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Coronaviruses (CoV) are enveloped, positive-sense, single-stranded RNA viruses
responsible for causing seasonal, mild respiratory disease in humans [1,2]. They include
the endemic human CoVs NL63, 229E, OC43, and HKU1, which are associated with mild
respiratory illnesses [1,2]. However, three CoVs have been responsible for significant
morbidity and mortality in humans: Severe Acute Respiratory Syndrome CoV (SARS-CoV),
which spread in 2003 [3,4], Middle East Respiratory Syndrome CoV (MERS-CoV), which
appeared in 2012 [3,4], and Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2),
which is responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic [5–8].

SARS-CoV-2 emerged in the city of Wuhan, China, at the end of 2019 and has dramati-
cally impacted public health and socioeconomic activities around the world [9,10], mainly
due to its high transmissibility [11,12]. The explosive emergence of SARS-CoV-2 infection in
humans has resulted in alarming case fatalities, rivaling the “Spanish flu” pandemic of 1918.
As of November 2022, SARS-CoV-2 has been responsible for over 645 million infections and
more than 6.6 million human deaths (https://COVID-19.who.int (accessed on 28 Novem-
ber 2022)). Several prophylactic-subunit-, inactivated, mRNA-, and vector-based vaccines
and therapeutic antivirals or monoclonal antibodies have been developed for SARS-CoV-2.
To date, the United States Food and Drug Administration (FDA) has authorized the use
of three types of vaccines in humans: Spikevax (formerly Moderna), COMIRNATY (for-
merly BioNTech and Pfizer), and Janssen [13,14]; four antiviral medications: Remdesivir,
baricitinib, molnupiravir, and nirmatrelvir; and one monoclonal antibody (MAb): bam-
lanivimab [15–17], for the treatment of SARS-CoV-2 infection. Unfortunately, SARS-CoV-2
has rapidly accumulated mutations, leading to the emergence of variants of concern (VoC)
and variants of interest (VoI), jeopardizing the effectiveness of existing preventive and/or
treatment options [18–22].

Since the emergence of SARS-CoV-2, significant advances have been made in under-
standing the biology of the virus, developing vaccines, and identifying effective antivirals
or neutralizing antibodies. This Special Issue, “Antibodies, B Cell Responses and Immune
Responses to SARS-CoV-2 Infections”, assembles a collection of six new research articles,
three reviews, one case report, and one perspective document, which cover vaccine im-
munogenicity and protection efficacy, classical and new antigen targeting, conserved viral
antigens and epitopes, the identification and characterization of SARS-CoV-2 cross-reactive
and broadly neutralizing antibodies, the induction of efficient and protective adaptive B
cell responses, and the correlation of B cell activation and induction of antibody protection.

The first article, “Kinetics of the neutralizing and spike SARS-CoV-2 antibodies fol-
lowing the Sinovac inactivated virus vaccine compared to the Pfizer mRNA vaccine in
Singapore”, compares the kinetics of total and neutralizing SARS-CoV-2 antibodies to three
doses of the Sinovac inactivated virus vaccine and the Pfizer mRNA-based vaccine from
January 2021 to February 2022 in Singapore [23]. The authors found that the Pfizer mRNA-
based vaccine was able to generate more robust total and neutralizing antibody responses
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than those induced by vaccination with the inactivated Sinovac vaccine after a first, second,
and third vaccination [23]. The second manuscript, “MALDI-TOF-MS-based identification
of monoclonal murine anti-SARS-CoV-2 antibodies within one hour”, demonstrates how
previously described MALDI-TOF-MS fingerprinting [24] can be used to identify, within
minutes, monoclonal antibodies and their subclasses against SARS-CoV-2 [25]. In the next
document, “Fc-independent protection from SARS-CoV-2 infection by recombinant human
monoclonal antibodies”, the authors characterize two SARS-CoV-2-neutralizing human
monoclonal antibodies, or hMAbs (MD65 and BLN1), targeting the receptor-binding do-
main (RBD) and the N-terminal domain (NTD), respectively, of the SARS-CoV-2 spike (S)
glycoprotein, that were engineered to contain a Fc domain with three mutations (N297G,
S298G, and T299A) that eliminates glycosylation and the binding to FcgR and to the
complement system activator C1q. They show that both modified hMAbs were able to
retain in vitro neutralization activity and protection efficacy, both prophylactically and
therapeutically, in the K18 hACE2 transgenic mouse model, against lethal challenge with
SARS-CoV-2, demonstrating the Fc-independent protection against SARS-CoV-2 of the
two hMAbs [26]. In the manuscript “From anti-SARS-CoV-2 immune response to the
cytokine storm via molecular mimicry”, Darja Kanduc determines the role of molecular
mimicry in the cytokine storms induced by SARS-CoV-2 infection [27]. The study shows
that SARS-CoV-2 S glycoprotein shares immune determinants with 53 anti-inflammatory
human proteins, and that this molecular mimicry is responsible for SARS-CoV-2-induced
cytokine storms observed during SARS-CoV-2 infection in COVID-19 patients [27]. In a
separate manuscript, “From anti-SARS-coV-2 immune responses to COVID-19 via molecu-
lar mimicry”, Darja Kanduc also investigates the autoimmune potential of SARS-CoV-2
infection and identifies immunoreactive epitopes in SARS-CoV-2 that matches those present
in human proteins, and how this mimicry could be responsible for some of the diseases
associated with SARS-CoV-2 infection [28]. Finally, in “Viroinformatics-based analysis of
SARS-CoV-2 core proteins for potential therapeutic targets”, the authors use bioinformatics-
based drug-discovery approaches to identify effective antiviral drugs targeting structural
viral proteins for the treatment of SARS-CoV-2 infection [29].

In the second section, comprising review articles, “Long-term immunity and antibody
response challenges for developing efficient COVID-19 vaccines” addresses different ques-
tions and concerns related to the immunogenicity and protection efficacy of COVID-19
vaccines since the use of the BNT162b2 mRNA-based Pfizer vaccine in 2020, including the
need for vaccine boosters due to a decline in antibody titers or the lack of cross-reactivity
of vaccine-induced antibodies against newly identified VoCs [30]. In “Cellular, antibody
and cytokine pathways in Children with acute SARS-CoV-2 and MIS-C: Can we match the
puzzle”, Lazova et al. review the literature to investigate T-cell, antibody and cytokine
responses, and other related conditions, such as multisystem inflammatory syndrome
(MIS-C), in the disease outcome of SARS-CoV-2 infection [31]. The last review document,
“Structural features and PF4 function that occur in heparin-induced thrombocytopenia
(HIT) complicated by COVID-19”, provides a systematic review of the functions of platelets
in infectious diseases, mainly in COVID-19 patients, to provide a better understanding on
how platelet factor 4 (PF4) and the potential use of a PF4-blocking antibody could be used
to manage heparin-induced thrombocytopenia (HIT) [32].

In the unique case report “The course of SARS-CoV-2 infection was not severe in a
Crohn’s patient who administered maintenance anti-TNF therapy overlapping the early pre-
symptomatic period of infection”, the authors present a case of a 60-year-old female with
Crohn’s disease who was inadvertently administered with anti-cytokine therapy during
the pre-symptomatic period of SARS-CoV-2 infection, and how, despite this immune
suppression medication, the patient did not experience a more severe COVID-19 disease
outcome [33].

Finally, the single perspective manuscript “Is the host viral response and the immuno-
genicity of vaccines altered by pregnancy?” provides literature evidence that pregnant
women are more susceptible to respiratory viral infections and may not respond effectively
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to vaccines, making them more vulnerable to developing serious complications from res-
piratory viral infections. The work also elaborates on how new methods of measuring
vaccine efficacy in this high-risk group could help to determine vaccine efficacy [34].

We hope that the manuscripts published in this Special Issue represent, to some
extent, the most current advances related to research on antibodies and B cell and immune
responses to SARS-CoV-2 infection and vaccination. We also hope that the articles in this
Special Issue encourage other researchers to conduct future studies aiming to understand
antibody and B cell responses to SARS-CoV-2, or other viral infections and/or vaccinations.
Moreover, we hope the manuscripts in this Special Issue open the door to collaborations
with the goal of improving the development of vaccines for the efficient control of SARS-
CoV-2 infection and the ongoing COVID-19 pandemic.

Finally, we would like to thank all the authors that contributed to this Special Issue
for their participation and for taking the time to submit manuscripts. Likewise, we want
to also thank the Editorial Office at Antibodies for their help, guidance and assistance in
putting together this Special Issue.

Conflicts of Interest: The authors declare no conflict of interest.
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