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Abstract: The World Health Organization (WHO) states that in developing nations, there are
three million cases of agrochemical poisoning. The prolonged intensive and indiscriminate use
of agrochemicals adversely affected the soil biodiversity, agricultural sustainability, and food safety,
bringing in long-term harmful effects on nutritional security, human and animal health. Most of the
agrochemicals negatively affect soil microbial functions and biochemical processes. The alteration in
diversity and composition of the beneficial microbial community can be unfavorable to plant growth
and development either by reducing nutrient availability or by increasing disease incidence. Currently,
there is a need for qualitative, innovative, and demand-driven research in soil science, especially in
developing countries for facilitating of high-quality eco-friendly research by creating a conducive and
trustworthy work atmosphere, thereby rewarding productivity and merits. Hence, we reviewed (1) the
impact of various agrochemicals on the soil microbial diversity and environment; (2) the importance of
smallholder farmers for sustainable crop protection and enhancement solutions, and (3) management
strategies that serve the scientific community, policymakers, and land managers in integrating soil
enhancement and sustainability practices in smallholder farming households. The current review
provides an improved understanding of agricultural soil management for food and nutritional security.
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1. Introduction

In many developing nations, current agricultural methods follow unsustainable practices which
have resulted in a huge amount of toxic effluents being emitted directly or indirectly into the soil, air,
and water [1]. The advent of nanotechnology and nanomaterials has further complicated the scenario
of soil inputs and their degradation [2,3]. The element of variation in soil properties based on climatic
and geospatial characteristics are also crucial for consideration [4,5]. Currently, various agrochemicals
(i.e., herbicides, fungicides, insecticides, nematicides, molluscicides, rodenticides, chemical fertilizers
are being used non-judiciously [6] which have adversely affected beneficial soil (micro) biota (Figure 1).
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Figure 1. A schematic illustration depicting the response and effects of pesticides on soil microbial
communities and biodiversity.

Any substance used to control, repel, or kill plant or animal life is a pesticide, and the group
includes herbicides, insecticides, and fungicides. There is a constantly increasing demand for pesticides,
and more than 50% of the pesticides used are from Asia (Figure 2). Saint Lucia is at the top among per
hectare usage of pesticides (Figure 3) and China is at the top when it comes to most pesticide-consuming
countries in the world (Figure 4). The increasing global demand for quality protein-rich food resources
for an ever-increasing world population entitles a pressing need for the development of an ecologically
sound strategy for sustaining soil health and advancing food security without degrading soil biodiversity
on a global.
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Impact of pesticides on agronomic yield and profit margin makes them a significant component of
modern agricultural practices. However, the indiscriminate use of pesticides leads to the degradation of
soil’s microbial ecosystems [8]. Weeds and insects are the major reducing biotic factors in agriculture and
hamper crop yield, productivity, and resource use efficiency [9]. Therefore, herbicides (type of pesticide
that kills specifically targeted herbs) and insecticides (type of pesticide that kills specifically targeted
insects) are being used indiscriminately for ensuring higher production by eliminating or suppressing
pest population [10]. The United States is first among the top ten herbicide- and insecticide-using
countries in the world (Figures 5 and 6). The cost of labor, choice of pesticide application, and the promise
of swift pest control have made the use of pesticides judicial or rampant all over the world [11]. These
chemical compounds are either applied directly to the soil strata or as a spray, where drifting sprays
and excessive inputs through leaching enters rivers, streams and other water bodies as agricultural
run-offs [12].
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Consequently, the soil receives the bulk of complex agrochemical compounds, several of which
are poisonous to the activity of non-target beneficial soil micro-organisms [13]. More than 95% of the
applied herbicides and 98% of insecticides reach non-target soil micro-organisms than their target
pest, as they are sprayed proportionately across the entire field, irrespective of the affected areas [14].
Hence, of the total quantity of applied pesticides, about 0.1% reaches the target organisms while the
remaining quantity pollutes the soil and environment. This indiscriminate use of pesticides not only
disturbs the soil biodiversity but also adversely affects soil microcosms comprising of soil micro-fauna
in field communities and soil ecosystem [15]. Large quantities of pesticides reaching to the soil have
a direct effect on soil microbiota, which is a biological indicator of soil fertility influencing plant
growth and development [16–18]. Similarly, several studies have reported the impact of numerous
pesticides on subduing soil enzyme activity(s) which affects the nutrient status of soil and include
hydrolyzes, nitrate reductase, urease, oxidoreductases, nitrogenase, and dehydrogenase activities.
Further, biological nitrogen fixation (BNF) and their associated biotransformation (i.e., ammonification,
nitrification, denitrification, phosphorus solubilization and S-oxidation) are also affected by pesticide
applications [19]. In addition, reduced microbial carbon biomass (MCB) and functional diversities of
many non-target soil microbial populations are affected because of intensive applications of pesticide
in contemporary agriculture [13].

Elaine Ingham, American microbiologist and founder of Soil Foodweb, stated, “If we lose both
bacteria and fungi, then the soil degrades”. Microorganisms in the soil are exclusively important because
they impact soil structure, functions, and fertility [20]. These organisms are primarily decomposers
of organic matter, but also perform many other functions such as provide nitrogen (N), phosphorus
(P), potassium (K), etc., through fixation and mineralization. Thereby helping plants grow, detoxify
harmful chemicals, suppress disease-causing organisms, and produce substances that may stimulate
plant growth. Soil microbes also mineralize the essential plant nutrients in the soil to improve crop
productivity, produce plant hormones that stimulate plant immune system, encourage growth, and
activate stress responses [21]. For example, Rhizobium converts the atmospheric elemental N into
biology. Factors comprising both above and below-ground biodiversity and population dynamics drive
soil health. On a global scale, renewed efforts and focus on management strategies for food supply
and security, nutrition, health, and soil sustainability are mandated for understanding the impact of
agrochemicals on soil microbiota.

The overarching aim of this review is to provide a general overview of the impact of agrochemicals
on soil sustainability and health and to outline some management options that may be useful to the
scientific community, policymakers, and land managers in integrating sustainable farming practices
with organic farming.

2. Methodology

This study represents the existing literature on the use and management of different agrochemicals.
This article tries to improve the understanding of agricultural soil management for food and nutritional
security. The literature review utilized for this paper was mainly qualitative in nature. We used keyword
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research in popular databases such as Google Scholar, Scopus and PubMed. The keywords used were
agrochemical, pesticide, herbicide, insecticide, pesticide and soil biochemistry. Only articles published
in English and from reputed journals from individual fields (Q1 and Q2 ranking journals from individual
field based on scimago ranking) were considered. A sum of 148 publications was included. Major
benchmark studies from 2000 to 2019 were selected to follow the progress in the field across the globe.

3. Herbicides and Soil Microbial Environment

3.1. Impacts of Herbicides on Soil Biota

Herbicides show a reduction in the total microbial population within 7 to 30 days after application
depending on the type of herbicidal molecules [22] and adversely affect the microbial biodiversity
indirectly by altering the physiology or biosynthetic mechanisms [23]. This, in turn, affects soil enzymatic
activity, cellular membrane composition, protein biosynthesis, and the amount of plant growth regulators
(gibberellins synthesis, transportation of Indoleacetic Acid (IAA), ethylene concentration, etc.) [22].
The application of excessive and higher doses of herbicides has also been reported to result in the death
of many sensitive microbes [22].

The detrimental effects of applied chemical herbicides on soil microbial diversity depend on
the degradability, adsorption and desorption, bioavailability, bioactivity, persistence, concentration,
and toxicity of agrochemicals along with soil factors such as texture, vegetation, tillage system, and
organic matter [18,24]. The reduction in soil microbial functionaries is more under conventional tillage
than in no-till (NT) system. Under conventional till (CT) system, the soil microbial biomass carbon
(MBC) and mycorrhizal colonization decrease after 12 days of application of herbicide fomesafen and
mixtures of fluazifop- butyl + fomesafen [25]. Some microbial communities are more sensitive to the
interaction effect of herbicides with other compounds than the use of a single herbicide, as is the case
with butachlor when applied in combination with cadmium [18]. Other herbicides in combination
with inorganic fertilizers and heavy metals [26–29] suppress the functions of soil microbes. Following
the application, herbicides undergo physical and biochemical transformations and produce several
secondary metabolites which are more lethal or persistent to non-target microbial communities. This is
exemplified by the effect of 2,4-D and its metabolites on Burkholderiacepacia-a group of gram-negative
bacteria [30]. The herbicidal action also depends on the type of formulation being used in addition to the
active ingredient such as surfactant and solvent [18]. The addition of surfactant polyoxyethylene amine
in glyphosate makes herbicide more toxic to the bacterium as compared to glyphosate acid alone [31].
The use of biochar as a soil amendment may counter the negative effects of herbicides on soil biota [32].

The soil type can also play a critical role in the herbicidal effect. The effect can be more severe in
coarse-textured soils. For example, Khan et al. (2006) reported severe negative effects of herbicides on
microbial association and vitality of chickpea in sandy clay loam soils [33]. The herbicidal molecules
belonging to the triazines group are more hazardous when applied over a long time due to their residual
effect and persistence in soil [22]. The repeated applications of atrazine can significantly reduce the
intensity of soil microbes [34]. Similarly, atrazine and metolachlor can alter the biodiversity of different
species of actinomycetes and bacteria in soil [34]. Glyphosate, a nonselective herbicide belonging to
organophosphate group, can decrease the activity of phosphate enzyme up to 98% [35]; inhibit growth
and activity of soil biota [16], and have toxic effects on mycorrhizal fungi when tested under laboratory
conditions. Different effects of the herbicidal application on soil microbial communities, enzymes, and
biochemical reactions are presented in (Table 1).
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Table 1. Herbicides and their reported effects on soil microorganisms, enzymes, and biochemical reactions.

Herbicides Effects on Microorganism and Associated Process References

2,4-D Adversely affects the activities of Rhizobium sp. [17]

2,4-D Reduces nitrogenase, phosphatase and hydrogen
photoproduction activities of purple non-sulfur bacteria [36]

2,4-D and 2,4,5-T

Adversely affects node-expression disrupting plant
Rhizobium signalling. 2,4-D also reduces fixation by
blue-green algae and nitrifying process impacting

nitrosomonas and Nitrobacter sp.

[37]

2,4-Damine, Agroxone, and Atranex Inhibits activities of Rhizobium phaseoli and
Azotobacter vinelandii (most sensitive) [17]

2,4-D, Bromoxynil, and Methomyl Reduces CH4 oxidation to CO2 [38]

Bensulfuron methyl and
Metsulfuron-methyl Decreases N-mineralization [39]

Bentazone, Prometryn,
Simazine, and Terbutryn

Inhibits N-fixation and decreases the number of
nodules and N content overall [40]

Isoproturon, Triclopyr
Adversely impacts nitrosomonas, Nitrobacter, urea
hydrolyzing bacteria, nitrate reductase activity and

growth of actinomycetes and fungi
[41]

Linuron, Terbutryn, and
Methabenzthiazuron

Adversely impacts nitrogenase activity and
nodulation at the pre-emergence application [33]

Glyphosate Suppresses phosphatase activity [35]

Glyphosate Reduces the growth and activity of azotobacter [16]

Metribuzin At lower doses, no effects on AM fungi
in maize and barley are observed [42]

3.2. Impact of Herbicides on N-Fixing Microbes

Several herbicides can alter the symbiotic association between legume plants and rhizobacteria
and hinder the vital processes of N-fixation [40,43]. Herbicides may influence the nodulation and
consequently the BNF in legumes either by disturbing rhizobacterial infection process or by affecting root
fibers of the plants where infection and node formation occur. They may also affect the phytochemical
signaling of Rhizobium needed for coordination and regulation of the key processes in BNF [18]. Some
herbicides affect the morphology of the cell, resulting in the formation of pleomorphic cells [18].
Herbicides can reduce root nodulation, bacteroids, dry plant matter, nitrogenase activity and adenosine
triphosphate (ATP) synthesis of Rhizobium and thus symbiotic N-fixation [22]. Use of herbicides in
soybean can suppress the growth and activity of Bradyrhizobium. The growth of Bradyrhizobium japonicum
is abridged due to the application of herbicides in soybean in vitro cultures, while nodulation is affected
under controlled greenhouse conditions [44]. However, the growth of B. japonicum is not affected by
chlorimuron ethyl in pure cultures even at 150 times higher concentration than the recommended field
rates [45]. The commonly used triazines (i.e., terbutryn, simazine, prometryn, and bentazone) reduces
the rhizobial functionaries at concentrations more than the recommended rate [40]. On the contrary,
herbicides such as sethoxydim, alachlor, fluazifop-butyl, and metolachlor had no detrimental effect
on BNF and soybean yields at the recommended field rates. However, the non-selective herbicides
paraquat and glyphosate (due to the presence of ethylamine formulation) [46] can reduce the N-fixation
in soybean. Herbicide pendimethalin at 0.5–1.0 kg/ha can slow down the process of Rhizobium symbiosis
in crop plants [47]. The commonly used herbicide 2,4-D tends to reduce the growth and activity of
blue-green algae (BGA), inhibits nitrification, and the BNF process by affecting the activity of Rhizobium
sp. in beans. The residues of 2,4-D are found in cell wall and cytosol of Rhizobium in significant
amounts confirming its impact on rhizobacterial propagation [17].

Azotobacter is anaerobic, free-living soil microorganism that plays an important role in N-cycling
by fixing nitrogen. It is highly sensitive to herbicides, even for a short exposure of 7–14 days [22].
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The extent of inhibition of activity, population, growth, and development of Azotobacter depends on
the kind as well as the dosage of herbicidal molecules used [46]. In the field of soybean and sunflower
treated with prometryne, the biological activity of Azotobacter and some other bacteria was strongly
reduced after 28 days of herbicide application [48]. Herbicides 2,4-D, atranex, and agroxone inhibited
the occurrence of Rhizobium phaseoli and Azotobacter vinelandii, and their population further decreased
with increase in herbicide concentration. Similarly, in sugarbeet, dimethenamid and metolachlor
application significantly reduced Azotobacter’s population by 33%–50% at the rate of 1.7 L/ha [48], use
of dimethenamide by 2% and 18% at the rate of 1.6 L/ha compared with 1.4 L/ha and the blend of
flumetsulam + trifluralin by 2% at the rate of 2 L/ha compared with 1.7 L/ha as recommended [48].

3.3. Impact of Herbicides on Arbuscular Mycorrhizal Fungi

Mycorrhizas are symbiotic associations between fungi and roots of higher plants that enhance the
uptake of nutrients, especially P, nitrate (NO3), and ammonium (NH4), and improve soil aggregate
stability [49]. The herbicides oryzalin, trifluralin, and oxadiazon have a deleterious effect on spore
germination and propagation of mycorrhizal species [50]. In contrast, oxyfluorfen and oxadiazon
stimulate the microbial population significantly and can enhance the P availability in rice [51]. Glyphosate
significantly decreases root mycorrhization by 40%, soil arbuscular mycorrhizal fungal (AMF) spore
biomass, vesicles, and propagules under greenhouse conditions [52]. Glyphosate can directly influence
the active metabolite production in the plant with negative impacts on root colonization of AMF [53],
and indirectly affect the intra-radical mycelium growth and arbuscular formation which regulates
the AMF abundance [52]. In contrast, Pasaribu et al. (2013) [50] did not find any significant effects
of glyphosate on AMF (Glomus mosseae), and thus the P inflow through mycorrhizal hyphae was
significantly increased with the application. Pasaribu and colleagues also reported that increasing rates
of alachlor application significantly reduced the numbers of spores, total and active infection intensity
of internal hyphae of vesicular–arbuscular mycorrhizae.

The adverse impacts of herbicides prometryn and acetochlor on AMF and symbiosis at increasing
rates from 0.1 to 10 mg/L are widely known, with prometryn being more toxic than acetochlor [49,50].
Sharma and Buyer (2015) [54] observed the adverse effects of herbicides on AMF live-biomass in terms
of AM signature fatty acids 16:1ω5 phospholipid fatty acid (PLFA) and 16:1ω5 neutral lipid fatty acid
(NLFA) representing hyphal biomass and spore population in soil respectively, as a measure of AM
propagation and survivability. Zaller et al. (2014) [52] observed the effects of Roundup (glyphosate)
application on hyphae (i.e., amount of 16:1ω5 PLFA) and spore (i.e., amount of 16:1ω5 NLFA) biomass
in the soil and found that spore biomass declined with herbicide application. Similar observations have
been reported by Druille et al. (2013) [55], who showed that the spore germination is affected even
at the lowest dose of glyphosate. While evaluating several biological pesticides along with chemical
fungicides, Ipsilantis et al. (2012) [56] observed that application of pyrethrum, terpenes, and spinosad
did not significantly affect the structure and root colonization ability of the AM fungal community.
However, pots treated with carbendazim completely hampered mycorrhizal colonization. Gupta et al.
(2011) [57] suggested that herbicidal application at higher concentrations should be resorted to only
after careful consideration. While evaluating the impact of metribuzin herbicide on three species of
AMF in maize and barley, Makarian et al. (2016) [42] reported that inoculation of AMF considerably
improved the growth and chlorophyll content of barley and maize at lower herbicide concentrations
(175 g a.i. ha−1) compared to non-inoculated treatments. Thus, it suggested that mycorrhizal fungi can
alleviate crop stress under lower doses of metribuzin through increase in plant growth and advocated
for avoiding the administration of higher doses. On the other hand, Sharma and Adholeya (2005) [54]
found a positive effect of nematicide-carbofuran 3G (furadan) when applied in maize pot cultures
and suggested their uses for cleaner maintenance of pot cultures. Thus, the effects of herbicides on
AMF are case-dependent, and factors such as soil mineral composition, type of host, plant fitness and
the nature of plant–fungal symbiotic interactions regarding reciprocal rewards may play a key role
in determining the overall cause and effect [58]. It has also been reported that phenotypic plasticity
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governed by nutrient cycling and environmental factors, and plant–fungal phospholipid metabolism
in AMS may lead to observed trait variations among different plant and AMF combinations in either
agricultural or controlled environmental settings [59].

3.4. Impact of Herbicides on Soil Biochemical and Enzymatic Environment

Herbicides reduce several beneficial biochemical processes governed by soil microbes and enzymatic
reactions that play a crucial role in maintaining or improving soil health [60]. Biochemical processes
driven by soil microbes include mineralization, and associated bio-transformations like nutrient
dynamics (nitrification, denitrification, and ammonification), redox reactions, methanogenesis, etc., are
affected by exposure to herbicides [61]. The biochemical process of denitrification and nitrification are
diminished in soils treated with prosulfuron even after N fertilization [60]. Herbicides also influence the
soil enzymatic activities that influence “biological index” of soil fertility and biological functions in the
soil profile [62]. Acetochlor and its derivatives are toxic to bacteria (i.e., fluorescens, Bacillus subtilis, and
Mycobacterium phlei) that are involved in N transformations [63]. The herbicide, atrazine and simazine
can completely arrest the growth, and biological action of Xanthobacter autotrophic when applied at the
rate of 10 mg/L [64]. The herbicides alachlor and atrazine negatively affect the functioning of bacteria,
those are needed for ammonification, and soil dehydrogenase activities at applications higher than the
field recommended dose [65]. The impact on microbial activities varies with the mode of the herbicide
application. For example, glyphosate applied in bunds can significantly diminish enzymatic activity
but not when applied as granules. The herbicides atrazine and metolachlor can reduce the activity of
invertase and dehydrogenase enzymes [35], respectively. However, chlorimuron-ethyl and furadan
may enhance the activity of both these enzymes by 14%–18% and 13%–21%, respectively [66,67].

4. Fungicides and Soil Microbial Environment

4.1. Impact of Fungicides on N-Fixing and Growth-Promoting Microbes

Most copper (Cu) based fungicides have a deleterious effect on the population of N-fixing
bacteria [68]. Fungicidal residues, for example, apron, arrest, captan, tend to remain in soil reacting with
living organisms and affecting the N-fixation in legume-Rhizobium association [69]. Both mancozeb
and chlorothalonil can decrease the process of nitrification and denitrification at an incubation period
of ≥48 h [60]. The negative impact of the long-term application of organomercurial Verdean on
cellulolytic fungal species has also been reported [70]. Further, application of triarimol and captan
can decrease the frequency of Aspergillus species responsible for plant growth and development.
Carbendazim is moderately toxic to Pseudomonas fluorescens and Bacillus subtilis while being highly toxic
to Trichoderma harzianum, a potent biocontrol agent active against soil-borne fungal phytopathogens
(i.e., Fusarium, Pythium, and Rhizoctonia) on soybean, potato, cotton and other crops [63]. The impact of
fungicides such as chlorothalonil and azoxystrobin on soil microbial activities, has long been recognized
with negative effects on the biocontrol agents itself as in Fusarium wilt [71]. On the other hand, the
inhibitory effect of fungicide applications on the activity of certain fungi has led to a fast flush of
bacterial activity as well [13].

4.2. Impacts of Fungicides on Soil Microbiota

Several studies have reported the harmful effects on soil microbial growth, survival, and activity [72].
Fungicide bavistin has an inhibitory effect on several soil microbial populations, but the impact is
non-significant [57]. AMF can be sensitive to some molecules of fungicides but not to all [73]. Benzoyl
is responsible for the long-term reduction in mycorrhizal associations [74] with many fungicides being
toxic to hyphal growth and thus root colonization of AMF associations of pea [72]. Emisan (holding
6% 2-methoxyethylmercury chloride) and carbendazim (benzimidazole fungicide and a metabolite
of benomyl) both have a damaging effect on AMF in groundnut. However, applications of Cu can
provide a stimulus to mycorrhizae in groundnut. Applications of metalaxyl favor AM colonization
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in roots of soybeans and maize [66]. Murillo-Williams and Pedersen (2008) [75] reported that under
non-fumigated soil conditions, seed-applied fungicides in combination with fludioxonil favors AM
colonization due to a reduced competition from aggressive pathogens like Rhizoctonia spp., an organism
that is the target of this fungicide. The impact of a wide range of fungicides on beneficial soil microbiota
is depicted in Table 2.

Table 2. Fungicides and their impacts on beneficial processes of soil microbiota.

Fungicides Effects on Microorganism and Associated Process References

Apron, Arrest, and Captan Reduces viable counts of Rhizobium ciceri [69]

Benomyl Impacts mycorrhizal associations and nitrifying bacteria [76]

Benomyl, Mancozeb Arrests activity of dehydrogenase, urease, and phosphatase enzymes [77]

Captan Inhibits aerobic N-fixing, nitrifying, denitrifying bacteria, nitrogenase
activity, phosphate solubilization and other fungi [64]

Captan and Thiram Decreases cell growth and nitrogenase activity in Azospirillum brasilense
even at a lower dose of 10 mg/L [78]

Captan and Carbendazim Decreases nitrogenase enzyme activity [36]

Captan, Carboxin, Thiram Inhibits the activity of bacteria responsible for denitrification [79]

Carbendazin and Thiram Inhibits nodulation in legumes and thus N-fixation process [80]

Chlorothalonil Effects bacteria associated with nitrogen cycling [76]

Chlorothalonil, Azoxystro Effects biocontrol agent(s) used against Fusarium wilt [71]

Copper fungicides Decreases population of bacteria, cellulolytic fungal species and
streptomycetes in sandy soil [70]

Dimethomorph Inhibits nitrification and ammonification process in sandy soils [81]

Dinocap Inhibits the activity of ammonifying bacteria [82]

Dithianon Destrucs bacterial diversity in soil [83]

Fenpropimorph Slows down bacterial activity in wetlands [79]

Fludioxonil Toxic to algal activities [84]

Funaben, Baytan, Oxafun Inhibits nitrogenase activity of methylotrophic bacteria at a higher dose [85]

Hexaconazole Impacts bacteria involved in N cycling [86]

Mancozeb Impacts on bacteria involved in N & C cycle in soil [82]

Mancozeb, Chlorothalonil, Metal
dithiocarbamates Reduces nitrification process [60]

Metalaxyl Reduces urease activity continuously while phosphatase activity seems
stimulated but then reduces [87]

Metalaxyl Disturbs activity of ammonifying and nitrifying bacteria [19]

Oxytetracycline Acts as bactericide [88]

Pencycuron Short-term impact on metabolically active soil bacteria [89]

Propiconazole May retard plant growth-promoting effects of Azospirillum brasilense on
its host plant [90]

Triadimefon Deleterious to long-term soil bacterial community [91]

Triarimol and Captan Reduces frequency of Aspergillus sp. [92]

4.3. Impact of Fungicides on Soil Enzymes and Biochemical Environments

Several biochemical processes in soil are closely linked with enzymatic activities which are
adversely affected by residues and toxic elements left after application of fungicides [93]. Fungicides
benomyl, mancozeb, and tridemorph inhibit the soil enzymatic activity of dehydrogenase, urease,
and phosphatase [77]. Activities of phosphomonoesterase and urease enzymes are also inhibited in
soils treated with captan, trifloxystrobin, and thiram fungicides [94,95]. Yet, captan and thiram are
classified as soil and seed protectant fungicides, respectively. However, the fungicide ridomil has a
non-significant impact on the activity of a phosphatase enzyme [65]. These enzymes may be protected
from degradation by adsorption on clays or humic substances in soil [18,73]. The smaller the size
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of the clay particle, the greater is the protection against the added fungicides [96]. The synthesis of
amino acids of certain bacteria is repressed by some glucopyranosyl antibiotic fungicides [93,97,98].
The use of Cuin combination with mefenoxam can disturb soil microbial diversity as determined by
structural and metabolic profiling. The population of ammonium oxidizing bacteria is decreased by
the application of mefenoxam and mefenoxamp Cu fungicides after 60 days of application [65].

5. Insecticides and Soil Microbial Environment

5.1. Impact of Insecticides on N-Fixing and Another Growth-Promoting Microorganism

The applied insecticides affect the growth, survival, and working capacity of symbiotic rhizobial
association with roots of legume plants resulting in dwindled atmospheric N-fixation [80]. The antagonistic
interaction between the applied insecticides and symbiotic N-fixers differ with the specific chemical group
of insecticide and the specific N-fixer group. However, the field recommended doses of these chemicals had
little effect on symbiotic N-fixing bacteria [66]. The growth and population of Azotobacter are significantly
inhibited because of phosphamidon, malathion, fenthion, methyl phosphorothioate, and parathion [99].
Nonetheless, insecticides like carbofuran, phorate, and disulfoton have little effect on the numbers of
Azotobacter in the soil. Dinoseb, when used as an insecticide, inhibits the nitrogenase activity by 60%, 90%
and 100% at 3 ppm, 6 ppm, 9 ppm, respectively [80]. While chlorpyrifos and their derivatives affect the
biological activities of Pseudomonas fluorescences, Bacillus subtilis, Mycobacterium phlei, Trichoderma harzianum,
Penicillium expansum, and Fusarium oxysporum [63]. Monocrotophos and cypermethrin have a negative
impact on the population of soil bacteria, whereas fenvalerate has a slight effect [100]. Several other
insecticides (i.e., chlorfluazuron, cypermethrin and phoxim) also has an inhibitory effect on soil
microbes even at field recommended doses/concentrations [101]. The application of insecticides
chlorpyrifos, imidacloprid, cypermethrin, endosulfan and carbofuran under field conditions causes
considerable variation in soil bacterial populations [102]. Among the applied insecticides, chlorpyrifos
has the most destructive effect on soil bacterial diversity. However, the insecticides monochrotophos,
quinalphos, and cypermethrin show a positive effect at lower and antagonistic effects at higher
doses [103]. Cypermethrin and monocrotophos are more harmful to soil bacteria and other microbes,
whereas fenvalerate is less harmful [67].

5.2. Influence of Insecticides on Soil Biochemistry

The residues of insecticides, when applied at field-recommended rates, do not cause any harmful
influence on the nitrification [80]. However, it is the prolonged use and the amounts of such insecticides
that cause concerns. Nevertheless, at higher rates, it inhibits the process of nitrification and microbes
involved in it [103]. For example, the biochemical process of nitrification and denitrification are
reduced in soils contaminated with monocrotophos, lindane, dichlorvos, endosulfan, malathion, and
chlorpyrifos when applied at concentrations of 0.02 to 10 times that of field recommended dose [104].
Insecticides have an adverse impact on soil microbes that are important to N transformation in soils,
and the degree/extent of toxicity may vary based on the type and group of insecticide [105]. Further, the
ammonification is less sensitive to insecticide residues. However, at higher doses, the ammonification
process is often reduced [81]. Some insecticides have a neutral effect on ammonification (e.g., superacids
(25 and 500 g/ha) and nuvacron (100 and 600 g/ha) did not affect the ammonification process but is
significantly reduced at higher concentrations of 1000 g/ha and 750 g/ha, respectively under controlled
laboratory conditions [60].

5.3. Impacts of Insecticides on Agrobiology

There is a significant impact of pesticide contamination in soil ecosystem [106]. The repeated
use of such complex chemicals (fertilizers, weedicides, insecticides, etc.) inevitably kill the microbial
life that is invaluable for the healthy soil ecosystem [107]. Soil-dwelling microbes can be genetically
modified using insecticides in a manner that is no longer helpful to the soil ecosystem and may
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eventually become resistant to the chemicals, intended to exterminate them. Insecticides have a
higher effect on soil microbes compared to herbicides, albeit less than that of fungicides [12]. Some
insecticides are detrimental to the growth and survival of beneficial microbes, but others may have
stimulating or no effects [108]. For example, insecticides of the carbamate group (e.g., carbofuran,
methiocarb, and carbaryl) have a wide range of negative impact on soil microbial environment [35] and
enzymatic activity [109]. Similarly, insecticides belonging to the chemical group of organophosphates
(i.e., dimethoate, diazinon, chlorpyrifos, quinalphos, and malathion) inhibit the growth and population
of soil bacteria, fungi [99], and enzymes [110]. Arsenic, DDT, and lindane also have a negative effect
on the microbial biomass [110], microbial processes, and enzymatic activities [68] that are attributable
to their long-standing residual effect and persistence in soil. The effects of different insecticides on the
soil micro-flora and fauna that are linked with nutrient cycling are presented in Table 3.

Table 3. Impact of insecticides on soil microorganisms, enzymes, and biochemical reactions.

Insecticide Effects on Microorganism and Associated Process References

Amitraz, Aztec, Cyfluthrin,
Imidachlor, and Tebupirimphos Reduces activities of urease and phosphatase enzymes for a week [111]

Arsenic, DDT, and Lindane Decreases microbial biomass and microbial and
enzymatic activities as a result of longer persistence in soil [110]

Bensulfuron methyl and
Metsulfuron-methyl Reduces soil microbial biomass [112]

Carbamate insecticides Inhibits several soil microorganisms, enzymes and nitrogenase activity of Azospirillum [35,99]

Carbendazim, Imazetapir, Thiram Decreases nitrogenase activity in Rhizobium leguminosarum. R. trifolii, Bradyrhizobium sp.
and Sinorhizobium melilot in pot cultures as well as in field conditions [80]

Carbofuran, Ethion,
and Hexaconazole Inhibits nitrogenase activity of Anabaena doliolum by 38% within 48 h of application [109]

Chlorinated hydrocarbons Inhibits methanogenesis [61]

Chlorpyrifos, Dichlorvos, Phorate,
Monocrotophos, Methyl parathion,

Cypermethrin, Fenvalerate,
Methomyl and Quinalphos

Increases phosphatase activity initially and later reduces gradually.
Phorate reduces the total bacterial population and N-fixing bacteria [67]

Chlorpyrifos, Profenofos,
Pyrethrins, and Methylpyrimifos

Reduces the population of aerobic N-fixing, nitrifying,
denitrifying bacteria and several fungi. Profenofos and Pyrethrins

decreases the activity of urease enzyme and nitrate reductase
[94]

Chlorpyrifos, Quinalphos Reduces ammonification process [67]

Cyfluthrin, Fenpropimorph,
and Imidacloprid Decreases nitrification and denitrification process, and stimulates sulphur oxidation [111]

Diazinon and Imidacloprid Inhibits urease-producing bacterium (Proteus Vulgaris) [113]

Lindane, Malathion, Diazinon,
and Imidacloprid

Lindane inhibit state of nitrification, N-availability,
P-solubilization and activity of phosphomonoesterase enzyme while the

opposite effect is observed in the case of Diazinon and Imidacloprid
[110]

Metalaxyl and Mefenoxam Decreases nitrogen-fixing bacteria and microbial biomass [66]

Methamidophos Reduces microbial biomass by 41%–83% [13]

Neemix-4E Reduces urease enzyme activity [62]

Organophosphate insecticide Impacts the activity of soil enzymes, several beneficial soil bacteria,
and fungal population and reduces N-mineralization rate [99]

Pentachlorophenol Reduces nitrification [114]

Quinalphos Reduces activity of enzyme phosphomonoesterase which recovers later [115]

Validamycin Negatively effects phosphatase and urease enzyme which improves later [116]

6. Management Options

Interestingly, since the advent of pesticides and its related derivatives, studies on their harmful
effects have also been conducted for over a century, and many legislative actions and pesticide-related
incidents have been documented [99]. The advent of fast and reliable analytical techniques has paved
the way for greater understanding of the long-term effects of pesticides and related hazards posed to
soil and natural ecosystems. Hence, with the ever-growing knowledge on pesticide-related health
and environmental issues, new legislative actions are being amended or modified at a rapid pace
suggesting major improvements in smarter and efficient pest control [117]. Integrated management of
pesticides, its applications, and its residues have been proposed as an effective strategy for minimizing
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the harmful effects [118]. The biological control of pests has been at the forefront of many of the latest
environmentally friendly approaches to tackling the menace of pesticide pollution. Some of the key
effective management strategies are discussed below.

6.1. Biopesticides

Biopesticides are natural substances that can be derived from micro-organisms (microbial
pesticides), plant-derived that contain added genetic material (plant-incorporated protectants-PIPs) and
other naturally occurring products (biochemical pesticides) that offer pest control [119]. Biopesticides or
biological pesticides play a significant part in pest management approaches for better and eco-friendly
alternatives to chemical pesticides while minimizing pollution and contamination of soils and without
compromising on soil microbial communities. Biopesticides ensure good soil health and environmental
sustainability for eco-friendly agricultural production. Introducing beneficial microorganisms in
any living system need to have a characteristic dominant role over disease-causing microbial
populations. Mostly, these bio-products improve nutritional uptake efficiency of plants and increase
crop performance, when applied directly to soils or as foliar applications. While biopesticides made
from pathogenic microorganisms are specific to a target pest, biopesticides from beneficial interactors
offer a better and ecologically solution. Furthermore, biopesticides do not harm the environment and
soil microbes as compared to conventional chemical compounds [120].

The most commonly used biopesticides include Bacillus thuringiensis (Bt), Baculo viruses, Trichoderma,
Azadirachta indica. PIPs, for example, Bacillus thuringiensis is the most globally popular, which is being
used against moth larvae on plants, and the strains are made specifically for the larvae of mosquitoes and
flies [121]. Important among microbial biopesticides are: (1) the Baculo viruses to target specific viruses
which exterminates the disease-causing to lepidopterous insects of cotton, rice, and vegetables [122], (2)
Trichoderma and Trichoderma-based products being effective against soil-borne diseases (i.e., root rot) and
control of rots and wilts in dryland crops such as black gram (Vigna mungo), groundnut (Arachis hypogaea),
chickpea (Cicer arietinum) and green gram (Vigna radiate) [120] and (3) the entomopathogenic nematodes
(EPNs) of the genera Heterorhabditis sp. and the Steinernema sp. as potential agents against insect-pests of
the genera Diptera, Coleoptera, Lepidoptera and Orthoptera and to kill many soil-dwelling insect-pests
within 24–48 h [123]. The efficacy of EPN as a biopesticide is affected by nematode species, strain,
production and storage conditions, and persistence in the habitat and susceptibility of target insect
pests [123]. In comparison, several other bio-control agents take a few days or weeks to kill the target
insect pest. EPNs are safe to most non-target beneficial soil organisms, and the ecosystem, easy to apply
and are compatible with most agricultural chemical compounds. However, the cost of production,
limited shelf-life and environmental conditions (moisture, temperature, UV sensitivity, etc.) are some of
the major disadvantages in the broader application of EPNs [119].

6.2. Plant-Based Products

The active secretion of specific compounds from plant roots either stimulates or suppress the diverse
soil microbial community [124]. For example, the secretion of strigolactones (a plant sesquiterpene)
promotes symbiotic interactions by attracting mycorrhizal fungi of the order Glomeromycota [125].
The legumes release flavonoids which function as signaling molecules inviting N-fixing bacteria in the
rhizospheric zone for the establishment of rhizobial symbioses [126,127]. The plant growth-promoting
rhizobacteria (PGPR) also benefits other soil microbes through the release of organic acids, for example,
tomato roots release citric and fumaric acids which attract Pseudomonas fluorescence [128]. Neem cake
oil is another good example of biopesticides as it offers the essential nutrition for soil microorganisms,
and improves soil physicochemical properties besides controlling a wide range of pests [129]. Further,
the usefulness of the botanical insecticide, azadirachtin (an allelochemical from neem) as an effective
anti-fungal [130] and anti-microbial [131] compound has long been recognized. The effect of 10%
azadirachtin granules (alcoholic extract of neem seed kernel mixed with china clay) on the microbial
communities and their enzymatic activities suggested that azadirachtin at all doses exerts a suppressive
effect [129].
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Nonetheless, the negative impacts of neem (seed cake) are also reported. Elnasikh et al.(2011) [132]
stated that neem seed cake impacts the population of Bactoderma, Nocardia, fungi, and the inorganic
N-users, including nitrifying bacteria negatively. However, neem cake impacts positively on the
population of actinomycetes. The neem seed cake has the properties of inhibitors of nitrification and
pesticide degradation [132]. In contrast, azadirachtin, neem extracts and their products (i.e., Neemix 4.5E
and Eneem 3G) can impart low short-term toxicity on mycorrhizal Glomus intraradices [130]. Ipsilantis et
al. (2012) [56] investigated the effect of bio-pesticides (pyrethrum, azadirachtin, terpens, and spinosad)
along with synthetic fungicide carbendazim on exogenous AMF inoculum in pots and on indigenous
AMF in field conditions. They reported that pyrethrum, terpenes, and spinosad did not significantly
affect the structure and colonization ability of the AM fungi. However, the application of azadirachtin
in pots caused selective inhibition of Glomus etunicatum strain and carbendazim completely hampered
mycorrhizal colonization and the community structure of indigenous AMF [56]. This apparent disparity
observed in neem, and various neem extract application may be attributed to the disturbance in the
natural balance of some soil microbes and AMF. Several environmental, host, and symbiotic factors
play a role in the observed trait variation among AMF [133,134]. The effect of neem oil cake can be
similar to that of the azadirachtin in stimulating the population of Azotobacter [135]. Nitrosomonas,
Nitrobacter, and Nitrosococcus are strongly affected by azadirachtin and any neem product or active
ingredients present in neem seed, that is, medicines (epinimbin, Nimbin, salannin, nimin, nimbidin) at
recommended as well as higher rates [130]. In general, the observed effects are pronounced at lower
temperatures and low soil moisture levels [129]. The inhibitory influences of neem on nitrifying bacteria
are also well documented by Kiran and Patra (2003) [135]. The application of neem seed kernel extract
inhibits nitrification during 7 to 21 days of application, and this inhibition is more in acid soils and less
in sodic and normal soils. The same trend is observed in activities of urease enzyme [136]. However,
the activity of urease enzyme is affected temporarily by Neemix- a 4E application which ranges from
being neither severe nor extended enough to be considered harmful to the soil microbes [62]. Similarly,
azadirachtin granules do not affect the soil dehydrogenase activity in any way even at higher doses,
while the activities of phosphatase and dehydrogenase enzymes are considerably improved with the
application of botanical pesticide at the recommended dose [137]. The increase in phosphatase enzyme
activity is attributed to the effect of azadirachtin on the soil microorganisms, subsequent decomposition
and release of the phosphates from the dead microbial biomass [129].

6.3. Microbial-Based-Products

Microbial inoculation for plant growth and soil health promotion has been at the forefront of
many new and exciting innovations in sustainable crop production endeavors [59]. Correspondingly,
seed and soil inoculations of beneficial microorganisms have gained tremendous interest in recent
years with the advent of a group of bacteria called the plant growth-promoting bacteria (PGPR) [138]
harboring several polyfunctional abilities. Microbial biopesticides, not only enhance soil fertility but
are also environmentally friendly and safe for crops. The percentage of soil MBC is significantly
enhanced overtime in biopesticide treated soils (like Folicon, Bacillus subtilis, Pseudomonas florescent,
Paeciliomyces lilacinus and Beauveria bassiana) compared with that under control. The maximum
increment (1.46%) is noticed with Paeciliomyces lilacinus, and the lowest (0.98%) with Bacillus subtilis
treated soils over a period of 2 to 6 weeks of treatment [139]. Similarly, seed dressing with Pseudomonas at
3 g/kg results in increase in number of fungal (12.27× 104 CFU per g soil), actinomycetes (11.4 × 105 CFU
per g soil) and Bradyrhizobium japonicum population (27.7 to 35.2 × 104 CFU per g soil) over that in
control at the time of harvest of oilseeds [140]. Genetically engineered plants have considerable effects
on non-target soil microorganisms, soil enzymes and root colonization of G. mosseae [137]. While some
reports indicate that Bt cotton may have positive effects on soil-flora and fauna, others have reported
negative effects [141]. The effects caused by transgenic plants on soil microbes are temporary and
occur at a particular stage of crop growth [142]. The transgene proteins in transgenic plants produce
the chemical substances that are potentially lethal to beneficial soil micro-fauna and flora, including
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mycorrhizal fungi that are involved in soil organic matter [143]. For example, the crystal toxin protein
produced by leaves, stems, and roots of transgenic plants expressing the gene of Bt is one of the most
common transgene proteins that release large quantities of toxins into the soil ecosystem. It enters the
soil through biomass incorporation, death, and turnover of sloughed root cells and root exudates [143].
However, measurements of Bt corn uptake and insecticide use in the US indicate that the overall
pesticide use dropped 0.6% per year between 1980 and 2007. It is yet to be investigated further whether
an increase in pesticide use is warranted underdevelopment of some resistant insects [144].

6.4. Transgenic Herbicide-Resistant Crops

The root exudates of the genetically modified herbicide-resistant crops in the soil environment
interact either positively or negatively with living organisms that inhabit in soil [142]. The genetically
transformed glyphosate-resistant rapeseed containing the ‘pat’ gene (Brassica napus) influences soil
microorganisms such as Bacillus, Micrococcus, Variovarax, Flavobacterium, and Pseudomonas [137].
The populations of these microbes are scarcely observed on the root surface of transgenic rapeseed
cultivars compared to that of non-transgenic cultivars. The group of root-endophytic bacteria of the
transgenic cultivar has lesser diversity than that of non-transgenic cultivar [145]. In contrast, the
transgenic cultivars of maize and sugar beet containing the same pat gene have a non-significant
influence on the diversity of rhizospheric bacteria [146]. Interestingly, glyphosate-resistant oilseed rape
has considerable effects on the communities of soil biota, whereas glufosinate resistant oilseed rape,
sugar beet, and maize show non-significant effects. This trend is present may be due to the different
chemical makeup of herbicides and soil types that causes varied effects on microbial populations or due
to the different root exudates altered by the insertion of different transgenes in transgenic plants [143].
Powell et al. (2007) [44] evaluated nine soybean cultivars (six were genetically modified) to express
transgenic cp4-epsps, in the presence of AMF and Bradyrhizobium japonicum and reported differences in
nodule numbers, biomass and mycorrhizal colonization among cultivars.

7. Conclusions

The mandate for agriculture development is to feed and provide adequate nutrition and surplus to
the mounting human population without compromising on ecology and environment of the biosphere.
Pesticides and their use are considered as magic bullets in developing nations. Pesticides cause
serious hazards to soil environment and human health because a lot of pesticides and their derivatives
remain in the soil system for a considerable period. Most pesticides negatively affect the biological
functionaries of microbes, their diversity, composition, and biochemical processes. Pesticides cause
imbalance of soil fertility which directly affects crop yield.

Judicious and discriminate use of pesticides is critical because most harmful effects are caused
by the application doses that exceed the recommended rates. The education of farmers, distributors,
industry, policymakers, and other stakeholders in the discriminate use of pesticide is critical to reducing
the adverse effects on humans and the environment. Well-designed experiments are needed on the
long-term effect of pesticides on microbial communities and their long-term eco-toxicological effects in
the soil environment.
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