Therapeutics Type Target Protein
(SARS-CoV-2) References

Nirmatrelvir with
Ritonavir (Paxlovid) Antiviral drug Viral protease (Mpro) [25,26]

Remdesivir (Veklury) Antiviral drug RdRp [27,28]

Bebtelovimab Monoclonal antibody Spike protein (RBD) [29,30]

Molnupiravir (Lagevrio) Antiviral drug RdRp [31]

Bamlavinivmab with
etesevimab Monoclonal antibody Surface spike

glycoprotein [32]

Casirivimab with
imdevimab Monoclonal antibody Spike protein [33,34]

Sotrovimab Monoclonal antibody Spike protein [35,36]

Tixagevimab with
cilgavimab Monoclonal antibody Spike protein [37,38]

Abbreviation: Mpro, main protease; RdRp, RNA-dependent RNA polymerase; RBD, receptor binding domain.

SARS-CoV-2 continuously evolves as mutations occur during its genome replica-
tion [39]. To date, multiple variants and subvariants of SARS-CoV-2 with more than a
million sequences have been made public and are being updated continuously, on a real-
time basis, through the Global Initiative on Sharing All Influenza Data (GISAID) [40,41].
The changes in the genetic codes of SARS-CoV-2 may affect the virus’ characteristics,
including transmissibility, antigenicity, infectivity, and severity [42].

The attachment of the SARS-CoV-2 to the host cell surface is the “key” for the virus
to gain entry to the host cells. The spike protein (S) mediates the attachment of the
SARS-CoV-2 to the host cell by binding into the human angiotensin-converting enzyme
2 (hACE2) receptor through its receptor-binding domain (RBD) [43]. The S is also the
practical target for neutralizing antibodies [44]. Thus, for this reason, S is the major target
for the development of therapeutic agents or vaccines, which are the primary option for
the prevention of COVID-19. Among SARS-CoV-2 proteins, the gene that encodes S is the
most notable region where the mutations occurred. To date, more than 4000 mutations
in the gene encoding the S gene have been identified [45]. Among these mutations, some
may not give any phenotype effects [41], but some may change the virus’ characteristics,
including the antigenicity of the S, hence, resulting in viral adaptability and the emergence
of variants that can evade neutralization by vaccine-induce immunity, natural immunity
or monoclonal antibodies [46–48] (Table 2). The variations that occur in the RBD area of S
enhance the binding affinity of RBD with hACE2, thus reducing the neutralization activity
by the neutralizing antibodies or nanobodies [49].

Table 2. Major mutations in the SARS-CoV-2 protein and its impacts.

Mutations Type of Mutation and Region Impact References

D614G Amino acid substitution within
receptor-binding motif (RBM)

- Increases infectivity.
- Increases transmissibility. [50,51]

N439K Amino acid substitution within
receptor-binding motif (RBM)

- Enhances the binding affinity for the ACE2
receptor.
- Reduces the neutralizing activity of some
monoclonal antibodies (mAbs) and polyclonal
antibodies.

[52]
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Table 2. Cont.

Mutations Type of Mutation and Region Impact References

Y453F Amino acid substitution within
receptor-binding motif (RBM)

- Increases ACE2-binding affinity.
- Enhances transmission capacity. [53,54]

∆69–70
Amino acid deletion in the
N-terminal domain (NTD) of the
spike protein

- Affects the network of NTD loops.
- Increases transmission capacity. [55,56]

N501Y Amino acid substitution within the
RBD

- Strengthens S protein binding to receptor
ACE2.
- Facilitates immune escape (antibody).

[42,57]

E484K Amino acid substitution within the
RBD Reduces the neutralizing activity of antibodies. [58,59]

K417N Amino acid substitution in the spike
protein

- Increases the interaction with hACE2.
- May abolished the antibody effect. [60]

K444 Q/R/N Amino acid substitution within the
RBD Reduces the neutralizing activity of antibodies. [61]

V445E Amino acid substitution within the
RBD Reduces the neutralizing activity of antibodies. [42,61]

K150 T/Q/R/E Amino acid substitution in NTD of
the spike protein Reduces the neutralizing activity of antibodies. [61,62]

N148S Amino acid substitution in NTD of
the spike protein Reduces the neutralizing activity of antibodies. [61]

L452R Amino acid substitution within the
RBD

- Increases infectivity.
- Increases viral fusogenicity.
- Facilitates escape antibodies.

[63]

P681R Amino acid substitution in the spike
protein

- Enhances viral fusogenicity.
- Increases viral pathogenicity. [64]

F486V Amino acid substitution within the
RBD

- Facilitates escape from certain class 1 and 2
antibodies. [65]

N460K Amino acid substitution in the spike
protein

- Enhances S processing.
- Enhances the resistance to neutralizing
antibodies.

[66]

R346T Amino acid substitution in the spike
protein

- Increases viral prevalence.
- Increases the ability to evade neutralizing
antibodies.

[67,68]

The continuous changes in the predominant variants of SARS-CoV-2 have become a
concern worldwide. By October 2021, the delta was the dominating variant, which reached
almost 90% of all viral sequences submitted to GISAID [69]. However, currently, the
predominant variant circulating globally is omicron, comprising >98% of the viral sequences
shared on GISAID after February 2022 [69]. Since omicron was designated as the variant
of concern (VOC) on 26 November 2021 [69], multiple subvariants of omicron have been
reported. Those subvariants include B.1.1.529, BA.1, BA.1.1, BA.2, BA.3, BA.4, and BA.5 [70].
Recently, the new subvariants of omicron, named BQ.1 and BQ.1.1, were reported to have
become the dominant subvariants in the U.S. [71], and the XBB subvariant has become
particularly prevalent in the countries of South East Asia [72]. Thus, with the ongoing
emergence of VOCs with higher transmissibility and pathogenicity, researchers around the
world are working around the clock to address the urgent demand for effective therapeutic
and preventive measures with a broad-spectrum against SARS-CoV-2, particularly the
omicron variant and its subvariants.
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3. Neutralizing Monoclonal Antibodies against SARS-CoV-2

The COVID-19 pandemic caused a devastating impact on many sectors of human life,
caused millions of people to lose their lives and became an exceptional public health crisis
that urgently demands the development of timely and accurate therapeutics. Over the past
years, during the COVID-19 pandemic, tremendous research efforts and financial resources
have been dedicated to the development of diagnostic, prophylactic, and therapeutic
measures for COVID-19 [29,73,74].

Unlike the vaccine-derived immunity that develops over time before effectively giving
protection against SARS-CoV-2, the administration of monoclonal antibodies as a therapeu-
tic agent may give immediate and passive immunotherapy, with the potential to reduce
disease progression immediately after the administration, and also the potential to reduce
the severity of the disease [75]. These monoclonal antibodies are a novel class of antiviral
intervention that can ‘neutralize’ SARS-CoV-2 in infected patients. Thus, antibody therapy
has been suggested as a promising option to prevent the development of severe infection
of COVID-19 in high-risk individuals.

Neutralizing monoclonal antibodies are recombinant proteins that are derived from
B cells. The molecule of a monoclonal antibody is comprised of four polypeptide chains,
with two identical heavy and light chains. Disulfide linkages connect all the chains to
form a “Y” shaped tetramer. High-throughput screening of B cells from convalescent
patients, vaccinated individuals or humanized mice permits the identification of IgG class
antibodies with specificity and affinity to bind into virus surface protein and block entry
of the virus into the healthy cells [76,77]. The affinity of the Fab region in the antibody is
critical for binding to the target antigen, thus determining the specificity of the antibody.
The high specificity and affinity of antibodies ensure a more precise action on the target
(antigen), so thus the virus can be directly neutralized or attacked by the component of the
immune system. According to Taylor et.al, during the viral infection, antibodies can work
either by preventing the binding/fusion of virion with the target cells (neutralization), or
by opsonizing the virion, or infected cells for phagocytic uptake [78]. The neutralization
mechanism of the antibody can vary, including direct blocking of viral entry, antibodies-
mediated effector functions, or inactivating the viral entry glycoprotein [79].

As a COVID-19 therapeutic agent, the neutralizing monoclonal antibody works by
specifically targeting the RBD in the S of SARS-CoV-2, thus inhibiting the RBD–hACE2
interaction. Failure of RBD to bind with hACE2 results in the inability of SARS-CoV2 to
enter neighboring cells [73,80], hence, giving protection against reinfection with SARS-CoV-
2 or preventing the disease’s progression (Figure 2).
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mechanism. In (A), the monoclonal antibody is comprised of chains that are connected by disulfide
linkage to form a “Y” shape. The region that binds to the target antigen is indicated. In (B), the
RBD binds to hACE, which facilitates viral entry into the cells (left). Monoclonal antibodies disrupt
the RBD–hACE interaction by targeting the RBD (antigen), thus hindering viral entry into the cells
(right).

4. Currently Available Monoclonal Antibodies for COVID-19 Treatment

As part of COVID-19 control and prevention, the U.S. Food and Drug Administration
issued an emergency use authorization (EUA) for the neutralizing monoclonal antibodies:
bamlanivimab and etesevimab to be administered together on 9 February 2021 [81]. On
November 9, the investigational monoclonal antibody bamlanivimab received EUA to
be administered alone [82], and after ten days, on 21 November 2021, casirivimab and
imdevimad also received a EUA to be administered together for the treatment of mild
to moderate COVID-19 in adults and pediatric patients with positive infection of SARS-
CoV-2 [33]. Following approval of these monoclonal antibodies as a COVID-19 treatment,
multiple other monoclonal antibodies received a EUA from the FDA, or authorization
in certain countries, to be administered for the treatment of COVID-19 in vulnerable
populations (Table 3).

Table 3. List of antibodies that received authorization for COVID-19 treatment up to November 2022.

No Antibodies Name Current Status References

1 Bebtelovimab Remain authorized in the U.S. until further
notice by the FDA. [30,83]

2 Tixagevimab with
cilgavimab

Remain authorized with the recommendation of
repeat dosing every six months with a dose of
300 mg of tixagevimab and 300 mg of
Cilgavimab.

[84,85]

3 Sotrovimab
Since 5 April 2022, no longer
authorized in any U.S. region; approved in
Australia, the UK, and the EU.

[86–88]
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Table 3. Cont.

No Antibodies Name Current Status References

4 Bamlanivimab with etesevimab Pausing all distribution. [81,89]

5 Casirivimab with imdevimab

Currently not authorized in any U.S. region;
however, it is recommended to be retained for
future SARS-CoV-2 variants that may be
susceptible.

[33,88,90]

6 Amubarvimab/romlusevimab Approved in China. [88]

7 Regdanvimab (CT-P59) Approved in the Republic of Korea and the EU. [88]

8 Ronapreve Approved in Japan, the UK, the EU, and
Australia. [88]

9 F61 Approved for clinical trials in China. [91]

10 Tocilizumab Authorized for emergency use in June 2021. [92,93]

11 Sarilumab Clinical trial phase 3. [94]

12 Adalimumab Clinical trial phase 3. [95]

13 Canakinumab Clinical trial phase 3. [96]

14 Ravulizumab Completed clinical phase 3; recruiting phase 4
trials. [97,98]

15 Lenzilumab Clinical trial phase 3. [99]

Abbreviation: EUA, emergency use authorization; FDA, U.S. Food and Drug Administration; mg, milligram.

The administration of some neutralizing monoclonal antibodies, either as a combi-
nation of two antibodies or as a single treatment in individuals with mild to moderate
COVID-19 infection, worked well in the early pandemic [32,100–102]. However, with the
emergence of new variants of SARS-CoV-2, the treatment using some antibodies, such as
bamlanivimab is no longer effective against SARS-CoV-2′s variants. Bamlanivimab has a
limited effect against the beta and gamma variants and is not effective against the delta and
omicron variants [103–105]. Similarly, etesevimab was also reported to not neutralize the
omicron, beta, or gamma variants, even at the FRNT50 > 50,000 ng per milliliter. Meanwhile,
imdevimab showed high neutralizing activity against the beta and gamma variants but is
not effective against the omicron variant. The administration of casirivimab demonstrated
its ability to neutralize beta, gamma, and omicron with an FRNT50 value of 187.69 to
14,110.70 ng per milliliter [105]. Correspondingly, tixagevimab, cilgavimab, and sotrovimab
were reported to retain neutralization activity against beta, gamma, and omicron [105–107],
with an FRNT50 value for omicron being higher by multiple folds compared to the other
variants.

Given that omicron is currently the predominant VOC worldwide, it is essential to safe-
guard vulnerable populations by administering neutralizing monoclonal antibodies that
can neutralize the omicron variant and its subvariants. Among the available neutralizing
monoclonal antibodies for COVID-19 treatment, evusheld and bebtelovimab demonstrated
effectiveness against the omicron variants, thus remain authorized in the U.S. Additionally,
some studies reported candidates of neutralizing monoclonal antibodies that potentially
neutralize a broad-spectrum of SARS-CoV-2, including omicron and its subvariants. Hence,
these monoclonal antibodies may become alternative therapeutics to answer the current
challenges of SARS-CoV-2.
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4.1. Evusheld (Combination of Tixagevimab and Cilgavimab)

Evusheld, developed by AstraZeneca (Cambridge, UK), is a combination of two
long-acting antibodies: tixagevimab and cilgavimab, derived from B-cells donated by con-
valescent patients after SARS-CoV-2 infection, which have been optimized with a half-life
extension, and a reduction in Fc effector function and complement C1q binding [108,109].
Results from the PROVENT phase III trial revealed that evusheld was able to give pro-
tection up to months after the administration of a single dose [110]. The FDA issued a
EUA for evusheld for pre-exposure prophylaxis and the treatment of symptomatic dis-
ease caused by SARS-CoV-2 in persons 12 years and older, who have either a history of
severe or moderate allergy to COVID-19 vaccines [84]. The recommended single dose of
evusheld for prevention against COVID-19 is 600 mg; comprising 300 mg of tixagevimab
and 300 mg of cilgavimab, administered as separate sequential intramuscular injections
every six months [111]. This recommended dosage is double the initial recommendation
(150 mg each of tixagevimab and cilgavimab) [108,112]. The dosing regimen was revised
due to updated data that indicated that the originally recommended dosage was less
effective against the omicron variant and its subvariants. The latest data indicate that a
higher dose of evusheld is likely to prevent infection by the omicron subvariants BA.1 and
BA.1.1 [111].

4.2. Bebtelovimab

Bebtelovimab is a recombinant neutralizing human monoclonal antibody developed
by AbCellera (Vancouver, Canada) and Eli Lilly (Indianapolis, USA) as a treatment for
mild-to-moderate COVID-19 in high-risk adults and children (12 years and older). The
FDA issued a EUA for the emergency use of bebtelovimab on 11 February 2022 [30]. Unlike
other preexisting human monoclonal antibodies, which are mostly less effective against
the omicron variant, bebtelovimab showed a remarkably preserved activity against all
SARS-CoV-2 variants, including two subvariants of omicron: BA.4 and BA.5 [29,113,114].
SARS-CoV-2 variants with mutations at the amino acid positions 417, 439, 452, 484, and 501,
greatly affect the in vitro binding of antibodies, thus reducing the effectivity of preexisting
anti-SARS-CoV-2 monoclonal antibodies and vaccines [52]. Nevertheless, bebtelovimab
binds to an epitope that is largely distinct from the mutations identified from the emerged
variants, including mutations that greatly reduce the effectiveness of preexisting anti-SARS-
CoV-2 monoclonal antibodies and vaccines, and retain binding and neutralization activity
against variants of SARS-CoV-2 [29]. Currently, the clinical data on bebtelovimab’s efficacy
are limited. However, the results from trials showed that bebtelovimab appears safe and
able to decrease the risk of hospitalization and death. Bebtelovimab may be given when
other treatment options for COVID-19 are unavailable or inappropriate. According to
the FDA, bebtelovimab should be given as soon as possible after confirmation of SARS-
CoV-2 infection and within 7 days of symptom onset with the recommended dosage for
administration being 175 mg [115,116].

4.3. Bispecific Antibodies

Apart from the recombinant monoclonal antibodies that received a EUA for emer-
gency use by the FDA, multiple antibodies are currently under investigation and have
been reported to have broad neutralizing activity against SARS-CoV-2 variants, including
the currently predominant variant. One among those antibodies is the CoV-X2, which is
a bispecific IgG1-like molecule that was developed based on antibodies (C121 and C135)
derived from donors who had recovered from COVID-19. The CoV-X2 showed simultane-
ous binds to two independent sites on the RBD and prevented spike binding to the ACE2.
This antibody was also reported to be able to neutralize not only the SARS-CoV-2 wild
type but also another variant of concern, as well as the parental monoclonal antibodies
escape mutants [117]. Another IgG-like bispecific antibody (BsAb), developed by Chang
et.al [118], also demonstrated potent and synergistic neutralization against circulating
SARS-CoV-2 variants of concern. Administration of BsAb as a post-infection treatment in



Antibodies 2023, 12, 5 9 of 16

golden hamsters and as a prophylaxis in mice demonstrated enhanced binding and distinct
synergistic effects on the neutralizing activity against variants of concerns [105]. Thus, the
bispecific antibodies may be our new hope for an antibody therapy that can maintain its
effectiveness against new variants of SARS-CoV-2.

4.4. Antibodies That Alleviate the Harmful Effect of an Over-Stimulated Host Immune Response

The therapeutic use of antibodies is relying on the fact that antibodies prevent the
interaction of the S protein and hACE2, thus preventing the entry of SARS-CoV-2 into
neighboring cells. However, some monoclonal antibodies were reported to be able to
alleviate an over-stimulated host immune response (cytokine storm) due to COVID-19.
Cytokine storms are defined as an acute overproduction and uncontrolled release of pro-
inflammatory markers [119]. Three important cytokines in the interleukin 1 (IL-1) family
are especially relevant to cytokine storms, i.e., IL-1β, IL-18, and IL-33. A study reported
that blocking IL-1β can potentially prevent a cytokine storm [120]. Given that COVID-19
can trigger cytokine storms in pulmonary tissues through hyperactivation of the immune
system [121], the appropriate therapy is required to alleviate the damage caused by this
over-stimulated host immune response. Canakinumab is a human anti-IL-1β monoclonal
antibody that directly neutralizes IL-1β [122]. Studies have reported that the administration
of canakinumab leads to a reduction in inflammation and a long-lasting improvement
in oxygenation levels in the absence of any severe adverse events of COVID-19 [123]. A
similar monoclonal antibody that showed its potential in managing a cytokine storm due to
COVID-19 is adalimumab [124]. Adalimumab is a human monoclonal antibody that targets
tumor necrosis factor alpha (TNR-α), a cytokine that has a pleiotropic effect on various cell
types and plays an important role in cytokine storms [125]. The potential role of anti-TNFα
or anti-inflammation antibodies in treating COVID-19 is strictly linked to the control of
the pathogenetic mechanisms during viral infection [126]; hence, the therapeutic use of
monoclonal antibodies that target the cytokines that are relevant to a cytokine storm may
become a promising approach for the management of acute respiratory distress syndrome
in patients with COVID-19.

5. Challenges to the Use of Antibody Therapies for COVID-19

Throughout the history of pandemics, apart from vaccines or convalescent plasma ther-
apy, the use of therapeutic monoclonal antibodies is viewed as an alternative treatment to
reduce mortality. The uses of monoclonal antibody therapies are mostly designated for pop-
ulations that develop allergies or respond weakly to vaccination, i.e., immunocompromised
patients [127], or other high-risk populations.

A great drawback of these therapies is that monoclonal antibodies have high specificity
and affinity, thus a small change (mutation) in epitope frequently renders a failure of the
antibody in neutralizing the target. Currently, available monoclonal antibodies are most
likely targeting RBD and NTD, which are prone to mutate. Hence, these antibodies are
more likely to lose their neutralizing activities against a newly emerging variant of SARS-
CoV-2. A monoclonal antibody that targets the conserved viral epitopes is important for
the development of broad-spectrum antibody therapies. The epitopes in the S2 subunit
are reported to be more conserved than those in the S1 subunit [128]. Hence, the epitopes
in the S2 subunit may become a potential target for the development of broad-spectrum
antibodies. However, despite having a broader neutralizing spectrum, the S2 antibodies are
much less potent than the one that targets RBD [129]. Therefore, balancing the breadth and
efficacy of neutralizing antibodies is crucial during the selection of candidate antibodies for
COVID-19 treatment.

The identification of conserved epitopes, as well as the development of neutralizing
monoclonal antibodies that have a broad-neutralizing activity, is not only conducted
by a major stakeholder, but also by many researchers all around the world. However,
many laboratories are not certified to work with human pathogens, making the efficacy
assessment of developed antibodies meet a bottleneck [127]. Using a pseudotyped virus-
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based assay for assessment may be an alternative, to reduce the risk of accidents while
using a living virus. However, the development, distribution, and implementation of a
pseudotyped virus-based assay may take some time before being readily available for all
variants and subvariants of SARS-CoV-2; hence, becoming another obstacle to the rapid
development of neutralizing monoclonal antibodies.

In addition, regulatory approval may become another limitation. The rapid develop-
ment and distribution of monoclonal antibodies are critical during a public health crisis.
However, in some cases, although some monoclonal antibodies for COVID-19 have already
received authorization for emergency use, there are still delays or lags in distribution
and administration in some regions due to certain policies [130]. This situation may un-
doubtedly increase the risk of infection, or worse, mortality in vulnerable and high-risk
populations.

Another concern regarding the uses of neutralizing monoclonal antibodies for COVID-
19 treatment is their shelf-life. The shelf-life of monoclonal antibodies is relatively short,
thus, antibodies for COVID-19 treatment that are no longer authorized may have to be dis-
carded, and this equals a big financial loss. To address this issue, the FDA announced the ex-
tension of some COVID-19 monoclonal antibodies: REGEN-COV from 24 to 30 months [90],
sotrovimab, and bamlanivimab from 12 to 24 months [131,132], with the expectation that
these antibodies will be effective against future SARS-CoV-2 variants that may be suscepti-
ble to these antibodies. However, because future events are unpredictable, there is still a
possibility that these batches of antibodies will also end up being discarded. Nevertheless,
despite all these concerns and limitations, the development of monoclonal antibodies as an
alternative COVID-19 treatment is necessary to provide access to lifesaving therapies.

6. Conclusions

Neutralizing monoclonal antibodies are a promising prophylactic and therapeutic
treatment for COVID-19. However, the effectiveness and future of currently available
neutralizing monoclonal antibodies have been questioned by the emergence of SARS-CoV-
2 variants and their subvariants. Characterization of the conserved epitopes in SARS-CoV-2
and the development of monoclonal antibodies that directly target these epitopes, as well as
the crucial cytokines involved in SARS-CoV-2 pathogenicity, may be an alternative answer
for the development of future monoclonal antibody therapies with more breadth and high
effectiveness against SARS-CoV-2 variants.
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