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Abstract: For the success of aquatic conservation efforts, it is imperative for there to be an
understanding of the influences multiple stressors across the landscape have on aquatic biota,
as it provides an understanding of spatial patterns and informs regional stakeholders. The central
and southern Appalachians contain biodiversity hotspots for aquatic fauna. Therefore, we sought
to create a comprehensive multimetric model that is based on the influence of abiotic factors on
fish and aquatic macroinvertebrates that could predict watershed quality. Good spatial coverage
exists for land use/land cover (LULC) and other physicochemical components throughout the region,
yet biological data is unevenly distributed, which creates difficulties in making informed management
and conservation decisions across large landscapes. We used boosted regression trees (BRT) to model
a variety of biological responses (fish and aquatic macroinvertebrate variables) to abiotic predictors
and by combining model outputs created a single score for both abiotic and biotic values throughout
the region. The mean variance that was explained by BRT models for fish was 73% (range = 48–85%)
and for aquatic macroinvertebrates was 81% (range = 76–89%). We categorized both predictor and
response variables into themes and targets, respectively, to better understand large scale patterns
on the landscape that influence biological condition of streams. The most important themes in
our models were geomorphic condition for fish and water quality for aquatic macroinvertebrates.
Regional models were developed for fish, but not for aquatic macroinvertebrates due to the low
number of sample sites. There was strong correlation between regional and global watershed scores
for fish models but not between fish and aquatic macroinvertebrate models. We propose that the use
of such multimetric scores can inform managers, NGOs, and private land owners regarding land use
practices, thereby contributing to large landscape scale conservation efforts.
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1. Introduction

Aquatic biodiversity is declining faster than terrestrial biodiversity globally and one of the
contributing factors is the condition of the landscapes in which aquatic systems are embedded,
coupled with the aquatic environments themselves [1,2]. There is a need to understand the drivers
of this decline across a geography of concern in order to reverse or stabilize this trend and conserve
aquatic species and ecosystems (e.g., the central and southern Appalachians). Biological sampling
efforts can be geographically extensive (e.g., National Fish Habitat Partnership, state agency sampling,
etc.), yet it is intractable to consider biological sampling of every stream segment or small watershed
across large geographies. Therefore, there is a need to develop an understanding of the underlying
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physical, chemical, and biological influences that affect the population and community condition,
model those effects, and extend predictions to unsampled stream segments or watersheds.

Assessing the biological condition of rivers and streams has been performed at various spatial
scales and grains. As data availability and computing power both increase, the ability to perform
spatial analysis across large geographic extents and at small grain size is increasing. Examples of large
scale spatial analyses include Esselman et al. [3], who used fish as indicators, the US Environmental
Protection Agency’s Wadeable Stream Assessment [4], which included benthic macroinvertebrates and
fish as indicators, and Hill et al. [5], who modeled biological stream condition across the conterminous
U.S. based on anthropogenic and natural watershed features. Multimetric indices (MMIs) are commonly
used in studies that attempt to understand anthropogenic influences on the condition of biological
aquatic communities over vast geographies [6–9]. Multimetric indices use taxonomic and functional
metrics that are known to be sensitive to gradients of anthropogenic disturbance as a means of assessing
the health of aquatic systems.

Landscape-scale analyses are important, as they allow for a more complete understanding of
anthropogenic stressors on biological and ecological needs of species, populations, and communities
across broad spatial extents. We define landscape scale as the spatio-temporal extent that allows for
multigenerational population processes to occur [10]. Such landscape scale analyses require extensive
data that are representative across taxonomic groups through both space and time, and physicochemical
conditions must be represented, which range from natural to extensive anthropogenic disturbance [11].
It is often difficult to ensure that data sets are consistent across regions, representative taxa (response
variables), and physicochemical factors (predictor variables). These difficulties arise due to biological
and environmental datasets being expensive to obtain, varying goals and objectives from entities
collecting data, and varying monetary support for such collections. This often results in either poor
spatial coverage and spatially clumped data or both. Data sets are often combined from various
collection programs to overcome these difficulties. However, this can result in data existing at varying
taxonomic levels, problems with standardization of sampling protocols, and biases that are associated
with site selection. For example, variability in site densities may result in biases towards trends that are
prevalent in heavily sampled areas. Angermeier and Smogor [12] found that sampling effort influenced
accuracy and precision of estimates of biological community attributes.

Anthropogenic induced stressors often correlate strongly with biological conditions of aquatic
systems and, thus, landscape-scale analyses typically aim to use land cover and land use practices
over large geographies as surrogates for local environmental conditions to provide insight into
biological conditions of streams and rivers. The use of such analyses allow for broad geographic scale
understanding of the existing gradients of poor-to-good biological condition and the environmental
factors that affect them. This aids in identifying the landscape-scale stressors that further the ability of
conservation practitioners, managers, and regulators to take actions that positively impact aquatic
fauna through a greater understanding of large-scale stressors. However, anthropogenic stressors
and their biological responses are heterogenous across large areas, but they are the result of local
biogeographical interactions with both natural and anthropogenic stressors over expansive time
periods [3].

Indices for evaluation of biological condition across large geographies have become standard
procedures, enabling transferability across regions through the use of statistically robust
methods [3,11,13,14]. Biological condition indices should sufficiently cover the range of environmental
gradients, exhibit low temporal variability to repeated visits to the same site(s), and demonstrate high
responsiveness to environmental degradation. Indicators that do not meet these requirements should
be excluded from analyses [11,15]. The use of the screening methods provided by Whittier et al. [15]
and Stoddard et al. [11] allow for a large set of contending predictor variables to be winnowed down
to a smaller, manageable group of indicators used to describe the biological condition gradient in a
consistent manner across regions.
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Multimetric indices (MMI) combine a variety of biological indicators and indices. While using
boosted regression trees (BRT; [16]), we developed watershed-based MMIs that combined fish and
aquatic macroinvertebrates across the Appalachian Landscape Conservation Cooperative (App LCC)
region (see methods for full description) using the methods that were developed by Stoddard et al. [11]
and Whittier et al. [15]. Additionally, we aimed to identify large scale themes that structure biological
communities and thus biological condition across this large geography. The App LCC encompasses
biologically important aquatic ecosystems (e.g., Tennessee and Mobile Rivers) and it is predicted to
undergo continued land conversion, resulting particularly in increased urbanization [17]. Using broad
scale land use information to develop models to predict biological condition of streams and watersheds
provides the opportunity to predictively map spatially explicit biological condition across large
geographic regions [5,18]. While studies have been performed to understand the response of fish and
aquatic macroinvertebrates for the conterminous United States [3–5], a study that is spatially explicit
to the central and southern Appalachians that could inform aquatic conservation within the App LCC
region is lacking. An understanding of the anthropogenic threats that exist in the Appalachians is an
important endeavor, as more than half of the U.S. population lives within a day’s drive of some part of
the Appalachians [19]. Thus, our objective was to model and map the current biological condition
and develop an understanding of the threats to conservation across the region as an important step
towards identifying conservation opportunities and needs, so that conservation practitioners can
act accordingly.

2. Materials and Methods

Our study focused on the rivers, streams, and landscape encompassed by the App LCC. The App
LCC comprised 592,129 km2, 266,307 HUC 12 watersheds, and intersects 15 states that range from
central New York to the north, and central Georgia, Alabama, and Mississippi to the south [20]
(Figure 1).
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The eastern most extent reaches western New Jersey in the north and the western most portions of
North and South Carolina, while reaching as far west as southern Illinois. The topography and habitat
of the region are complex over such a large land area, which is comprised of six Level II ecoregions (U.S.
EPA), 11 Freshwater Ecoregions, and seven major river basins and has been greatly influenced by the
lack of glaciation and ancient geology, which gave rise to high levels of aquatic biodiversity. The App
LCC region encompasses some of the most biologically diverse freshwater fish resources in the United
States [23]. This is particularly true in the southwestern portion of the region [24]. As the 19th and
20th centuries have progressed, aquatic diversity has been impacted by anthropogenic activities that
range from agricultural practices, land conversion, and extractive industries.

Through the aid of a steering committee comprised of 60 regional experts, which include academic
scientists, state wildlife agency managers, non-governmental organization scientists, and conservation
practitioners, we identified 52 predictor variables comprising six themes that are known to influence fish
and aquatic macroinvertebrate communities (Table A1). The themes included streamflow, geomorphic
condition, connectivity, water quality, non-point source pollution, and point source pollution, and they
were established and evaluated to understand large scale thematic processes that influence aquatic
biota across the App LCC. The predictor data were compiled from regional and national datasets at the
National Hydrography Dataset version 2 (NHD + V2) HUC12 watershed level (Final predictors used
in BRT models are shown in Table 1; a comprehensive list of predictor data with source is provided in
Appendix A).

Table 1. List of final predictors used in boosted regression tree models and how each was
grouped thematically.

Aquatic Habitat Metric Themes

Overall Predictors Score

Flow Alteration from Storage (total storage/mean annual flow)

Flow regime

Density and type of dam

Altered streamflow

Agricultural water withdrawal

Industrial water withdrawal

Erosive Forces
Geomorphic condition

Resistive forces

Density of dams: Catchment

Connectivity
Density of dams: Watershed

Density of crossings: Catchment

Density of crossings: Watershed

Nitrogen

Water QualityPhosphorus

Dissolved Organic Carbon

% Impervious Surface in Watershed, Active River Area, & Catchment

Non-point sources of pollution% Natural Cover in Watershed & Active River Area

% Agriculture in Watershed, Active River Area, & Catchment

Comprehensive Environmental Response, Compensation, and Liability
Information System site density

Point sources of pollution

Permit Compliance System site density

Toxic release inventory site density in Watershed and Catchment

Coal mine density

Wind turbine density

All mine density in Watershed and Catchment

Natural gas well density

Riparian corridors are known to be influential for developing ecological diversity [25] and in
structuring aquatic communities; hence, we used The Nature Conservancy’s Active River Area [26] as
a buffer into which land cover variables were clipped for modeling. The active river area framework
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provides an ecologically sound modelling mechanism to capture important variables that structure
aquatic ecosystems [26]. We centered and scaled all of the predictor variables to overcome instances
where predictor variables had wide ranges resulting single predictors dominating models.

Our fish and aquatic macroinvertebrate community data were assembled from federal databases
of national datasets (United States Environmental Protection Agency’s National Rivers and Streams
Assessment and the National Fish Habitat Partnership). We used these community datasets as the
predictors to assess the status of biological communities within HUC12 watersheds (Table 2).

Table 2. List of final responses modeled with boosted regression trees and how each was condensed
(i.e., averaged and grouped) into an average score to represent larger taxonomic resolution.

Biological Metric Targets Condensed Attributes

Overall Response Score

Diversity Shannon Diversity

Fish Score

Invertivore Taxa

Functional GroupPiscivore Taxa

Herbivore Taxa

Lithophilic Spawners

Fish Taxa Quality
Taxa Preferring Coarse Sediment

Intolerant Taxa

Tolerant Taxa

EPT Taxa

Macroinvert Taxa Quality
Macroinvert Score5 Dominant Taxa

Intolerant Taxa

Tolerant Taxa

The sample point locations were spatially joined to HUC12 watersheds by projecting into a
conic equal area projection in Quantum GIS [27]. Our fish community dataset was comprised of
2991 sample sites across the region and was somewhat sparse (2991 locations within 266,309 HUC12
watersheds = 1.1%), but it exhibited good spatial distribution (Figure 2).

Our aquatic macroinvertebrate dataset was comprised of only 194 sampling locations and it had
poor spatial coverage (194 locations of 266,309 HUC12 watersheds = 0.07%) and distribution across the
region (Figure 2).

For fish, we calculated taxonomic richness and diversity and several functional group metrics
while using the fish traits database that was provided by Frimpong and Angermeier [28] and the
tolerance database of Stoddard et al. [29]. In total, we calculated 45 metrics for further analysis of
fish responses to our predictor dataset; however, our final analysis used only nine of these metrics
and these were further aggregated into three groupings that we called targets (e.g., Shannon diversity,
functional group, fish taxa quality) (Table 2). For aquatic macroinvertebrates the metrics modeled
as response variables were % EPT (i.e., percent Ephemeroptera/Plecoptera/Trichoptera), % of total
abundance comprised by the five most dominant taxa, % of total abundance that were tolerant taxa,
and % of the total abundance that were intolerant taxa (Table 2). These four metrics were aggregated
into a target called macroinvertebrate taxa quality (Table 2).
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Figure 2. Side-by-side comparison of response data for (a) fish and (b) aquatic macroinvertebrates
showing spatial distribution of sample locations for both. Data source: United States Environmental
Protection Agency’s National Rivers and Streams Assessment and the National Fish Habitat Partnership.
Map created by R. Daniel Hanks using ArcGIS v10.3 [22].

Prior to model development, we successively screened all of the predictor variables (e.g., [3,11]).
Screening included evaluating predictor variables for: 1) range, where predictor variables with
small range (e.g., <4) were removed, 2) percent zero or NAs, where variables with >33% zero or
NA were removed, and 3) percent values equal to the mode, where the variables with >75% of the
values were the same were removed. After screening, the 52 predictor variables were reduced to 24,
which comprised six themes (Table 1). Subsequently, we employed boosted regression trees (BRTs)
to predict fish and aquatic macroinvertebrate response variables at the watershed scale (Table 2).
Boosted regression trees are robust to missing data, have both explanatory and predictive power,
and they are capable of handling complex relationships that are both non-linear and interactive
without the need for prior data transformation. By iteratively fitting and combining simple regression
models, BRT models improve model structure and predictive performance. Tree complexity and
learning rate were systematically altered to identify the optimal model structure. We reduced model
complexity by removing the redundant variables (r > 0.80) and variables with minimum variation
among sites. Global models were developed with the remaining variables and then further simplified
while using scree plots of the predictor relative influence. Simplified models were retained if their
cross-validation was greater than or equal to that of the global model. BRT models were developed
with methods and code that were provided by Elith et al. [16] while using Program R: A language
and environment for statistical computing [30]. Initial analyses were performed across the entire
geography without accounting for regional differences (i.e., ecoregions), but we used Freshwater
Ecoregions of the World [31] to understand these regional differences due to a clear need for the
inclusion of regional differences within the models. Freshwater ecoregions attempt to place aquatic
ecosystems in a biogeographical framework that is based on ecological and evolutionary patterns of
fish distributions [31]. We aggregated the 11 ecoregions that comprised the App LCC into four due
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to low sample site numbers in some Freshwater Ecoregions. The four aggregated ecoregions and
their composite Freshwater Ecoregions were Atlantic Slope (Appalachian Piedmont, Chesapeake Bay,
Northeast US and Southeast Canada Atlantic Drainages), Cumberland (Cumberland River Basin),
Ohio (Teays-Ohio and Laurential Great Lakes River Basins), and Tennessee (Tennessee and Mobile
Bay River Basins). The regional models were successfully run for fish, but we were unable to model
aquatic macroinvertebrates regionally due to the lack of spatial coverage, and we therefore retained
models for the entire geography for aquatic macroinvertebrates.

Predictions of response variables from BRT models were centered and scaled. As a multimetric
approach, the predicted responses (biological metrics in Table 1) were then averaged within their target
group (see Table 1) and further condensed via averaging into overall fish and aquatic macroinvertebrate
scores. Boosted regression trees provide the relative influence of predictor variables in the modelling
of responses, and we averaged these relative influences within our thematic framework (see above and
Table 1) for each fish and aquatic macroinvertebrate response variable.

3. Results

The screening process reduced the total number of predictor variables to 37 from 52. When the
predictor variables were correlated, we attempted to retain the variable that was most responsive to
our models; however, this was not formally tested. The themes with the greatest number of predictor
variables were non-point source pollution and point source pollution (each with eight variables).
While the theme with the least number of predictor variables was geomorphic condition (two variables)
(Table 1).

Below, we present the results from the boosted regression tree models where the models were
run with all ecoregions together for both fish and aquatic macroinvertebrates. We refer to this as a
“Global” model (see below). After which, we present the results where separate models were run for
each Freshwater Ecoregion (defined in the materials and methods section). We refer to these models
as regional models and, because there were not enough data points within the regional data sets for
aquatic macroinvertebrates, they were developed for fish only.

3.1. Global Models

Boosted regression tree models were developed for 45% (28/62) of the response variables; however,
we only retained 12 (eight and four response variables for fish and aquatic macroinvertebrates,
respectively) for our final multimetric index of biotic condition (Table 2). Response variables were
collapsed into targets, where, for the fish category, we retained three targets (Shannon diversity,
functional group, and taxa quality) and for aquatic macroinvertebrates, we retained macroinvertebrate
taxa quality as the only target.

The range of variance that was explained by the BRT models was 48% for percentage of invertivore
taxa to 85% for fish taxa diversity (x = 73%) for fish and 76% for percentage of the five dominant taxa to
89% for percentage of tolerant taxa (x = 81%) for aquatic macroinvertebrates. For the fish BRT models,
the cross-validated deviance ranged from 32% for percentage of invertivore taxa to 69% for fish taxa
diversity (x = 52%), while it ranged from 24% for percentage of the five dominant taxa to 76% for
percentage of tolerant taxa for aquatic macroinvertebrates (x = 41%) (Table 3).
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Table 3. Boosted regression tree result for fish (richness, diversity, % invertivore taxa, % piscivore
taxa, % herbivore taxa, % lithophilic taxa, % taxa preferring coarse substrate, % tolerant taxa, and %
intolerant taxa) and aquatic macroinvertebrates (% EPT taxa, % 5 dominant taxa, % tolerant taxa, and %
intolerant taxa).

Fish Diversity
%

Invertivore
Taxa

% Piscivore
Taxa

% Herbivore
Taxa

% Lithophilic
Taxa

% Coarse
Sediment

Taxa

% Tolerant
Taxa

% Intolerant
Taxa

# of Trees 5950 5600 4700 3850 4600 8150 4550 5650
Learning Rate 0.01 0.001 0.01 0.01 0.01 0.001 0.01 0.01
Total Deviance 902.95 0.133 18.78 12.57 19.22 6.48 12.85 12.63
Residual Deviance 298.56 0.12 8.19 7.8 9.52 4.97 6.12 6.49
Variance Explained 85% 48% 79% 70% 78% 56% 79% 80%
CV Deviance (se) 433.96(6.15) 0.12(0.03) 11.31(0.22) 10.23(0.22) 12.79(0.17) 5.51(0.23) 8.85(0.31) 10.08(0.26)
CV Deviance
Explained 69% 32% 64% 48% 61% 45% 51% 41%

Aquatic
Macroinvertebrates % EPT

% 5
Dominant

Taxa

% Tolerant
Taxa

% Intolerant
Taxa

# of Trees 2150 8300 2700 2600
Learning Rate 0.001 0.001 0.001 0.0005
Total Deviance 2.83 2.27 6.45 1.05
Residual Deviance 1.61 1.68 1.81 0.56
Variance Explained 81% 76% 89% 77%
CV Deviance (se) 2.65(0.32) 2.20(0.25) 2.88(0.35) 0.85(0.12)
CV Deviance
Explained 27% 24% 76% 36%

The lower cross validated deviances for aquatic macroinvertebrates relative to those of fish are
likely due to the lack of spatial data coverage in the aquatic macroinvertebrate data (Figure 2b).

The predictor variables that had the greatest relative influence were freshwater ecoregion and
network percent impervious surface for fish and aquatic macroinvertebrates based on the results of the
BRT models, respectively. Those with the least relative influence were how confined a stream reach was
(CONF_CL) and watershed mine density for fish and aquatic macroinvertebrates, respectively (Table 4).

The theme with the greatest cumulative relative influence for fish was geomorphic condition
(46.6%) and for aquatic macroinvertebrates was water quality (41.7%), while point source pollution
was the least important theme for both fish (1.4%) and aquatic macroinvertebrates (0.8%). The relative
thematic influence was variable between response variables; where, for example, the flow theme
was the most influential for % EPT (27.4%), but the most influential theme was water quality for %
intolerant taxa (87.9%) (Table 5).
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Table 4. Summary of the relative influence of each predictor variable on the response variables for both fish and aquatic macroinvertebrates.

Variable
Fish Aquatic Macroinvertebrates

Richness Diversity % Invertivore
Taxa

% Piscivore
Taxa

% Herbivore
Taxa

% Lithophilic
Taxa

% Coarse Sediment
Taxa

% Tolerant
Taxa

% Intolerant
Taxa % EPT % 5 Dominant

Taxa
% Intolerant

Taxa
% Tolerant

Taxa

ALK_CL 0.3 0.3 0.1 0.8 0.4 1.7 0.6 0.5 0.7 0.4 13.2 0.2 0
bfi_avg 2.9 5.4 6 3.8 1.9 2.5 3.1 3.7 4.2 1.4 1.7 3.5 1.8

CONF_CL 0.4 0.2 0 0.1 0.3 0.2 0.1 0.6 0.2 5.7 0.1 1.4 0
DamDensWs 0.6 0.5 0.3 0.6 1.1 0.7 0.8 1 0.6 0.1 0.6 0.2 0.1
elevcm_avg 11.2 2 3.8 4.8 4.6 8.8 10 4 4.5 3.5 1.8 2.6 2.2
FWECOREG 4.8 29.3 4.5 6.7 12.1 4.2 5.5 7.3 4.9 11.2 9.4 2.2 1.9
imp11_per 1.9 1.3 1.3 2 1.8 1.9 2.1 2.2 3.6 2.8 4.3 12.2 2.6

imp11_perN 3 2.1 1.7 4.4 4.2 5.3 5.2 6.5 4.9 6.7 15.7 5.1 9
IncrTempMM 9.3 5.3 3.5 16.8 9.2 4.3 6.1 5.7 3.5 2.3 1.2 8.4 2

kfact_avg 2.7 1.2 4.3 3.9 2.4 3.7 3.9 3.1 2.6 0.9 1.1 3.4 2.1
kfactup_av 2.7 3.2 2.5 3.6 2.8 2.3 2.6 2.6 3.2 0.9 1.5 0.8 2.3

MineDensWs 0.4 0.4 0.3 0.4 0.4 0.4 0.8 0.4 0.3 0 0 0 0
NCat 2.8 1.8 18.2 3.7 3.4 2.9 4 3.9 4.3 4.3 7.9 4.6 2.2

nid_storN 5.9 2.5 5.1 2.9 5 5.7 5.8 1.9 2.3 2.4 2.7 0.6 14.7
nlcd11_ag 1 0.8 0.2 1.4 1.3 1 2.3 1.7 2.1 2.8 3.4 2.1 1.5

nlcd11_agN 1.7 1.3 0.5 2.1 2.5 2.2 3.3 2.8 2.6 3.9 1.5 4.3 1.5
nlcd11_t 1.3 1 0.5 1.5 1.7 1.4 1.5 1.8 2.1 3.5 1.3 3.2 0.8

NPDESDensW 0.4 0.3 0 0.3 0.7 0.3 0.4 0.4 2.1 0 0 0 0.1
P2O5Cat 2 1.7 2.3 1.5 1.8 1.5 1.6 2 2.5 2.9 0.8 3.3 0.7
P2O5Ws 1.8 2.1 0.8 1.3 2.2 1.4 2 2.6 2.8 4.3 0.9 1.3 1.5
Pct_Ag 3.3 2.1 2 1.3 2 2 1.5 1.7 2.8 4.6 2.5 1.7 4.6
Pct_Imp 2.5 1.5 1.6 2.2 2.3 3.4 1.5 2 2.4 2 2.3 1.7 5.4
Pct_Nat 3 1.7 1.9 2.3 3 3.4 4.1 4 3.4 5 0.7 5.4 2

rchrg_avg 3.5 4.7 8.3 3.4 4.5 2.8 4.5 6.8 4.9 2.3 2.3 2.5 5.5
RdCrsCat 0.9 0.9 0.2 1.1 1.1 1 0.9 2.2 1.6 2.2 1.9 1.5 0.3
RdCrsWs 1.3 1.6 0.8 1.7 1.9 1.4 1.9 2.9 2.3 2.4 1.8 2.7 2.9
rf30_avg 7.1 7.2 10.8 6.9 6.3 4.3 4.9 4.1 5.3 1.9 1.2 6.5 2.2
sand_avg 2.4 4.7 2.8 3.3 3.1 2.5 3.9 3.6 4.2 4.8 3.6 7.1 9.5
silt_avg 2.4 3.3 1.6 3 3.5 2.8 2.1 2.7 4.4 3 2.6 1.1 4.9

SIMP_NUM 3.1 1.2 1.3 2.2 3.3 0.9 1.5 1.9 1.3 1.1 1.8 2.5 1.5
slope_avg 2.7 2 2.3 1.7 2.4 3 2.4 2.2 3.2 6.6 3 1.9 0.8

slope_avgN 3 2.9 2.7 3.6 3.9 3.1 3.8 4.1 5 2.2 3.6 3.8 1
SLP_CL 2.7 0.8 0.2 1.9 0.7 2.9 2 0.6 1.2 0.1 1.2 0.2 3.5
SZ_CL 4 0.8 6.6 1.8 1.1 2.5 2 1.8 2.3 1.1 2 0.6 8.2

TEMP_CL 0.4 0.4 0 0.1 0.3 10.9 0.4 0.1 0.5 0 0.2 0.1 0
TNC6HYDP 0.3 0.4 0.8 0.1 0.2 0.2 0.1 3.8 0.3 0 0.1 0.3 0.5
TRIDensWs 0.3 1 0.1 0.7 0.6 0.5 0.9 0.6 0.5 0.8 0 1.1 0
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Table 5. Summary of the average relative influence for each theme on response variables modeled with the boosted regression trees for both fish and aquatic
macroinvertebrates. The average thematic % relative influence is the percent relative contribution of each theme to the BRT model. Themes are comprised of
flow condition (NID storage, dam density, altered streamflow, agricultural and industrial water withdrawals), geomorphic condition (erosive and resistive forces),
connectivity (dam and road crossing density at the watershed and catchment levels), water quality (total nitrogen load, total phosphorous load, and dissolved organic
carbon), non-point source pollution (% agricultural land cover, % impervious surface, and % natural land cover in the watershed, active river area, and catchment),
and point source pollution (CERCLA site density, permit compliance system site density, toxic release site density, coal mine, wind turbine and natural gas well density,
and mine density).

Variable
Fish Aquatic Macroinvertebrates

Diversity % Invertivore
Taxa

% Piscivore
Taxa

% Herbivore
Taxa

% Lithophilic
Taxa

% Coarse
Sediment Taxa

% Tolerant
Taxa

% Intolerant
Taxa % EPT % 5 Dominant

Taxa
% Intolerant

Taxa
% Tolerant

Taxa

Flow 15 26.3 17.2 21.8 25.2 24.8 17.9 16.4 20.6 27.4 14.6 11 7 15.0
Geomorphic 62.5 48.4 51.5 47.6 38.7 46.3 38.7 39.4 46.6 23.4 36.7 6.6 17.3 21.0
Connectivity 4.4 2.3 6 6.7 7 3.7 10.9 9.3 6.3 15.7 13.2 2.3 8 9.8

Water
Quality 12 18.5 9.9 6.7 6.1 7.4 14.6 11.5 10.8 12.8 9.2 87.9 56.7 41.7

Non-point
Pollution 7.5 7.3 15.7 16.8 22.2 17.5 18.7 22.4 16.0 20.9 27.8 6.8 19.2 18.7

Point
Pollution 0.6 0.3 1.4 1.4 1.8 1.5 1.8 3 1.5 1.8 0 0.1 1.2 0.8
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3.2. Regional Models

Regional differences were evident in the results of the relative influence of predictor variables on
responses. For example, the variable with the greatest relative influence for richness in the Atlantic
Slope data was July temperature (22.8%), for the Cumberland River Basin, was ground flow recharge
(17.6%), for the Ohio River Basin, was average catchment elevation (21.4%), and for the Tennessee
River Basin, it was dam storage capacity (8.2) (Table 6).

Table 6. Summary of the relative influence within each region of each predictor variable on the response
variables for fish. A = Atlantic Slope, C = Cumberland River Basin, O = Ohio River Basin, and
T=Tennessee River Basin.

Variable
Richness Diversity % Invertevore Taxa

A C O T A C O T A C O T

ALK_CL 0.1 2.1 0.4 0.1 0.1 2.3 0.6 0.3 0.6 0.5 0.3 0.3
bfi_avg 1.7 6.8 3.4 3.2 3.2 1.2 2.1 25.8 2.7 2.6 0.7 25.8

CONF_CL 0.2 0.1 0.4 0.1 0.2 0.4 0.3 0.1 0.1 0.1 0.1 0.1
DamDensWs 0.4 0.5 0.5 0.6 1 0.5 0.8 0.1 0.8 0.3 0.8 0.1
elevcm_avg 4.1 4.1 21.4 6 4.6 5.3 3.7 4.3 4.2 2.7 10.8 4.3
FWECOREG 3.1 0 0.9 0 3.1 0 2.2 0 0.1 0 0.2 0
imp11_per 1.1 4.2 0.9 3.3 1.9 1.3 1.8 3 2.8 5.4 0.5 3

imp11_perN 2.2 4.4 2.9 3.6 3.7 2.5 3.3 2.7 8.6 4.9 0.8 2.7
IncrTempMM 22.8 4.6 11.3 6.7 18.4 1.7 4.7 2.9 5.3 1.2 4.3 2.9

kfact_avg 3.1 2.1 1.2 4.1 4 2.3 1.4 1.1 4.5 1.9 1.2 1.1
kfactup_av 1.8 1.3 4.8 2.3 1.8 2.5 4 1.5 3.5 1.2 1.7 1.5

MineDensWs 0.2 0.3 0.6 0 0.3 0.1 0.7 0 0.5 0.1 0 0
NCat 2.7 3 1.1 4 1.9 2.5 2.6 1.1 3.2 9.3 21.6 1.1

nid_storN 5.3 4.5 6.9 8.2 8 0.9 3.3 3.1 12 0.9 8.1 3.1
nlcd11_ag 1.9 2.1 0.6 0.8 1.6 1.1 1.2 1.3 1.8 1 0.8 1.3

nlcd11_agN 2.5 3.9 1.2 1.1 1.5 1.3 1.9 2 2.2 2.8 0.3 2
nlcd11_t 1.3 5.2 0.4 1.4 0.9 2.9 1.6 1 1.7 8.9 0.1 1

NPDESDensW 0.5 0.4 0.3 0.3 0.4 0.4 0.4 0.1 0.5 0 0 0.1
P2O5Cat 2.8 2.1 1.2 2.5 1.5 1.5 1.8 2.9 2.2 3.6 0.4 2.9
P2O5Ws 2.9 1.4 1.9 1.6 3 2.2 2.6 1.4 2 2.1 1 1.4
Pct_Ag 2.6 1.8 2.5 4.8 2.3 2.8 2.5 4.7 3.1 1.4 0.8 4.7
Pct_Imp 2.1 2.7 1.1 1.6 2.6 2.7 1.7 2.3 1.8 5 1.9 2.3

Pct_t 2.1 2.6 2.7 2.9 2.6 1.9 2.8 1.7 2.2 6 0.9 1.7
rchrg_avg 3.9 17.6 2.1 3.4 2.7 5.3 6 5.2 3.5 7.1 1 5.2
RdCrsCat 0.8 0.8 0.4 1 0.8 1 1.4 0.6 1.6 2 0.1 0.6
RdCrsWs 1 2.1 0.4 1.3 2.2 2.8 3.2 2.2 2 3.2 0.2 2.2
rf30_avg 3.9 5.5 4.9 5.4 2.9 26.4 18.6 3.2 5 2.2 7.4 3.2
sand_avg 2.3 2.6 1.6 5.2 2.3 6.1 7 2.7 4.5 8.6 2.2 2.7
silt_avg 5.6 1.4 1.2 2.8 6.4 8.4 3.2 2.9 3.3 2.5 1.5 2.9

SIMP_NUM 3.9 2.6 1.9 5.1 1.8 1.5 1.2 3.4 2.3 3.3 2.6 3.4
slope_avg 1.8 1.5 2.2 4.8 1.9 0.9 2.9 2.9 2.4 3.4 3.5 2.9

slope_avgN 2 2.7 3.6 2.3 3 4.2 3.5 0.9 3.2 2.2 0.9 0.9
SLP_CL 1.8 0.7 3.1 1.9 2.5 1.9 1.3 0.4 0.9 2 0.1 0.4
SZ_CL 3.1 1.8 8.1 6.8 3.2 0.6 1.3 0.8 4.2 1.6 21.1 0.8

TEMP_CL 1.2 0.1 1.1 0 1.1 0.5 0.4 0 0.1 0.1 0.1 0
TNC6HYDP 0.2 0.2 0.3 0.2 0 0 0.5 9.5 0.2 0 1.7 9.5
TRIDensWs 0.6 0.2 0.4 0.6 0.7 0.2 1.4 1.9 0.7 0.1 0.1 1.9
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Table 6. Cont.

Variable
% Piscivore Taxa % Herbivore Taxa % Lithophilic Taxa

A C O T A C O T A C O T

ALK_CL 0.5 0 1.1 0.4 0.6 6.6 0.6 0.4 0.4 8 0.8 1
bfi_avg 2.4 5 2.7 6.1 2.7 2.1 2.1 2.7 1.5 2.2 2 2.6

CONF_CL 0.1 0.2 0.5 0.1 0.1 0.2 0.1 0.1 0.8 0.1 0.1 0.3
DamDensWs 0.8 1.1 0.5 0.5 0.8 1.1 0.5 0.8 0.7 1.3 0.5 0.4
elevcm_avg 1.9 1.7 6.4 9.6 4.2 4.3 4.9 4.7 17 3.8 16.9 3.9
FWECOREG 5.4 0 5.3 0.2 0.1 0 0.2 0.2 1.3 0 1.9 0
imp11_per 1.8 4.2 3 1.3 2.8 1.7 1.9 2.6 1.5 7.4 2 3.2

imp11_perN 2.1 4.4 5.8 6.2 8.6 2.8 11 8.7 11.7 3.6 5.6 6.1
IncrTempMM 23.5 5 12.5 7.1 5.3 6.5 5.5 5.8 2 6.8 4 3.5

kfact_avg 3 1.3 4 1.8 4.5 2.7 4.5 4.1 1.2 2.2 4.2 2.3
kfactup_av 5.8 3.7 5.8 3 3.5 2.7 3.4 3.5 3.5 1.3 4.3 3.8

MineDensWs 0.1 0.1 0.2 0.2 0.5 0.2 0.3 0.6 1.3 0.9 0.3 0.5
NCat 4 2.1 2.8 4.7 3.2 2.7 2.1 2.9 1.9 1.4 2.9 3.4

nid_storN 1.2 5.8 1.7 9.3 12 1.9 18.2 13.6 6.2 1.9 3 12.6
nlcd11_ag 0.9 3 1.3 1.9 1.8 1.6 0.8 1.1 1.6 3.3 1.4 1.2

nlcd11_agN 1.5 5.4 2.1 1.9 2.2 2.2 1.2 1.9 2.3 3.6 2.9 2.1
nlcd11_t 0.8 4.6 1.7 1.3 1.7 2.8 1 1.6 1.3 3.7 1.6 2.3

NPDESDensW 0.1 0.6 0.4 0.1 0.5 0.8 0.3 0.4 0 0.5 0.2 0.3
P2O5Cat 2.1 2 1.3 1.9 2.2 2.3 1.6 2 3.3 2.1 1.6 1.8
P2O5Ws 1.3 1.9 1.7 1.6 2 4.4 1.2 1.6 1.8 2.6 1.5 2.2
Pct_Ag 0.8 1.5 1.6 1.5 3.1 1.1 3.3 2.9 1.5 1.1 2.3 1.3
Pct_Imp 1.9 5.7 2.9 2.4 1.8 1.5 1.9 2.1 2 2.5 4.3 3

Pct_t 3.4 1.6 2.9 2.1 2.2 3 2 2.4 1.9 1.8 3.9 3
rchrg_avg 3.4 9.8 4 2.2 3.5 3.3 2.9 3.7 1.9 4.7 2.9 4.6
RdCrsCat 1.3 1.5 1.4 1.2 1.6 1 0.7 1.2 1.5 1.1 1 1.1
RdCrsWs 1.7 2 2.1 1.8 2 1.5 1.1 1.5 2.2 2 1.6 1.2
rf30_avg 6.8 6 5.9 3.4 5 8.7 5.5 5.3 4.6 4.7 4 3.5
sand_avg 3.6 3 2.9 5.2 4.5 4.7 4.2 4.4 6.2 8 2.1 4.3
silt_avg 6.4 5.3 2.6 5.1 3.3 10.7 2.2 2.9 4.8 2.7 2.2 2.3

SIMP_NUM 1.6 4.9 2 1.8 2.3 1.9 2.9 1.9 1 2.6 1.1 1.2
slope_avg 2.4 1.1 2.3 3.3 2.4 4.1 2.4 2.6 2 1.6 2.9 2.1

slope_avgN 4.4 2.2 4.4 3.5 3.2 4.4 3.1 3.4 2.9 3.5 3.3 4.8
SLP_CL 0.9 1.4 1.5 1.7 0.9 1.8 0.4 0.9 2.8 3.6 3.2 0.7
SZ_CL 1.8 1.1 1.4 5.2 4.2 0.8 5.2 4.5 2.4 2.2 1.5 10.7

TEMP_CL 0.4 0 0.3 0.1 0.1 0 0 0 0.5 0.2 5 1
TNC6HYDP 0 0.3 0.1 0.1 0.2 0.4 0.1 0.2 0 0.1 0.1 0.7
TRIDensWs 0.1 0.6 0.9 0.3 0.7 1.4 0.5 0.7 0.2 1 0.6 1
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Table 6. Cont.

Variable
% Coarse Sediment Taxa % Tolerant Taxa % Intolerant Taxa

A C O T A C O T A C O T

ALK_CL 0.5 0.3 0.6 0.7 1.1 0.1 1 0.2 2.1 0.2 1.2 0.3
bfi_avg 1.5 3.5 2.4 10.8 1.7 2.3 3.3 7.2 1.4 4 3.7 3.9

CONF_CL 0.2 0.1 0.1 0.2 0.2 0.2 1.8 0.3 1.1 0.4 0.1 0.2
DamDensWs 2.6 2.1 0.3 0.6 0.1 0.8 0.5 0.3 0.3 0.5 0.2 0.7
elevcm_avg 8.6 4.7 17.5 4.6 2.8 3.4 3.7 6.5 6.8 1.6 8.2 3.7
FWECOREG 0.1 0 2.7 0 4.4 0 0.7 9.9 3.6 0 0.5 0
imp11_per 4.1 6.5 1.7 1.7 2.1 7 3.2 1.9 3.2 1.4 3.2 5

imp11_perN 4.4 2.5 6.5 8.3 5.1 2.6 7.7 9.1 7.9 2.9 4.1 4.1
IncrTempMM 4.5 6.3 6 7.8 16.6 1.7 8.1 6.1 4.7 2.1 4.7 5.4

kfact_avg 4.9 2.6 4.6 1.4 2.7 4.5 2.7 2.3 3.9 1.9 2.3 1.4
kfactup_av 4.3 5 3.4 1.6 7.8 0.9 2.6 2 2.7 3.2 2.9 4.3

MineDensWs 0.3 0.6 0.6 0.2 0 0.7 0.4 0.3 0 0 0.7 0
NCat 1.9 1.9 1.5 2.3 4.8 3.1 6.3 1.9 4.2 7.3 3.8 4.6

nid_storN 18.7 1.3 5.5 7.6 1 0.2 2 2.8 2.8 0.7 1.6 4.2
nlcd11_ag 1 2.7 1.3 1.1 0.5 1.8 1.3 1.9 1.2 0.9 1.2 2.1

nlcd11_agN 1.2 3.6 4.2 0.9 0.9 5.8 1.6 2.2 1.5 7.2 1.1 4.6
nlcd11_t 0.6 2.2 0.8 2.5 0.5 4.2 1.3 2 0.9 3.8 0.9 1.5

NPDESDensW 1.2 1.4 0.1 0 0 2.8 0.2 0.1 0.2 0.9 1.8 0
P2O5Cat 2.3 0.8 0.9 1 1.3 3.2 2.1 2.7 1.9 1.1 1.1 1.6
P2O5Ws 2.3 2 1.3 1.4 2.2 5 2.8 2.7 1.5 4.1 1.7 1.9
Pct_Ag 1.3 1.9 1.1 1.9 1.9 2.8 0.8 1 4.2 3.2 1.3 2.7
Pct_Imp 1.4 2.1 0.9 1.7 1.1 2.8 1.6 1.9 3.5 1.9 1.9 1.7

Pct_t 3 1.4 4.3 2.9 5.3 4.8 4 1.4 8.1 4.8 2.7 3.3
rchrg_avg 2.2 9.1 7.4 5.7 3.9 6.7 4.8 4.2 4.6 2.5 11.1 7.6
RdCrsCat 2.8 1.2 0.4 0.5 1.5 3.1 1.5 1 1.2 0.5 0.7 1.4
RdCrsWs 1.5 1.9 1.4 1.1 0.4 3.3 5.5 2.1 3.2 1.9 1.1 1.6
rf30_avg 1.8 3.8 3.5 6.6 6.8 8.9 3.5 4.4 2.7 8.3 7.7 10.2
sand_avg 3.7 8.1 4.6 7.1 3.6 3.9 4.7 2.8 2.4 18.6 4.4 1
silt_avg 5.8 9.2 1.3 1.3 3 2 2.4 1.6 5.4 2.8 4 2.7

SIMP_NUM 0.8 1.5 0.8 3.1 0.7 3 3.5 1 1.3 1.9 0.9 0.9
slope_avg 4.3 3.2 2.1 0.9 6.9 0.8 2 3 2.5 2.4 1.8 5.2

slope_avgN 2.6 3.3 3.7 2.7 5.9 1.1 3.4 9.4 3.8 5 7.9 6.9
SLP_CL 1.4 0.9 2.6 0.8 0.3 0.3 0.7 1.3 1.3 0.5 1.1 1.3
SZ_CL 1.7 0.7 2.1 8.8 2.6 2.4 0.8 2.4 3.7 0.2 6.3 2.7

TEMP_CL 0 0.1 0.9 0 0.1 0.4 0.3 0.1 0.2 0 1.1 0.2
TNC6HYDP 0 0.3 0.1 0.1 0.4 1.9 6.2 0.3 0 0.1 0.5 0.3
TRIDensWs 0.4 0.9 1.1 0 0 1.4 1.1 0.1 0.1 1.5 0.3 0.7

Additionally, the relative influence varied widely within a given region for the same predictor
variable, but for different response variables. For example, k-factor (a measure of soil erodibility) had
the 24th most influence on diversity in the Atlantic Slope, but it was the fourth most influential variable
in the % herbivore taxa model. The standard deviation that was associated with the relative influence of
predictor variables for a specific region was also variable; where, for example, for invertivore diversity
the standard deviation was 2.4, 2.6, 5.1, and 4.3 for the Atlantic Slope, the Cumberland River Basin, the
Ohio River Basin, and the Tennessee River Basin, respectively.

The mean relative influence for themes were also somewhat variable across regions; where, for
example, flow was the most influential theme for each region for the BRT model for the % of species
that prefer coarse sediment. However, for the % of tolerant fish species, the flow theme represented the
fourth most influential theme for the Atlantic Slope (x = 1.7%), third most for the Cumberland River
Basin (x = 2.5%), second most for the Ohio River Basin (x = 2.7%), and first most for the Tennessee
River Basin (x = 3.6%) (Table 7).
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Table 7. Summary of the regional average relative influence for each theme on response variables modeled with the boosted regression trees for fish. The average
thematic % relative influence is the percent relative contribution of each theme to the BRT model. Themes are comprised of flow condition (NID storage, dam density,
altered streamflow, agricultural and industrial water withdrawals), geomorphic condition (erosive and resistive forces), connectivity (dam and road crossing density
at the watershed and catchment levels), water quality (total nitrogen load, total phosphorous load, and dissolved organic carbon), non-point source pollution (%
agricultural land cover, % impervious surface, and % natural land cover in the watershed, active river area, and catchment), and point source pollution (CERCLA site
density, permit compliance system site density, toxic release site density, coal mine, wind turbine and natural gas well density, and mine density).

Richness Diversity % Invertivore Taxa % Piscivore Taxa % Herbivore Taxa

Theme A C O T A C O T A C O T A C O T A C O T

Flow 2.8 7.4 3.2 3.8 3.7 2.0 3.0 8.6 4.7 2.7 2.6 8.6 1.9 5.4 2.2 4.5 4.7 2.1 5.9 5.2
Geomorphic 2.9 3.0 3.6 3.9 2.9 10.4 8.0 1.9 4.4 1.8 3.4 1.9 5.2 3.6 5.2 2.7 4.4 4.7 4.5 4.3
Connectivity 0.4 0.5 0.5 0.6 1.0 0.5 0.8 0.1 0.8 0.3 0.8 0.1 0.8 1.1 0.5 0.5 0.8 1.1 0.5 0.8

Water Quality 1.7 1.7 0.9 1.6 1.3 1.7 1.5 1.1 1.6 3.1 4.7 1.1 1.6 1.2 1.4 1.7 1.6 3.2 1.1 1.4
Non-point
Pollution 1.8 3.0 1.4 2.2 1.9 1.8 1.9 2.1 2.7 3.9 0.7 2.1 1.5 3.4 2.4 2.1 2.7 1.9 2.6 2.6

Point Pollution 0.4 0.3 0.4 0.3 0.4 0.2 0.8 0.7 0.6 0.1 0.1 0.7 0.1 0.4 0.5 0.2 0.6 0.8 0.4 0.6

% Lithophilic Taxa % Coarse Sediment Taxa % Tolerant Taxa % Intolerant Taxa Averages

Theme A C O T A C O T A C O T A C O T All A C O T

Flow 2.6 2.5 2.1 5.0 6.2 4.0 3.9 6.2 1.7 2.5 2.7 3.6 2.3 1.9 4.2 4.1 3.9 3.4 3.4 3.3 5.5
Geomorphic 3.1 2.7 4.2 3.2 3.7 3.8 3.8 3.2 5.8 4.8 2.9 2.9 3.1 4.4 4.3 5.3 4.0 3.9 4.4 4.4 3.3
Connectivity 0.7 1.3 0.5 0.4 2.6 2.1 0.3 0.6 0.1 0.8 0.5 0.3 0.3 0.5 0.2 0.7 0.7 0.8 0.9 0.5 0.4

Water Quality 1.5 2.8 1.3 1.7 1.4 1.0 0.9 1.1 1.9 2.3 2.4 1.5 2.0 2.6 1.6 1.7 1.7 1.6 2.2 1.8 1.4
Non-point
Pollution 2.6 3.0 2.7 2.5 1.9 2.6 2.3 2.3 1.9 3.5 2.4 2.4 3.4 2.9 1.8 2.8 2.4 2.3 2.9 2.0 2.3

Point Pollution 0.5 0.8 0.4 0.6 0.6 1.0 0.6 0.1 0.0 1.6 0.5 0.2 0.1 0.8 0.9 0.2 0.5 0.4 0.7 0.5 0.4
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Generally, geomorphic condition was the most influential theme followed by flow, non-point
source pollution, water quality, connectivity, and point source pollution when averaged across all of the
response variables. With little variation, the themes were consistent in terms of their relative influence
across regions; for example, non-point source pollution was the fourth most influential theme for the
Atlantic Slope, the Ohio River Basin, and the Tennessee River Basin, but the fifth most influential for
the Cumberland River Basin.

3.3. Fish Models

The model results suggest there are distinct areas of the App LCC region that exhibit characteristics
of poor biological condition (i.e., watershed score) (Figure 3).
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The global watershed scores were centered and scaled across the entire Appalachian LCC region. Map
created by R. Daniel Hanks using ArcGIS v10.3 [22].

For example, western Tennessee (i.e., the Southeastern Plains) and the northern-most portion of
the region (i.e., the Atlantic Highlands). Additionally, large rivers tended to exhibit poor biological
condition. This was especially true in areas with high agricultural land use (i.e., east Tennessee).
Regions where the models displayed relatively good biological condition were largely in areas free
from agricultural land use. However, large rivers exhibited poor biological condition, even in areas
with good biological condition.

Pearson correlations between the global and regional models were variable and ranged from
0.33 (% intolerant taxa) to 0.99 (% invertivore taxa) for pairwise comparisons. The overall indices for
watershed scores (i.e., biological condition) were moderately correlated (0.69). The targets were highly
correlated for the functional group (0.98) but, were relatively poorly correlated for taxa quality (0.34)
(Table 8) (Figure 4).
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Table 8. Pearson correlation coefficients for the global and regional models for all response variables. Correlations for the same response variables for each model are
highlighted in gray.

Global Model

Diversity % Invertivore
Taxa

% Piscivore
Taxa

% Herbivore
Taxa

% Lithophilic
Taxa

% Coarse Sediment
Taxa

% Tolerant
Taxa

% Intolerant
Taxa

Functional
Group

Taxa
Quality

Overall
Watershed Score

Regional Model
Diversity 0.99 0.08 0.05 0.05 0.10 0.12 0.24 0.08 0.04 0.14 0.37

% Invertivore Taxa 0.08 1.00 0.01 0.13 0.10 0.06 0.07 0.25 0.59 0.06 0.18
% Piscivore Taxa 0.06 0.00 0.99 0.21 0.06 0.02 0.48 0.10 0.62 0.21 0.52
% Herbivore Taxa 0.04 0.14 0.22 0.98 0.35 0.26 0.25 0.11 0.69 0.41 0.56
% Lithophilic Taxa 0.18 0.18 0.15 0.43 0.68 0.30 0.05 0.00 0.24 0.40 0.27

% Coarse Sediment Taxa 0.19 0.07 0.05 0.53 0.32 0.44 0.16 0.06 0.34 0.42 0.45
% Tolerant Taxa 0.25 0.07 0.47 0.25 0.05 0.02 1.00 0.20 0.41 0.48 0.62

% Intolerant Taxa 0.19 0.18 0.07 0.03 0.06 0.09 0.08 0.33 0.04 0.11 0.11
Functional Group 0.04 0.59 0.63 0.68 0.21 0.09 0.42 0.02 0.99 0.30 0.65

Taxa Quality 0.19 0.06 0.18 0.51 0.37 0.26 0.50 0.24 0.39 0.58 0.61
Overall Watershed Score 0.39 0.25 0.49 0.60 0.26 0.23 0.62 0.23 0.69 0.57 0.86Land 2020, 9, x FOR PEER REVIEW  17 of 24 

 

 
Figure 4. Plots show Pearson correlation between (a) global and regional watershed scores, (b) global and regional functional scores, (c) global and regional taxa 
quality scores, and (d) global watershed scores for fish and regional watershed score for aquatic macroinvertebrates (AM). Plots generated using Program R [30].

Figure 4. Plots show Pearson correlation between (a) global and regional watershed scores, (b) global and regional functional scores, (c) global and regional taxa
quality scores, and (d) global watershed scores for fish and regional watershed score for aquatic macroinvertebrates (AM). Plots generated using Program R [30].
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3.4. Aquatic Macroinvertebrate Model

We were unable to develop regional models for aquatic macroinvertebrates due to the data set
being sparse in some regions. The global model for aquatic macroinvertebrates showed poor ability to
identify areas with a good and bad biological condition. Only very large geographic regions were
distinguishable from one another. For example, the western portion of the App LCC region was
identified as having relatively higher biological condition when compared to the eastern and northern
portions of the region. Where the fish models identified large rivers as having poor biological condition,
the aquatic macroinvertebrate models were unable to identify the biological condition at this scale
(Figure 5).
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Additionally, the Pearson correlation coefficient between the aquatic macroinvertebrate watershed
score and those of the global (Figure 4) and regional fish watershed scores was 0.01 for both.

4. Discussion

Freshwater ecosystems are highly threatened worldwide. In North America, the Appalachian LCC
region is a particularly valuable aquatic ecosystem due, in large part, to its high aquatic biodiversity.
It is also a region of great conservation concern due to current and projected rapid land cover change
(i.e., urbanization), biodiversity loss, habitat fragmentation, and climate change [17,20]. Models, such
as the ones presented here, and others (e.g., [3,5]), which provide insight into how land use affects
aquatic resources (e.g., fish and aquatic macroinvertebrates), are valuable tools for identifying areas of
greatest concern for restoration activities and those areas in greatest need of increased and/or continued
protection [32,33].

Multimetric indices may be beneficial in identifying a biological condition across large geographies.
Our results suggest that multimetric scores (i.e., watershed scores) corroborate one another at the
global and regional scales (see Table 8), which indicate that the predictor variables we used were
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responsive in a consistent manner across scales. This is an important finding, as the ability to rely on a
consistent set of landscape variables enables cross-regional and cross-scale comparisons, which can be
particularly important when data sets are assembled from multiple sources [3].

The individual predictors that most commonly had high relative influence for fish metrics (i.e., was
ranked in the top ten percent of predictors within an individual metric) were primarily related to
geomorphic condition (e.g., erosive and resistive forces) and flow regime (e.g., storage and recharge
capacity). However, those with the highest relative influence for aquatic macroinvertebrates were
primarily related to sources of pollution (e.g., road crossings, nitrogen, and silt). Our results reinforce
those of Hill et al. [5], who found that agriculture and urbanization were the primary drivers of
landscape impacts on aquatic macroinvertebrates. The differences in driving factors for fish and aquatic
macroinvertebrates suggest that, at a large spatial scale, such as that presented here, the important
land use factors that influence aquatic communities may differ somewhat and mitigation efforts to
overcome these large-scale stressors likely need to have some taxonomic specificity.

The relative influence of individual predictors to our boosted regression tree models was variable
between regions in our regional models. This indicates the high variability between regions regarding
what environmental factors influence community structure. These findings are not surprising, as they
are congruent with other large-scale biological condition assessments [3,5] and have been found to be a
shortcoming of MMIs [34,35]. While individual predictors were relatively variable between regions,
our models suggested themes (i.e., combined predictors) were more consistent; yet, some discrepancies
between regions still existed. We chose to condense predictor variables into themes as a higher order
mode of understanding of how these groups of stressors impacted fish and aquatic macroinvertebrates.
The themes that exhibited the greatest influence on fish watershed scores across the entire region were
geomorphic condition and flow regime. The geomorphic condition in our analysis was a measure of
soil stability and erosivity. This finding is unsurprising, as aquatic taxa are known to be sensitive to
sedimentation. Surprisingly, point source pollution and connectivity were the least influential. This is
likely due to these two factors being measured somewhat sparsely (i.e., few watersheds have NPDES
sites) on the landscape and not necessarily in close proximity to biological samples. For example,
NPDES density, which is a measure of point source pollution, is likely to exhibit strong influence on
aquatic biota in the immediate area, but these sites are scattered across the landscape and, thus, across
a large region, such as the App LCC region, they were less influential in our models than predictors
that have greater spatial representation (e.g., soil erosivity).

A high correlation between the global and regional fish multimetric indices suggests that the
predictor variables used were responsive across both scales. While there was high correlation between
global and regional fish multimetric indices (i.e., watershed score), there was very low correlation
between multimetric indices from either of the fish models and the global aquatic macroinvertebrate
model. The low correlation between the fish watershed scores and aquatic macroinvertebrate watershed
scores is most likely due to the low number of sites (N = 334), which results in poor spatial coverage
for our aquatic macroinvertebrate data set, as compared to the good spatial distribution and relatively
high number of sites (N = 8355) in our fish data set. Correlations between the fish and aquatic
macroinvertebrate indices are likely to be higher when the same, or nearby, sites are sampled for both.
For example, at 18 sites in the River Raisin watershed in Michigan, correlations between fish and
aquatic macroinvertebrate indices ranged from 0.21 to 0.51 [36]. Additionally, stressors have been
found to affect fish and aquatic macroinvertebrates similarly. Free flowing stream sections of the Fox
River, IL exhibited higher index scores for both fish and aquatic macroinvertebrates when compared to
sections of the river above low-head dams [37].

Esselman et al. [3] suggested regional stratification for analyses that span large geographies, while
also including multiple biological response variables, and using statistical modeling techniques that
are non-linear would lead to improved multimetric indices. This is precisely the approach that we took
modeling biological condition across the 15 state App LCC region. However, one major difference
between our study and previous studies is that previous work to develop multimetric indices across
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broad geographies included regional influences by using Omernick ecoregions [3,5,15] (Whittier et al.,
2007; Esselman et al. 2013; and, Hill et al. 2017). Omernick ecoregions are a spatial framework that
includes aquatic and terrestrial ecosystems [38]; however, we used Freshwater Ecoregions of the World
for our analysis, because they were developed on a framework that focused exclusively on aquatic
ecosystems with fish as the focal taxonomic group [31].

Another difference between our work and previous work is that we aggregated both predictor
and response variables into themes and targets respectively. By aggregating predictor variables into
themes, we were able to identify categories of predictors that were influential in structuring fish
and aquatic macroinvertebrate communities in aggregate (e.g., watershed score for fish), as well as
for individual response variables (e.g., % EPT). Response variable aggregation allows for a greater
understanding of how individual and aggregate predictors (i.e., themes) structure fish and/or aquatic
macroinvertebrate communities in a more functional manner. For example, two targets (e.g., fish
functional group and fish taxa quality) may respond differently to the same stressor. Understanding
which higher order stressors (theme) affect our targets (fish functional group) might lend insight into
more effective regional management and conservation strategies. Our results suggest that regional
variability of the relative influence of predictor variables should garner significant consideration as
the stressors that affect fish and aquatic macroinvertebrates were not the same from ecoregion to
ecoregion. Furthermore, care should be taken when using large scale modeling efforts such as ours to
make management recommendations across large geographies that span more than one ecoregion, as
thematic importance was variable between regions.

While we were able to develop regional models for fish indices, unfortunately, we were unable to
develop regional aquatic macroinvertebrate models due to low numbers of sample sites. As aquatic
macroinvertebrates are known to be good indicators of biological condition [39–41], we believe that
there needs to be increased systematic sampling efforts that result in an increased number of sites
that are spatially dispersed across multiple freshwater ecoregions and that include known areas of
both high and low biological integrity. In doing so, models such as the one provided here (see also
Hill et al. 2017 and Esselman et al. 2013 [3,5] can be improved in their ability to provide managers
with information to help guide local plans within a regional context. For example, mitigation efforts
that aim to provide ecological lift to a watershed might look for areas that have been identified as
having poor condition but surrounded by watersheds with good condition or, alternatively, these
models could be used to identify good quality watersheds that are in need of protection from multiple
encroaching stressors.

5. Conclusions

We combined and used multiple biotic and abiotic datasets to model stream condition across
the Appalachian LCCs 15 state boundary (i.e., central and southern Appalachians). We developed
separate fish and aquatic macroinvertebrate steam condition models highlighting the existence of
both similarities and differences in how environmental factors structure these two aquatic taxonomic
communities while using BRTs. Overall, correlation existed between fish and aquatic macroinvertebrate
models and global and regional fish models. Furthermore, there was high correlation between global
and regional fish models for most of the fish metrics evaluated. We were unable to create aquatic
macroinvertebrates regional models due to low sample size regionally; however, for fish, separate
models for each of the Freshwater Ecoregions varied in what environmental factors were most
important in structuring aquatic communities, which exemplified the need to carefully consider
ecoregional factors when developing cross-ecoregion spatial plans and management suggestions.
Biological samples are difficult and expensive to collect, and effort varies between taxa, and this results
in uneven distributions in both the number of samples and spatial distribution between taxa making
it difficult to create MMIs that can better represent the condition of aquatic resources across broad
geographies. Careful selection of biological sample locations that are representative of the spectrum
spanning from high quality to low quality environmental conditions that are spatially well dispersed
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can greatly enhance the ability of models such as ours to inform spatial and management plans.
Additionally, common sample locations for various taxa would be useful to improve the comparison
of environmental responses among and between taxa.

We recommend a centralized database where these records are made available for public download,
where efforts such as ours can be more easily replicated, improved upon, and then performed at
various spatial scales. With an extensive and systematic sampling approach that includes both fish and
aquatic macroinvertebrates and it is integrated across jurisdictional boundaries the ability to develop
accurate models of large geographies will improve. Such improved spatial models will lend greater
confidence in such indices, which will only increase the ability of managers, conservation practitioners,
and scientists alike to address and meet regional conservation goals.
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Appendix A

Table A1. Full list of predictors, showing each variable’s thematic grouping and the source for each data set.

Attribute Metric Variable Name Source

General
Catchment area areasqkm TNC

Upstream Drainage Area (Net Catch Area) TotDASqKm TNC

Flow Regime

Base Flow bfi_avg TNC

Base Flow bfi_avg_N TNC

Recharge rchrg_avg TNC

Recharge rchrg_avgN TNC

Total Storage/mean annual flow nid_storN TNC

Density of Large Dams DamDensCat StreamC

Density of Large Dams DamDensWs StreamC

Municipal Water Withdrawal dom_wdc NFHAP

Ag Water Withdrawal ag_wdc NFHAP

Industrial Water Withdrawal ind_wdc NFHAP

Ag Water Withdrawal Normalized w/Summer flow ag_wdc_Snorm

Ag Water Withdrawal Normalized w/Annual Flow ag_wdc_norm

Municipal Water Withdrawal Normalized w/ Annual Flow dom_wdc_norm

Industrial Water Withdrawal Normalized w/Annual Flow ind_wdc_norm

Connectivity

Density of Dams Upstream upnetdensr NFHAP

Density of Dams Downstream downmaindens NFHAP

Density of Road Crossings (Tiger 2010) RdCrsCat StreamC

Density of Road Crossings (Tiger 2010) RdCrsWs StreamC

Water Q (Pop)

Athro Nitrogen n_yield NFHAP

Anthro Phosphorus p_yield NFHAP

Anthro Sediment Yield s_yield NFHAP
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Table A1. Cont.

Attribute Metric Variable Name Source

Water Q (LU)

Impervious (NLCD 2011) imp11_per TNC

Impervious (NLCD 2011) imp11_perN TNC

Riparian Buffer (NLCD 2011) 100m PctDecid2011CatRp100 StreamC

Riparian Buffer (NLCD 2011) 100m PctDecid2011WsRp100 StreamC

Riparian Buffer (NLCD 2011) 100m PctConif2011CatRp100 StreamC

Riparian Buffer (NLCD 2011) 100m PctConif2011WsRp100 StreamC

Riparian Buffer (NLCD 2011) 100m PctMxFst2011CatRp100 StreamC

Riparian Buffer (NLCD 2011) 100m PctMxFst2011WsRp100 StreamC

% Crop (NLCD 2011) nlcd11_81N nlcd11_82N TNC

% Crop (NLCD 2011) nlcd11_81 nlcd11_83 TNC

Water Q (Pollution)

CERC cerc_denC NFHAP

Permit Compliance pcs_denC NFHAP

Toxic Release Sites tri_denC NFHAP

Coal Mine Density all_col_denC NFHAP

Other

Temperature IncrTempMM07 TNC

Temperature IncrTempMM08 TNC

Elevation elevcm_avg TNC

Elevation elevcm_avgN TNC

Slope slope_avg TNC

Slope slope_avgN TNC

R-factor rf30_avg TNC

R-factor rf30_avgN TNC

K-factor kfact_avg TNC

K-factor kfact_avgN TNC

Sand sand_avg TNC

Sand sand_avgN TNC

Silt silt_avg TNC

Silt silt_avgN TNC

Landscape Condition

Percent Agricultural Land within ARA (HUC 8) Perc_Ag_HUC8

Percent Natural Land within ARA (HUC 8) Perc_Nat_HUC8

Percent Impervious Surface within ARA (HUC 8) Perc_Imp_HUC8

Percent Agricultural Land within ARA Perc_Ag

Percent Natural Land within ARA Perc_Nat

Percent Impervious Surface within ARA Perc_Imp
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