
Supplementary Materials 

S1: Habitat Use and Resistance Modeling Methods for Focal Species 

All habitat suitability, use, movement, and landscape genetic analyses were conducted in R [1] 

across the whole of San Diego County. We created these initial models using relevant environmental 

variables for habitat use and movement for all focal species (Table S1) using an ecological 

neighborhood approach. To select the most appropriate scale for each variable, we used the smoothie 

package (v 1.0-1, [2]) to apply a Gaussian smooth to each variable at a variety of biologically-relevant 

spatial scales for each species based on movement and home range information for each species. We 

tested scales ranging from 30 m to 180 m for California mouse and woodrat, 30 m to 360 m for wrentit, 

30 m to 2,160 m for mule deer, 30 m to 2,000 m for bobcat, and 30 m to 10,000 m for puma.  

Ensemble Species Distribution Modeling 

For species where only occurrence data were available, we gathered locations from available 

sources (see Table 1 in the main manuscript) and filtered points by date and spatial accuracy so that 

only points observed after 1990 with an accuracy of 500 m were retained. To address potential 

sampling bias, we used two approaches: (1) we spatially filtered out points that were close together 

based on nearest neighbor distances [3], and (2) we spatially restricted the sampling of background 

points. For mule deer, we filtered out all points within 1 km of each other. For California mouse, 

woodrat, and wrentit, we filtered out all points within 500 m of each other. The resulting points for 

each species were then examined for potential landscape change due to human development by 

overlaying the points with urban and roads data. We removed all points where landscape change 

was suspected to have occurred after the observation.  

These data cleaning steps resulted in 722 presence points for mule deer, 202 points for woodrat, 

216 points for California mouse, and 1,481 points for wrentit. The data for mule deer, California 

mouse, and woodrat required the selection of pseudo-absence or background points. From a visual 

inspection of the presence points for these species, it appeared they were heavily biased toward 

primary and secondary roads in the study area. We confirmed this bias by sampling the presence 

points on a distance from roads surface. We counted the number of presence points within each 500 

m distance from roads bin and randomly sampled the same number of background points in each 

distance from roads bin, generating a 1:1 ratio with the presence points for each species [4].  

We took a different approach for wrentit since the eBIRD database contained actual absence 

points in the form of observation locations where wrentit were not seen. We randomly selected the 

same number of background points as presence points from the eBIRD data for wrentit. We assumed 

background locations to have the same sampling bias as presence locations and therefore did not 

spatially restrict the wrentit background points like we did for the other species.  

Once presence points were cleaned and background points generated and sampled on each of 

the scaled environmental variable surfaces described in Table S1, we developed multi-scale ensemble 

species distribution models (SDMs; [5,6]). Using the biomod2 package [7] we combined generalized 

linear models (GLMs), generalized additive models (GAMs), multivariate adaptive regression splines 

(MARS), random forest regression (RF), boosted regression trees (BRT), and maximum entropy 

(MaxEnt) with an AUC-weighted average. These SDMs were used to predict habitat suitability at 30-

m resolution for a county-wide extent (11,722 km2) to avoid artifacts of modeling at a very fine spatial 

scale. We rescaled habitat suitability from 0 – 1 and converted habitat suitability to landscape 

resistance using a non-linear inverse transformation [8] for each species (see Eq 1 in main text). 

  



Table S1. Environmental variables used in developing habitat use and resistance surfaces for each 

focal species. 

 Variable Source/Derivation Year Citation 
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All Roads Open Street Map 2014 [9] 

Primary roads Open Street Map; Motorways 2014  

Secondary roads Open Street Map; primary road, secondary 

road, and trunk road 

2014  

Tertiary roads Open Street Map; living street, residential, 

rest area, road, service, tertiary, and 

unclassified 

2014  

Unpaved 

roads/trails 

Open Street Map; bridleway, cycleway, 

footway, path, and track,  

2014  

Percent 

Imperviousness 

Derived from a hybrid of the National Land 

Cover Database percent impervious surface 

and updated data from the San Diego 

Association of Governments land use 

surface 

2011     

2012 

NLCD 2011 

[10] 
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Elevation National Elevation Dataset  2009 [12] 

Percent Slope Derived from National Elevation Dataset   

Terrain Ruggedness Total curvature derived from National 

Elevation Dataset with DEM Surface Tools 

[13] 

  

Topographic 

Position Index 

Derived from National Elevation Dataset    

Ridges Derived from Topographic Position Index 

values >= 8 

  

Canyons Derived from Topographic Position Index 

values <=- 8 

  

 

Steep Slope Derived from Topographic Position Index 

values  -8 – 8, slope >=6° 

  

Gentle Slope Derived from Topographic Position Index 

values  -8 – 8, slope <=6° 
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Streams National Hydrography Dataset streams 

layer 

2011 [14] 

Distance to Water Derived from National Hydrography 

Dataset calculated as Euclidean distance to 

blue line streams 
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Agriculture Vegetation Data of San Diego County 2014 [15] 

Chaparral Vegetation Data of San Diego County 2014 [15] 

Coastal Scrub Vegetation Data of San Diego County 2014 [15] 

Coniferous Forest Vegetation Data of San Diego County 2014 [15] 

Desert Scrub Vegetation Data of San Diego County 2014 [15] 

Hardwood Forest Vegetation Data of San Diego County 2014 [15] 

Herbaceous 

Grassland 

Vegetation Data of San Diego County 2014 [15] 

Riparian Vegetation Data of San Diego County 2014 [15] 

Sparse/Disturbed Vegetation Data of San Diego County 2014 [15] 

Water and Wetlands Vegetation Data of San Diego County 2014 [15] 

 

  



Point and Path Selection Functions 

GPS telemetry data were available for two of our selected focal species, bobcat and puma. For 

these species, we estimated resource use with a multi-scale point selection function (PSF) analysis, 

and resource use explicitly during movement events with a multi-scale path selection function 

(PathSF) conducted at county-wide extent [16,17]. The PSF resulted in a relative probability of habitat 

use surface, which we used in distributing source points for the connectivity analysis. The PathSF 

resulted in a relative probability of movement surface which we took the linear inverse of to estimate 

resistance for puma and bobcat.  

Point Selection Function 

For bobcat, we subset the data to every three hours so that the data were consistent, and to 

reduce any autocorrelation that may have been present with hour-long fixes. This resulted in 3,895 of 

points for 8 individuals (1 female and 7 males) for the point selection function analysis with a per-

individual mean of 487 points (range = 7 – 2526). For puma, we subset the data to every 6 hours, 

which resulted in 24,911 locations from 23 individuals (14 females and 9 males) with a per-individual 

mean of 811 points (range = 284 – 1,535).  

We then estimated the used data as the proportion (for categorical data) or mean (for continuous 

data) of each predictor variable within a 30 m uniform buffer around each GPS location. We estimated 

the available data within a larger ecological neighborhood around each used point represented with 

a Gaussian kernel [18]. Therefore, each used point was paired with an ecologically relevant available 

area. 

We developed our multi-scale models using a two-stage, pseudo-optimized approach [19]. In 

the coxme package [20], we ran univariate models for each predictor variable at each scale in a paired 

conditional logistic regression model with a random effect for individual [21]. The scale with the 

lowest corrected Akaike’s Information Criteria (AICc) value for each variable was identified as the 

characteristic scale of selection and was a candidate for incorporation into the multiple regression 

models.  

We tested for collinearity among our predictor variables at their characteristic scales using 

Spearman’s rank correlations. If two variables had |rs| >0.60 we retained the variable with the highest 

AIC model weight. The multiple regression models did not converge in the mixed-effects framework; 

therefore, we ran the multiple regression models without mixed-effects using the coxph function of 

the Survival package [22]. We then fit all possible subsets of our predictor variables with the dredge 

function in the MuMIn package [23]. We used this approach because we had no a priori hypotheses 

to consider any specific combinations of variables and we thought all variables would be influential 

for bobcat and puma habitat use. We ranked the models using AICc and arrived at our final model 

by averaging any models within 2 AICc units of the best model. We used the robust standard errors 

when calculating confidence intervals for the model-averaged coefficients. Finally, we differenced 

the available from the used for each cell within the study area and applied our model-averaged 

coefficients to create each predictive surface.  

We determined the predictive performance of the PSF models by using the holdout points that 

were not included in the 3-hour subset of points used for bobcat or 6-hour subset of points used for 

puma. Using a completely independent set of data for determining predictive ability of our models 

would have been preferred, but we did not have access to such data. Due to logistical constraints for 

collecting independent data, hold out data is commonly used for model validation and can still 

provide a reasonable, though possibly inflated, assessment of model predictive ability [24]. We used 

the holdout points to calculate the Boyce Index [24,25]. This index compares the values from the 

predicted probability surfaces with the expected values across the study area and results in a 

Spearman Correlation value ranging from 0 to 1. Values closer to 1 indicate better predictive ability.  

Path Selection Function 

For bobcat, we used only the GPS collar data that were collected hourly for each day the collar 

was on that schedule. We then connected each consecutive point with a straight line, which resulted 



in 86 daily paths from 8 individuals for use in the analysis (mean for each individual = 12 days, range 

= 3 - 44). For puma, we used only GPS locations that were collected at a 5 or 15-minute interval. We 

created paths for each of 39 individuals by connecting consecutive points over a 24-hour time period. 

This resulted in a total of 1,076 daily paths for the analysis (mean per individual = 30 days, range = 

14–106). Movements captured for both species with GPS telemetry included primarily typical home 

range movements along with several dispersal events, which all fell within the dispersal distances 

we used for each species in our connectivity modeling (18 km for bobcat, 24 km for puma). 

We used Path Selection Functions to estimate the relative probability of movement for bobcats 

and pumas across the study area [16,17]. We took much the same approach as for the point selection 

functions above, but our units of inference were the daily paths used by the individual cats. We 

estimated the used data as the proportion (for categorical data) or mean (for continuous data) of each 

predictor variable within a 30 m uniform buffer around each daily path. To assess the characteristics 

of the areas available but not selected in movement paths, we used either the proportion (e.g., for 

vegetation cover), or the mean (e.g., for elevation) of each predictor variable around each path 

weighted by the scaled environmental variables described above. 

We ran paired logistic regression models and used a two-stage, pseudo-optimized approach for 

the multi-scale path selection function models via the same process described for the point selection 

function analysis above. We used the final path selection function model to predict the relative 

probability of movement across the study area. We calculated the Boyce Index, as described above, 

using the bobcat and puma GPS points from the PSF analyses. These points were not used in the 

PathSFs and thus could be employed as holdout data.  

Landscape Genetic Analysis 

For species with genetic data (puma, bobcat, and mule deer), we performed a multi-scale 

landscape genetic analysis, which correlates the genetic distance between individuals across the 

landscape with the resistance distance between individuals across the landscape [26] (landscape 

genetic approach detailed in [27]). Microsatellite data from prior studies (see data sources in Table 1 

in the main manuscript) were used for each of the three species with 22 loci available for 62 bobcats, 

15 loci for 223 mule deer, and 44 loci for 146 pumas.  

Landscape genetic approaches correlate observed genetic distances among individuals with 

resistance distances. These resistance distances are often calculated as the least-cost distance among 

individuals across resistance surfaces defined a priori. We explored a number of different resistance 

hypotheses for each of our environmental variables. We represented each variable using the same 

scales described above for each species. We then applied seven functions to transform each scaled 

variable into a resistance value of 1–100 (Figure S1). Positive or negative transformation functions 

were used to represent increasing or decreasing resistance with increasing values of that variable, 

respectively. We also used the inverse Ricker transformation to account for variables that might have 

a low resistance at moderate values.  

With the adegenet package [28], we calculated pairwise genetic distance using Nei’s distance 

among all individuals for each species. We calculated pairwise geographic distance by calculating 

the least cost path distance between all sample locations across each a priori resistance surface with 

the gdistance package [29]. We then compared all the a priori resistance surfaces for a variable by 

running univariate linear mixed effects models that accounted for the pairwise structure of the 

distance matrices following the maximum likelihood population-effects (MLPE) method [30,31].  



 

Figure S1. Functions used to transform the environmental variables to resistance, with a range of 1-

100, for use in the landscape genetic analysis. Figure adapted from [32]. 

We used AICc to identify the most appropriate resistance surface for each variable. We assessed 

correlations among variables and removed variables from correlated pairs with higher AICc values. 

We then ran multiple regression models with all uncorrelated variables and fit all possible subsets of 

the variables. We ranked the multiple regression models using AICc and identified our final top 

model for each species. If models were within 4 delta AICc units of the top model, we averaged these 

models to derive final averaged beta coefficients. To obtain a final resistance surface from these 

models, the landscape variables were multiplied by their respective beta coefficient and then 

summed.  

Because this analysis estimates resistance directly, no transformation to resistance was needed. 

To develop the final resistance surface for species with genetic data, we multiplied the quantile 

rescaled resistance surface derived from the SDM (deer) or PathSF (bobcat and puma) analyses with 

that derived from the landscape genetic analysis and rescaled this surface from 1 – 100 (1 = low 

resistance and 100 = high resistance; [27]. We calculated the Boyce Index, as described above, for these 

three combined surfaces using the bobcat and puma GPS points from the PSF analyses and a 

combination of recently collected genetic and telemetry data as well as occurrence data withheld from 

the SDM for deer. 

 

Data accessibility 

Data for each species and final connectivity modeling data are available on FigShare. 

Final connectivity files: https://figshare.com/s/8ed5c96e2a193a3859f4  

Big-eared woodrat: https://figshare.com/s/173aa1d66fe9757e75e2  

Bobcat: https://figshare.com/s/ed8a76009bf32c11ac42 

California mouse: https://figshare.com/s/828a436d89138de7cbe5  

Mule deer: https://figshare.com/s/9ee8b5c80bc4a5f3220a  

Puma: https://figshare.com/s/8b3433f06960da96b3ac 

Wrentit: https://figshare.com/s/21f724d2f922e1bd0b8f 

  



S2: Land Facet Analysis Methods 

To execute the land facet modeling, we used the Land Facet Corridor Designer [33] toolbox in 

ArcGIS. We input topographic data from a 30 m digital elevation model to develop unique land facets 

across our study. We then modeled corridors for each of those land facets, based on the concepts of 

resistance and least-cost modeling, to identify pathways for movement along those facets.  

From the initial digital elevation model, we generated three additional variables that we used to 

identify land facets in our study region: 1) slope, 2) solar insolation, and 3) a slope position surface 

categorized into four classes – canyons, gentle slopes, steep slopes, and ridges. Once we identified 

these original variables, we followed the procedures outlined by [33]. We populated the values for 

elevation, slope, and insolation at each grid cell for our four slope position classes. We then exported 

the data for each of these four classes into R to conduct a cluster analysis based on the variables for 

each slope position class. To identify clusters, we performed a kernel density analysis, identified and 

excluded values that were outliers, and used fuzzy c-means clustering to classify the pixels into 

groups using the R functions provided in the Land Facet Corridor Designer Tools [33]. Based on these 

data outputs, we then selected the number of clusters, or individual facets, for each slope position 

class that we would use for the remainder of the analysis.  

We imported our cluster values back into ArcGIS and used them to generate a land facet raster 

for each slope position class. Using the Calculate Density Surface tool in the Land Facet Corridor 

Designer toolbox, we identified the areas of greatest density of each of the new land facet classes. 

That output was then used to generate termini polygons of the areas of greatest density of each land 

facet within our wildland blocks of interest. We also used the land facet density surface to create a 

Mahalanobis distance raster for each class of the land facet raster to be used in our corridor modeling 

as the equivalent of resistance. To standardize the scale of the Mahalanobis distance raster, we used 

the Chi Square Raster Transform tool. This creates a “resistance” or “distance” surface (on a 0 to 1 

scale) to use in our corridor modeling where cells with a greater distance (closer to 1) from an area of 

high density of the land facet of interest have a higher resistance value. Finally, because the surfaces 

created thus far in the process only included topographic variables and did not incorporate any other 

landscape features that may affect wildlife movement, we clipped this resistance layer using an urban 

raster mask generated from the SANDAG Current Land Use layer [11] to exclude urban areas from 

our corridor modeling.  

We used Linkage Mapper [34] to generate least cost corridors using the Mahalanobis distance 

surfaces as our resistance inputs and the termini polygons of high land facet density within blocks of 

preserved lands as our target core areas to connect. This process generated raster corridor surfaces 

that can then be truncated to identify corridor extent. We selected cutoff values for each land facet 

raster that produced a contiguous corridor but was not too wide or expansive. Finally, we converted 

our raster surfaces to corridor shapefiles which we then cleaned and filled to remove narrow corridor 

segments and artifacts from the modeling process both manually and using the Fill holes in corridor 

script in the Corridor Designer toolbox for ArcGIS [35] to fill holes less than 500 m in diameter.  

 

  



S3: Species-specific Modeling Results 

Ensemble Species Distribution Modeling  

Based on the results of our univariate models, California mouse selected for environmental 

variables at either the 90 m or 180 m scale, and only distance from water was better represented at a 

smaller scale (60 m). After accounting for correlations among variables, the final variable set for the 

California mouse SDM models included agriculture, canyons, chaparral, coastal scrub, elevation, 

hardwood forest, herbaceous grassland, primary and secondary roads, riparian areas, percent slope, 

sparsely vegetated areas, steep slopes, streams, topographic position index (TPI), and water/wetlands 

(Table S2).  

Table S2. Variables and scales included in the final SDM models for California mouse, mule deer, 

woodrat, and wrentit. Variables without scales indicate it was not included in the final model for that 

species. 

 Variable Scale included in final SDM model 

  California mouse Mule deer Woodrat Wrentit 
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All Roads     

Primary roads 180 m 1,440 m 90 m 360 m 

Secondary roads 180 m  180 m 180 m 

Tertiary roads     

Unpaved roads/trails     

Percent Imperviousness  90 m  60 m 
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Elevation 90 m 2,160 m 30 m 360 m 

Percent Slope 90 m  180 m  

Terrain Ruggedness     

Topographic Position 

Index 
180 m 90 m 30 m 90 m 

Ridges     

Canyons 180 m   360 m 

Steep Slope 90 m 360 m 180 m 360 m 

Gentle Slope     
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 Streams 180 m  90 m  

Distance to Water  90 m  360 m 
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Agriculture 90 m 1,440 m 180 m 360 m 

Chaparral 180 m 360 m 60 m 360 m 

Coastal Scrub 180 m 720 m 180 m 360 m 

Coniferous Forest  2,160 m   

Desert Scrub  2,160 m   

Hardwood Forest 180 m 2,160 m 60 m 360 m 

Herbaceous Grassland 180 m 720 m 60 m 360 m 

Riparian 90 m 720 m 60 m 360 m 

Sparse/Disturbed 180 m  180 m  

Water and Wetlands 180 m 2,160 m 180 m 360 m 

 

Mule deer selected for environmental variables at a wide range of scales, from 90 m to 2,160 m. 

After accounting for correlations among variables, the final variable set for the mule deer SDM 

models included agriculture, chaparral, coastal scrub, coniferous forest, desert scrub, elevation, 

hardwood forest, herbaceous grassland, riparian, water and wetlands, primary roads, elevation, 

topographic position index, steep slopes, and distance to water (Table S2).  

Big-eared woodrat also selected for variables at a wide range of scales, selecting for TPI, 

elevation, and canyons at a 30 m scale, chaparral, hardwood forest, and riparian areas at a 60 m scale 

and the remaining variables at the 90 m or 180 m scales. After accounting for correlations among 



variables, the final variables for the woodrat SDM models included agriculture, canyons, chaparral, 

coastal scrub, elevation, hardwood forest, herbaceous grassland, primary and secondary roads, 

riparian areas, percent slope, sparsely vegetated areas, steep slopes, streams, TPI, and water/wetlands 

(Table S2). 

Wrentit selected for most environmental variables at the 360 m scale. After accounting for 

correlations among variables, the final variable set for the wrentit SDM models included agriculture, 

canyons, chaparral, coastal scrub, elevation, hardwood forest, herbaceous grassland, primary and 

secondary roads, riparian areas, impervious surfaces, steep slopes, distance to water, topographic 

position index, and water/wetlands (Table S2). 

AUC model performance values for each individual SDM model and the final ensemble models 

are provided in Table S3. 

Table S3. SDM model performance for California mouse, mule deer, woodrat, and wrentit. All 

models with an AUC > 0.75 were included in the final ensemble model. GLM = Generalized Linear 

Model, GAM= Generalized Additive Model, MARS= Multivariate adaptive regression splines, 

RF=Random forests, BRT=Boosted regression trees. 

 

 AUC 

Model California mouse Mule deer Woodrat Wrentit 

GLM 0.83 0.78 0.80 0.79 

GAM 0.80 0.78 0.79 0.80 

MARS 0.83 0.78 0.79 0.80 

RF 0.88 0.78 0.82 0.82 

MAXENT 0.78 0.72 0.72 0.80 

BRT 0.87 0.79 0.82 0.82 

Ensemble 0.87 0.80 0.82 0.82 

 

Point and Path Selection Functions 

Point Selection Functions 

For bobcat, the univariate results indicated selection for resources almost exclusively at coarser 

scales (with the exception of herbaceous grassland and water/wetland). We were unable to fit models 

with coniferous forest or desert scrub, due to the scarcity of these habitat types in the study area 

where the bobcats were collared. We were also unable to fit models with agriculture due to complete 

separation errors.  

Bobcats consistently responded negatively to human influences (roads and development), and 

positively to canyons, water and riparian areas. Bobcats avoided ridges, steep slopes and higher 

elevations, but preferred higher amounts of topographic roughness (curvature). 

After accounting for collinearity among predictor variables we attempted to run a global model 

with the following variables: all roads, canyons, chaparral, coastal scrub, hardwood forest, grassland, 

riparian, sparse or disturbed areas, elevation, percent slope, steep slopes, distance to water, streams, 

and water/wetland. However, the canyons variable was causing a Type S error in the beta coefficient 

[36], therefore, we removed canyons, and re-ran the global model. Performing dredge on the global 

model revealed four top models. Model-averaged standardized beta coefficients, robust standard 

errors, and 95% confidence intervals, are provided in Table S4. The Boyce Index value for the bobcat 

PSF surface was 0.81.  

For puma, the univariate model results indicated a mostly bi-modal response to landscape 

features. Pumas responded to elevation, percent slope, chaparral, and coastal scrub at fine scales and 

responded to the other variables at coarse scales. Due to convergence errors, we were unable to fit 

the models for desert and primary roads.  



Table S4. Variable scales, standardized beta estimates, robust standard errors, and 95% robust 

confidence intervals for the bobcat point selection function model-averaged variables. 

 Scale Beta estimate Standard Error 95% Confidence Interval 

All Roads 1,000 m -0.287 0.037 -0.309 – -0.265 

Chaparral 1,000 m 1.236 0.114 1.167 – 1.305 

Coastal Scrub 1,000 m 0.349 0.061 0.312 – 0.386 

Distance to Water 1,000 m -0.257 0.061 -0.294 – -0.220 

Elevation 1,000 m -7.190 0.354 -7.404 – -6.976 

Hardwood Forest 1,000 m 0.301 0.051 0.270 – 0.332 

Steep Slopes 1,000 m -0.142 0.048 -0.113 – -0.171 

Percent Slope 1,000 m 1.115 0.110 1.049 – 1.181 

Sparse Disturbed 1,000 m -0.176 0.044 -0.203 – -0.149 

Streams 519 m 0.138 0.036 -0.160 – -0.116 

Riparian 1,000 m 0.006 0.018 -0.005 – 0.017 

Water/Wetland 170 m 0.007 0.016 -0.002 – -0.017 

Herbaceous Grassland 275 m -0.007 0.024 -0.022 – -0.008 

 

After removing correlated variables, the global model was identified as the top model. Pumas 

preferred slightly more rugged terrain, riparian areas and woodland while avoiding high elevation, 

high slopes, agriculture, barren, chaparral, coastal scrub, grassland, urban, and primary, secondary, 

and tertiary roads (Table S5). The Boyce Index value for the puma PSF surface was 0.75. 

Table S5. Variable scales, standardized beta estimates, robust standard errors, and 95% robust 

confidence intervals for the puma point selection function variables. 

 Scale Beta estimate Standard Error 95% Confidence Interval 

Elevation 241 m -21.61 0.60 -21.99 – -21.23 

Percent Slope 24 1m -1.1 0.03 -1.12 – -1.08 

Terrain Ruggedness 4,461 m 0.09 0.01 0.08 – 0.09 

Agriculture 4,461 m -0.25 0.02 -0.23 – -0.26 

Barren 3,994 m -0.06 0.02 -0.05 – -0.07 

Chaparral 241 m -0.17 0.06 -0.21 – -0.13 

Coastal Scrub 681 m -0.29 0.03 -0.03 – -0.27 

Grassland 4,461 m -0.38 0.02 -0.40 – -0.37 

Riparian 3,497 m 0.38 0.04 0.35 – 0.40 

Woodland 4,461 m 0.23 0.02 0.22 – 0.24 

Urban 4,461 m -2.18 0.16 -2.28 – -2.08 

All roads 4,461 m -0.06 0.02 -0.07 – -0.05 

Path Selection Functions 

For bobcats, we were unable to fit the path selection function models with Coniferous Forest or 

Desert Scrub vegetation variables due to the lack of representation described above. Bobcats selected 

more landscape variables at finer scales during movement than during resource use (Table S6). After 

accounting for collinearity among predictor variables, we attempted to run a global model with the 

following variables: agriculture, all roads, chaparral, coastal scrub, grassland, riparian, sparsely 

vegetated areas, elevation, steep slopes, distance to water, and water/wetland. However, agriculture 

was causing the models to fail due to complete separation errors. Therefore, we removed agriculture, 

and re-ran the global model. Eighteen top models within 2 AICc units of the top model were 

identified. Model-averaged standardized beta coefficients, standard errors, and confidence intervals 

are provided in Table S6. The Boyce Index value for the bobcat PathSF surface was 0.98. 

 

  



Table S6. Scales, standardized beta estimates, robust standard errors, and 95% robust confidence 

intervals for the bobcat path selection function model-averaged variables. 

 Scale Beta estimate Standard Error 95% Confidence Interval 

Elevation 519 m -12.562 3.370 -15.152 – -9.972 

All roads 465 m -2.07 0.712 -2.617 – -1.523 

Sparse Distributed 519 m -0.693 0.821 -1.324 – -0.062 

Distance to Water 1,000 m -0.349 0.534 -0.759 – 0.061 

Herbaceous Grassland 170 m -0.392 0.661 -0.900 – 0.116 

Steep Slopes 519 m -0.241 0.449 -0.586 – 0.104 

Riparian 275 m 0.059 0.196 -0.092 – 0.210 

Chaparral 519 m 0.010 0.130 -0.090 – 0.110 

 

Pumas selected landscape variables at fine scales during movement behavior (Table S7). After 

removing correlated variables, four top models were identified and beta coefficients were averaged. 

Pumas also showed more tolerance for a wider range of landscape variables during movement than 

during resource-use events. Pumas avoided steep slopes, agricultural areas, urban areas, and roads 

during movement, but showed a preference for all other landscape variables in the final model, 

especially riparian and woodland areas (Table S7). The Boyce Index value for the puma PathSF 

surface was 0.72. 

 

Table S7. Scales, standardized beta estimates, robust standard errors, and 95% robust confidence 

intervals for the puma path selection function model-averaged variables. 

 Scales Beta estimate Standard Error 95% Confidence Interval 

Elevation 241 m 9.22 1.00 8.51 –9.94 

Percent Slope 2,797 m -1.35 0.21 -1.50 – -1.20 

Agriculture 3,819 m -0.02 0.09 -0.08 – 0.05 

Chaparral 3,104 m 1.44 0.30 1.37 – 1.51 

Grassland 2,797 m -0.02 0.28 -0.22 – 0.18 

Barren/Open Water 3,104 m -0.02 0.07 -0.07 – 0.04 

Riparian 1,317 m 5.92 1.90 4.56 – 7.27 

Woodland 241 m 2.87 0.36 2.61 – 3.13 

Urban 241 m -7.53 2.03 -8.98 – -6.08 

All roads 3,819 m -0.78 0.24 -0.95 – -0.62 

 

Landscape Genetics Analysis 

For all species, we identified a single scale and transformation to resistance for each variable out 

of the suite of a priori resistance surfaces tested using the linear mixed effect models. After accounting 

for correlations, we included the following variables in the multiple regression model for bobcat: 

agriculture, all roads, chaparral, coastal scrub, hardwood forest, herbaceous grassland, riparian, steep 

slopes, streams, terrain ruggedness, topographic position index and water and wetland (Table S8). 

Most of the transformations selected for bobcat indicated the lowest resistance values were at 

moderate values of that variable. However, resistance for bobcats steadily increased with the amount 

of roads and water and wetlands and decreased with the amount of chaparral and coastal scrub. AICc 

values for the top models ranged from -4402 - -4398 while the AICc value for the null isolation by 

distance (IBD) model was -4367.  

For mule deer, we included the following variables in the final model: agriculture, chaparral, 

coastal scrub, distance to water, elevation, gentle slope, hardwood forest, herbaceous grassland, 

primary and secondary roads, riparian, sparsely vegetated/urban, steep slopes, streams, topographic 

position index, and water and wetland (Table S8). Resistance for mule deer increased with increasing 

values of roads, slope, urban, and coniferous forest. Resistance for mule deer decreased with 

elevation, topographic position index, distance to water, riparian, agriculture and chaparral. 



Resistance was lowest at moderate values of hardwood forest and streams. The AICc values for the 

top models ranged from -45770 - -45766 while the AICc value for the null IBD model was -45772.  

For puma, after accounting for correlations, we included the following variables in the multiple 

regression model: elevation, percent slope, agriculture, chaparral, coastal scrub, coastal oak 

woodland, grassland, riparian, urban, and primary roads (Table S8). Variables whose resistance 

decreased with increasing values were chaparral, percent slope, riparian, coastal scrub, and coastal 

oak woodland. Resistance for elevation and ruggedness were represented by an inverse Ricker 

transformation, which decreases until middle values are reached, and then increases for the 

remaining values, indicating dispersal is facilitated at mid-elevation and mid-ruggedness values. The 

AICc values for the top models ranged from 10605 – 10609 while the AICc value for the null IBD 

model was 10616. 

Once we combined the resistance surfaces from the SDM for deer and PathSF for bobcat and 

puma with the final landscape genetic resistance surface for each, we found that the predictive 

ability was either equal to or better than the original SDM or PathSF surfaces. The Boyce Index 

values for these combined surfaces were 0.83 for mule deer, 0.98 for bobcat, and 0.98 for puma. 

  



Table S8. Final model variables, scales and transformations to resistance for bobcat, mule deer, and 

puma. Variables without scales or transformations indicate it was not included in the final model for 

that species. Plus or minus indicates preference or avoidance of that variable for or movement. A 

forward slash refers to the inverse Ricker transformation, which indicates the lowest resistance values 

correspond with values in the middle of the range of values for that variable. The selected resistance 

transformation for the landscape genetic analysis are indicated by IR = inverse Ricker, NL = negative 

linear, NMCc = negative monomolecular concave, NMCv = negative monomolecular convex, PL = 

positive linear, PMCc = positive monomolecular concave, PMCv = positive monomolecular convex. 

     

  Bobcat Mule deer Puma 

  

 

Variable 

 

 

Scale 

Trans- 

formation/ 

Sign 

 

 

Scale 

Trans- 

formation/ 

Sign 

 

 

Scale 

Trans- 

formation/ 

Sign 

R
o

ad
s 

an
d

 

D
ev

el
o

p
m

en
t All Roads 2,000 m PL  -     

Primary roads   2,160 m PMCc - 500 m PMCv - 

Secondary roads   1,440 m PMCc -   

Tertiary roads       

Unpaved roads/trails       

Percent Imperviousness       

T
o

p
o

g
ra

p
h

y
 

Elevation   720 m NMCc + 6,000 m IR / 

Percent Slope     8,000 m NMCc + 

Terrain Ruggedness 465 m IR /     

Topographic Position Index 2,000 m IR / 1,440 m NMCc +   

Ridges       

Canyons       

Steep Slope 170 m IR / 720 m PMCv -   

Gentle Slope   90 m PL -   

W
at

er
 Streams 465 m IR / 1,440 m IR /   

Distance to Water   720 m NMCc +   

V
eg

et
at

io
n

 T
y

p
e 

Agriculture 465 m IR / 720 m NMCc + 6,000 m PL - 

Chaparral 1,000 m NL  + 180 m NMCv + 6,000 m NMCc + 

Coastal Scrub 2,000 m NMCv  + 1,440 m PMCv - 500 m NMCv + 

Coniferous Forest       

Desert Scrub       

Hardwood Forest 170 m IR / 90 m IR / 2,000 m NMCv + 

Herbaceous Grassland 2,000 m IR / 90 m PL - 500 m PMCv - 

Riparian 170 m IR / 2,160 m NMCc + 500 m NMCv + 

Sparse/Disturbed   2,160 m PMCv - 500 m PMCv - 

Water and Wetlands 2,000 m PL - 720 m PL -   

  



S4: Land Facet Analysis Results 

Our analysis of land facets resulted in the identification of 15 total facets, three types for canyons 

and four each for gentle slopes, steep slopes, and ridges (Table S9). We generated least cost corridor 

connectivity rasters for each of the 15 facets and truncated them at cost-weighted distance values 

ranging from 500 to 2,500, based on the relative coverage of each facet across the map to define 

distinct corridors that remained primarily within each feature type. After cleaning and filling the 

initial corridor polygons, we compared these land facet corridors to our focal species corridors. We 

found that there were three areas where land facet corridors were modeled that were not captured 

by our focal species corridors. Two were near the boundaries of our analysis area and were likely not 

captured in our focal species corridors due to edge effects during modeling rather than a lack of 

suitability of the habitat features. As such, we opted not to add those corridors to the linkage network. 

The third was a region through a large grassland that was captured by the LF2c land facet corridor. 

The grasslands corridor was located in a region towards the center of our analysis area that was likely 

not incorporated into our focal species corridors because we had not explicitly chosen a grassland-

associate in our suite of focal species. Therefore, we included the LF2c corridor in our final linkage 

design.  

Table S9. Description of the 15 different land facet types identified across the study area. The final 

selected land facet representing grasslands is identified in bold italics. 

Land Facet Category Topographic Position Slope Insolation Elevation 

LF1a Canyons gentle warm low 

LF1b Canyons moderate hot high 

LF1c Canyons steep cool mid 

LF2a Gentle slopes gentle warm low 

LF2b Gentle slopes moderate warm high 

LF2c Gentle slopes steep hot mid 

LF2d Gentle slopes steep cool mid 

LF3a Steep slopes gentle hot high 

LF3b Steep slopes gentle warm low 

LF3c Steep slopes steep hot mid 

LF3d Steep slopes moderate cool mid 

LF4a Ridges gentle warm low 

LF4b Ridges moderate hot high 

LF4c Ridges steep hot mid 

LF4d Ridges steep cool mid 
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