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Abstract: In response to land degradation and the decline of farmers’ income, some low quality
croplands were converted to forage or grassland in Northeast China. However, it is unclear how such
land use conversions influence soil nutrients. The primary objective of this study was to investigate
the influences of short term conversion of cropland to alfalfa forage, monoculture Leymus chinensis
grassland, monoculture Leymus chinensis grassland for hay, and successional regrowth grassland on the
labile carbon and available nutrients of saline sodic soils in northeastern China. Soil labile oxidizable
carbon and three soil available nutrients (available nitrogen, available phosphorus, and available
potassium) were determined at the 0–50 cm depth in the five land uses. Results showed that the
treatments of alfalfa forage, monoculture grassland, monoculture grassland for hay, and successional
regrowth grassland increased the soil labile oxidizable carbon contents (by 32%, 28%, 15%, and 32%,
respectively) and decreased the available nitrogen contents (by 15%, 19%, 34%, and 27%, respectively)
in the 0–50 cm depth compared with cropland, while the differences in the contents of available
phosphorus and available potassium were less pronounced. No significant differences in stratification
ratios of soil labile carbon and available nutrients, the geometric means of soil labile carbon and
available nutrients, and the sum scores of soil labile carbon and available nutrients were observed
among the five land use treatments except the stratification ratio of 0–10/20–30 cm for available
phosphorus and the values of the sum scores of soil labile carbon and available nutrients in the
0–10 cm depth. These findings suggest that short term conversions of cropland to revegetation have
limited influences on the soil labile carbon and available nutrients of sodic soils in northeastern China.
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1. Introduction

The structure, diversity, and production capacity of terrestrial ecosystems are strongly linked to
the availability of soil nutrients, such as nitrogen, phosphorus, potassium, and soil organic carbon [1,2].
However, the soil labile carbon and soil nutrients’ availability in terrestrial ecosystems are usually
influenced by various direct and indirect soil disturbances [3,4]. Land use conversions are major
drivers of changes in soil labile carbon and soil nutrient availability, resulting in the degradation of
soil ecosystem services (nutrient cycle, water conservation, pollution purification, etc.) and global
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environmental problems (soil degradation, climate change, water, soil erosion, etc.) [5,6]. One main
mechanism by which they do this is by changing the quantity and quality of plant biomass supplied to
the soils, affecting the rate of organic matter decomposition and the activity of soil microorganism
and redistributing soil carbon and nutrients within soil profiles [7–9]. Another main mechanism is the
impact of soil erosion, which preferentially removes the surficial and most carbon and nutrient rich
material, thus accelerating the decline of the soil organic carbon and soil nutrient pool [10,11].

Characterizing the spatial and temporal variability of soil carbon and nutrients in relation to land
use types is critical for predicting the influences of future land use conversion on soil quality changes
and understanding how ecosystems’ function [12]. Changes of soil organic carbon (soil microbial
biomass carbon, particulate organic carbon, water extractable organic carbon, etc.) and total nutrients
(total nitrogen, total phosphorus, total potassium, etc.) under different land uses in different spatial
and temporal scales induced by long term land use conversions have been well addressed [13–17].
However, the evaluation of the short term effects of land uses on soil labile carbon and soil available
nutrients are rare due to the high spatial variability and the errors in the measurement methods of these
soil properties [18,19]. Moreover, due to regional differences in environment conditions, initial soil
properties, and management years and intensity, inconsistent and contradictory responses of soil labile
carbon and soil available nutrients to short term land use conversions were observed, which failed to
demonstrate a clear relationship between short term land uses and changes in soil labile carbon and
available nutrients [14,20]. For instance, Madejon et al. [14] in the southwest of Spain found that after
three year plantation of fast growing trees decreased the contents of available nitrogen (AN), available
phosphorus (AP), and available potassium (AK). Lu et al. [21] in Tibet, China, reported that short term
(nine years) grazing exclusion had no impact on soil AN, AP, microbial biomass carbon, and other soil
properties. However, the results of Wang et al. [20] in Shanxi Province, China, showed that three years
of plantation of grass and alfalfa significantly increased the contents of soil organic carbon, AN, AP,
and AK.

As one of the largest salt affected soil regions in China, Songnen plain has suffered from substantial
land salinization and alkalization because of the influences of human activity in recent decades [22].
The increases in soil alkalinity and sodicity have adversely influenced the soil properties by promoting
crusting and low permeability and infiltration rates [23], thus leading to the reduction of grain
production. Furthermore, with an increase in corn production in China from 1.06 × 108 tons in 2003
to 2.25 × 108 tons in 2016 due to the increase of yield per unit and the planting area, oversupply
resulted, causing a notable reduction in corn price and planting benefit to farmers [22]. Therefore,
the croplands with poor quality soils were abandoned in the Songnen plain. To address these problems
in the Songnen plain, the Chinese government implemented a range of policies and subsidies to guide
farmers to improve the efficiency and sustainable development of agriculture through revegetation
in the areas where the soils were not suitable for growing crops. Revegetation, the conversion of
cropland to a vegetation covered land, has become a well explored approach to rehabilitate degraded
soil ecosystems [15,24]. In addition to combatting erosion and protect soils, revegetation has substantial
effects on the accumulation of soil organic carbon and nutrients and the improvement of soil microbial
biomass and activity [13,15]. Deng et al. [15] in the Loess Plateau, China, found that the contents of
soil organic carbon, total N, and total P at a depth of 0–20 cm increased by more than 13%, 10% and
11%, respectively, after 30 years of grassland restoration. Our previous study in the same site showed
that soil microbial biomass carbon and enzyme activity at a depth of 0–20 cm increased by 36% and
56%, respectively, after five years of conversion of cropland to grassland [22]. However, the short term
influences of revegetation on soil oxidizable carbon and available nutrients have yet to be quantified in
northeastern China.

In this study, we hypothesized that five years of revegetation from cropland could increase the
contents of soil available nutrients and soil labile carbon and therefore be beneficial to the sustainable
use of saline sodic soils in northeastern China. To address this hypothesis, the objective of this research
was to investigate the changes in the contents of labile oxidizable carbon (LOC), AN, AP, and AK
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after conversion from cropland to alfalfa forage, monoculture Leymus chinensis grassland, monoculture
Leymus chinensis grassland for hay, and successional regrowth grassland and examine whether short
term revegetation could improve the LOC and soil available nutrients in the regions where the soils
were not suitable for planting crops in northeastern China.

2. Materials and Methods

2.1. Study Area

The research was conducted in the Songnen plain located at the Grassland Farming and Ecological
Research Station (123◦31′ E, 44◦33′ N) (Figure 1). The terrain surrounding the study area is relatively
flat, and the altitude is approximately 145 m above sea level. The study area has a temperate, semiarid
continental climate. The average annual temperature is 5.9 ◦C, and the mean annual precipitation is
427 mm (1980–2013). The soil is classified as Solonetz in the World Reference Base for Soil Resources
with a soil texture of 22% sand, 33% silt, and 45% clay [25]. The main vegetation consists of perennial
herbs such as Leymus chinensis and Puccinellia tenuiflora. Besides, some therophytes such as Chloris virgata
and Suaeda heteroptera grow in the areas with higher soil pH and poor soil quality [26].
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Figure 1. The location map of the study area.

2.2. Experimental Design

This experiment was organized as a completed block design with five land use treatments. In early
May 2011, four adjacent blocks (each 60 × 50 m, 2 m buffer between the blocks) in the study area based
on similar land use history were identified. Before this experiment (2004–2010), farmers grew rain fed
maize (Zea mays L.) and sunflower (Helianthus annuus) in these blocks, following the traditional planting
practices in Northeast China, which consists of plowing the soil down to 20 cm depth and applying
50–96 kg N ha−1, 20–45 kg P ha−1, and 15–45 kg K ha−1 fertilizers into the soils. The soil properties in
these four blocks were homogeneous due to the continuous plowing. The five land use treatments
consisted of corn cropland (corn, used as an indication of how the revegetation influences the soils in
this study), alfalfa perennial forage land (alfalfa), monoculture grassland of Leymus chinensis (MLG),
monoculture grassland of Leymus chinensis for hay (Mowing) once a year (MLG + M), and successional
regrowth grassland (SRG) (Figure 2). Leymus chinensis is the native vegetation and is usually used as
forage grass for grazing animals in the Songnen grassland. In the mowing grassland, Leymus chinensis
is harvested as hay, and farmers sell the hay to livestock farms. Alfalfa has high saline and alkaline
tolerance, and it has been introduced into the Songnen grassland as a high forage plant due to the
high N and protein content [22]. The planting of forage grass used in this study could improve the
income of local farmers and the development of animal husbandry. In each block, two greater plots of
12 × 50 m were for corn and alfalfa treatments, while three plots of 6 × 50 m for land use treatments of
MLG, MLG + M, and SRG. There was a 1 m buffer among the five plots. The was no irrigation under
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the five land uses in this study. More information about the treatments of land uses is presented in
Figure 3 [22,26].
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2.3. Soil Sampling and Analysis

Soil sampling was performed using an auger (4 cm in diameter) in early September 2015.
The sampling depth was 0–50 cm with an interval of 10 cm increments. Five randomly distributed
sub-samples from each plot were combined into a composite sample at each soil depth. After removing
the visible vegetation materials and debris, soil samples were sieved through a 2 mm sieve, and then
ground to pass through a 0.25 mm sieve for analyses.

Soil labile oxidizable carbon (LOC) was measured using the revised method defined by
Chan et al. [27]. Available nitrogen (AN) was measured by the alkaline hydrolysis diffusion method [28].
The AN forms were primarily mixtures of ammonium nitrogen (NH3-N), nitrate nitrogen (NO3-N),
and a small amount of water soluble organic nitrogen (e.g., amino acids and ammonium acyl,
etc.). Available phosphorus (AP) was extracted with NaHCO3 at pH 8.5 and measured using UV
spectrophotometer [28]. The AP forms were primarily the calcium phosphates due to the higher soil
pH (Table 1) in the study area. Available potassium (AK) was measured based on the ammonium
acetate extracted and emission flame spectrophotometer method [28]. The AK forms were primarily
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mixtures of exchangeable potassium and water soluble potassium. Furthermore, for the purpose
of clearly understanding the nature of soils in the study area, a 1:5 soil:water solution was used to
measure the soil pH and electrical conductivity (EC) using the PHS-3C instrument and the DDS-307
instrument, respectively.

Table 1. Mean values (±SE) of soil pH and electrical conductivity (EC) under different land uses.

Soil
Depth

Corn Alfalfa MLG + M MLG SRG ANOVA
F P

pH

0–10 9.36 (±0.14) 9.14 (±0.04) 9.16 (±0.10) 9.00 (±0.10) 9.05 (±0.26) 0.88 0.50
10–20 9.83 (±0.17) 9.76 (±0.09) 9.93 (±0.09) 9.87 (±0.06) 9.39 (±0.43) 1.01 0.43
20–30 10.06 (±0.08) 10.04 (±0.09) 10.03 (±0.04) 10.00 (±0.06) 9.96 (±0.08) 0.29 0.88
30–40 10.11 (±0.04) 10.11 (±0.08) 10.03 (±0.03) 9.99 (±0.04) 10.02 (±0.03) 1.11 0.39
40–50 10.06 (±0.06) 10.04 (±0.09) 9.99 (±0.04) 9.92 (±0.04) 9.98 (±0.05) 0.78 0.56

EC

0–10 204 (±16) 155 (±11) 162 (±5) 157 (±21) 164 (±24) 1.43 0.27
10–20 330 (±56) 306 (±43) 398 (±53) 376 (±32) 335 (±101) 0.36 0.84
20–30 391 (±49) 385 (±65) 531 (±55) 491 (±39) 435 (±95) 1.00 0.44
30–40 389 (±31) 391 (±58) 576 (±46) 501 (±55) 492 (±75) 2.12 0.13
40–50 350 (±17) 349 (±59) 481 (±56) 468 (±64) 452 (±45) 1.63 0.22

Abbreviations: Corn, corn cropland; Alfalfa, alfalfa forage land; MLG, monoculture grassland; MLG + M,
monoculture grassland for hay; SGR, successional growth grassland.

2.4. Statistical Analysis

The soil stratification by certain properties (e.g., SOC, total N, total P, etc.) is very common, and the
stratification ratio (SR) is widely used as a crucial indicator of soil condition [15]. A higher SR of soil
properties indicates better soil conditions, because SR of degraded soils is usually less than 2 regardless
of climatic or soil conditions [15]. The improvement of soil quality under specific land use is conducive
to plant growth and agricultural sustainability [29,30]. Revegetation on the cropland will increase the
input of organic matter and thus alter the SR of soil properties, which will provide an indication of soil
responses to specific plant cover. The SR were calculated for each land use as follows:

SR = ANt/ANs (1)

where ANt is the content of LOC, AN, AP, and AK in the 0–10 cm depth; ANs is the corresponding
content of LOC, AN, AP, and AK in the 10–20 and 20–30 cm depth.

A unitary soil available nutrient is not complete to reveal the changes within the soil environment
because soil available nutrients do not always respond similarly to different management practices [22].
Therefore, the comprehensive assessment of the responses of a series of soil available nutrients and
LOC to factors of change is required. However, the various responses of LOC and soil available
nutrients to land use change might result in inaccurate conclusions on soil quality and thus limit the
suitability of LOC and soil available nutrients as soil quality indicators. The geometric mean and
sum scores are two general indices to combine the variables with diverse units and ranges into one
variable, which could clearly indicate the actual influences of environmental factor changes on these
variables [31]. Here, the geometric means of LOC and available nutrients (GMSN) under different land
uses and soil depths are calculated as follows:

GMSN = (LOC × AN × AP × AK)1/4 (2)

where LOC, AN, AP, and AK are oxidizable labile C, available nitrogen, available phosphorus, and
available potassium, respectively.
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The simple sum of the series of soil available nutrients and LOC with different units and ranges of
variation may cover up the changes in some soil nutrients. Therefore, data normalization is needed for
all the measured soil available nutrients and LOC before the sum scores of LOC and available nutrients
(SSAN) are calculated. The min-normalization is a well explored approach to convert the data with
different units or variation ranges into a dimensionless pure value, so that the data can remove the unit
limit and can be easily compared and weighted [26]. The SSAN under different land uses and soil
depths is as follows:

Si = X/Xmin (3)

SSAN =
n∑

i=1

Si (4)

where Si is the score of LOC, AN, AP, and AK after data normalization; X is the measured value, and
Xmin is the minimum value of each soil nutrient observed in this study; n is the number of soil nutrients.

We used one way ANOVA to analyze the influences of land use types on the LOC and soil
available nutrients, soil pH, EC, SR, GMSN, and SSAN. Mean differences of soil available nutrient
contents, LOC, SR, GMSN, and SSAN among land use treatments were examined using the least
significant difference test (LSD). All comparisons were considered significant if p < 0.05. The mean and
standard error of each soil property measured were provided at each soil depth under a given land use
treatment. All data analyses were performed with SPSS 16.0 for Windows (SPSS, Inc., Chicago, USA).

3. Results

3.1. Changes in Soil pH and EC

Soil pH in the study area was notably high (Table 1). The values of soil pH were all more than 9.00
at the 0–50 cm depth; especially at the 10–50 cm depths, the values were close to or more than 10.00.
Soil pH was not affected by the land use conversions. The average values of soil pH at the 0–50 cm depth
were 9.88, 9.82, 9.83, 9.76, and 9.68 for corn, alfalfa, MLG, MLG + M, and SRG treatment, respectively.

Similar to the soil pH, the EC values in the subsoil (10–50 cm) were higher than that at the surface
soil (0–10 cm). The average values of EC in the 0–50 cm depth were 333, 317, 430, 399, and 376 µS
cm-1 for corn, alfalfa, MLG, MLG + M, and SRG treatment, respectively (Table 1). There was no
significant difference of EC among the land use treatments because of the narrow values of EC in the
same soil depth.

3.2. Changes in LOC, AN, AP, and AK Content

The LOC content under the land use of SRG was remarkably higher than that under corn in the
0–10 cm depth, while it was significantly higher under alfalfa in the 10–20 cm depth than the corn and
MLG + M treatment (Figure 4A). In the 20–50 cm depth, the highest LOC content was found under
the MLG treatment. The average LOC contents in the 0–50 cm depth were 32% (0.56 g kg−1), 28%
(0.49 g kg−1), 15% (0.26 g kg−1), and 32% (0.57 g kg−1) higher under alfalfa, MLG, MLG + M, and SRG
treatment, respectively, than that under corn treatment.

Land use conversions significantly (F = 8.76, p = 0.001) changed the AN contents (Figure 4B).
The highest AN content was found under corn treatment in the 0–50 cm depth. In addition, the AN
contents under corn treatment in the 20–30 cm and 40–50 cm depth were significantly higher than
those under all the revegetation land except the alfalfa treatment in the 20–30 cm depth. The average
AN contents in the 0–50 cm depth were 15% (6.3 mg kg−1), 19% (8.0 mg kg−1), 34% (14.9 mg kg−1),
and 27% (11.8 mg kg−1) lower under alfalfa, MLG, MLG + M, and SRG treatment, respectively, than
under corn treatment.
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Figure 4. Mean values of labile oxidizable carbon (LOC) (A) and available nitrogen (AN) (B) under
different land uses. The bars represent standard errors. Values without a common letter within land
use treatments differed according to the LSD test (p < 0.05). NS = not significant among different land
uses. See Figure 2 for the abbreviations.

The differences of AP and AK contents among the soil depths in the 0–50 cm depth were very
narrow except the 0–10 cm depth (Figure 5). Compared with the land uses of MLG, MLG + M, and SRG,
land use of corn had a higher AP content at the 0–10 cm depth. However, land use treatments did not
change the AP contents at the 10–50 cm depth (Figure 5A). The average AP contents in the 0–50 cm
depth under the land uses of corn, alfalfa, MLG, MLG + M, and SRG were 4.1, 3.8, 3.4, 3.1, and 3.4 mg
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kg−1, respectively. The highest AK contents were all found under the MLG treatment in the 0–50 cm
depth (Figure 5B). However, significant differences were only found between MLG and corn treatment
in the 20–40 cm depth and between MLG and alfalfa treatment in the 30–40 cm depth. The average AK
contents in the 0–50 cm depth under corn, alfalfa, MLG, MLG + M, and SRG treatment were 102.9,
112.2, 137.5, 108.7, and 125.8 mg kg−1, respectively.
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3.3. Changes in SR, GMSN, and SSAN

The SR of LOC, AN, and AK in the 0–10/10–20 cm and in the 0–10/20–30 cm (Figure 6) were not
affected by the different land uses. Land uses of corn and alfalfa had remarkably higher SR values of AP
in the 0–10/20–30 cm depth than the land uses of MLG, MLG + M, and SRG. However, the differences
of the SR value for AP in the 0–10/10–20 cm depth were not significant among the five treatments.
All the SR values of LOC, AN, AP, and AK in the 0–10/10–20 cm depth were all <2 except the values
of AN under SRG treatment, AP under corn and alfalfa treatment, and AK under MLG treatment.
However, the SR values of LOC, AN, AP, and AK in the 0–10/20–30 cm depth were all >2, except the
values of AN under corn treatment and AP under MLG and MLG + M treatment.
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treatments differed according to the LSD test (p < 0.05). NS = not significant among different land uses.

Values of GMSN in the 0–50 cm depth and SSAN in the 10–50 cm depth were not influenced by
the changes of land use (Figure 7). The highest GMSN value was found under alfalfa in 0–20 cm depth,
while it was highest under MLG treatment in the 20–50 cm depth (Figure 7A). The average GMSN
values in the 0–50 cm depth under corn, alfalfa, MLG, MLG + M, and SRG treatment were 13.1, 13.2,
13.3, 11.2, and 12.7, respectively. The SSAN values under corn and alfalfa treatment in the 0–10 cm
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depth were markedly greater than the land use of MLG + M (Figure 7B). The average SSAN values
in the 0–50 cm depth under corn, alfalfa, MLG, MLG + M, and SRG treatment were 9.5, 9.0, 9.7, 8.6,
and 9.1, respectively.Land 2019, 8, x FOR PEER REVIEW 10 of 14 
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4. Discussion

The low content of soil organic carbon can limit microbial biomass and activity, nutrient cycling,
soil structure formation, etc., and therefore indirectly limit plant growth [22]. Increasing the content of
soil organic carbon and soil available nutrients is the common approach to improve soil productivity
and agricultural sustainability. Land use changes could significantly alter the inputs and outputs of
soil organic matter, thus resulting in the variations in the content and circulation of soil labile carbon
and soil nutrients [32,33]. The present study showed that conversion of cropland to revegetation
land increased the LOC content in the 0–50 cm depth (Figure 4A). Moreover, the increase of LOC
content mainly occurred in the surface soil. Compared with the corn treatment, the LOC contents
under revegetation land were 33%, 33%, and 20% higher in the 0 to 10, 10 to 20, and 20 to 30 cm
depths, respectively. However, there were no significant differences for LOC contents between corn
and revegetation treatments in the 30 to 40 and 40 to 50 cm depths. The higher LOC contents under
revegetation land in surface soil (0–30 cm) were probably associated with the accumulation of above-
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and below-ground biomass incorporated into the surface soils [34,35]. In addition, revegetation on
the cropland could reduce the loss of LOC in fine soil fractions caused by rain and wind erosion,
thus increasing the LOC content [22,33]. Soil texture can affect the soil aggregation processes and,
therefore, influences the soil capacity to sequester organic carbon [36]. Tian et al. [37] in the alpine
grassland on the Tibetan Plateau reported that soil organic carbon and total nitrogen stocks positively
correlated with clay content and silt content, while they negatively related to sand content. Land use
changes can indirectly affect soil texture through the redistribution of soil by erosional processes or
tillage. Revegetation on the cropland in this study could reduce the soil erosion by increasing the
vegetation cover and decreasing soil disturbance, thus indirectly affecting the content of LOC and soil
available nutrients.

Compared with corn treatment, revegetation did not increase the AN contents in the study area,
and the corn treatment had the highest AN content in the 0 to 50 cm depth (Figure 4B). This might be
due to the fertilization management in corn treatment, which applied approximately 74 kg N ha−1

every year. Another reason for the higher AN contents under corn treatment could partially result from
the short term revegetation under the revegetation land, which had limited effects on the accumulation
of AN and other soil nutrients. Besides, no significant differences among the forage and grasslands also
suggested negligible effects of short term revegetation on the AN contents in the study area. The higher
AN contents under the corn treatment were similar to the results by Zhang et al. [38] in Guizhou,
China, who also reported that the AN content under fertilized and plowed cropland was higher than
that under grassland and forestland. Soil AP and AK contents were not significantly different under
most land use treatments (Figure 5), indicating that the short term land use treatments did not change
the AP and AK contents in northeastern China. Similar to the changes in AN content, the negligible
effects of short term revegetation on soil AP and AK may be the primary reason for the narrow changes
in AP and AK content under the five land use treatments. These results were in agreement with the
findings of Zhao et al. [39] in another region of Songnen plain, who also found that the changes in AP
and AK content under cropland and grassland were very limited.

The SR of soil parameters was used as an indicator of the dynamics soil quality, and it could detect
the management induced changes in the soil profiles of agricultural systems [15]. The increase in SR
values of LOC and soil nutrient indicated the improvement of soil quality due to the accumulation
of LOC and soil nutrients in the surface soil [30,40]. Land use treatments had no significant effects
on the SR values of LOC, AN, AP, and AK contents at depths of 0–10/10–20 cm and 0–10/20–30 cm
except the SR of AP at the depth of 0–10/20–30 cm, suggesting that short term revegetation had
limited effects on the soil available nutrients in northeastern China. Studies in Columbia and
Georgia showed that the SR values of SOC and total nitrogen were >2 under no tillage management,
indicting an improvement of soil quality [29]. Peregrina et al. [41], Corral-Fernandez et al. [42],
Francaviglia et al. [40], and Deng et al. [15] confirmed this finding, arguing that a high SR value
(usually >2) indicated a better soil quality and contribution to agriculture sustainability. Our results
showed that the SR values of LOC and soil available nutrients at the depth of 0–10/10–20 cm were
mostly <2, and the SR values at the depth of 0–10/20–30 cm were mostly >2, indicating that soils
under the same land use treatments had different soil quality. Similarly, the study by Deng et al. [15]
also found that the SR values at the depth of 0–20/20–40 cm were generally higher than those at the
depth of 0–5/10–20 cm found by Wang et al. [43] in the same region of the Loess Plateau. The SR
values of LOC and soil nutrients in different soil depths in response to land use treatment were not
consistent, suggesting that standard SR values of soil properties are needed in future studies to make
the comparisons of soil quality under different management practices and different regions easier.
Therefore, the SR values at the depth of 0–10/10–20 cm may be well suitable as a standard for evaluating
significant changes in surface soils induced by management practices.

In this study, three soil available nutrients including AN, AP, and AK contents and LOC were
evaluated, but similar trends were not found (Figures 4 and 5). In fact, it is difficult to draw meaningful
conclusions about soil quality changes when univariate indicators are used to analyze datasets involving
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many soil properties and reveal the changes within the soil environment [44]. The two indices of
GMSN and SSAN were able to overcome the above weaknesses, and they were used as useful indictors
of soil quality in other studies [22,26,31]. However, the results in this study showed no significant
differences of GMSN and SSAN among the five land use treatments at each soil depth except SSAN
under the MLG + M treatment in the 0 to 10 cm depth (Figure 7), indicating that short term conversions
of cropland to revegetation land had limited demonstrable influences on the soil available nutrients
and LOC in the salt affected region of Songnen plain. The inconclusive results suggested that a long
term study is needed to examine the responses of the LOC and soil available nutrients to long term
revegetation in northeastern China.

5. Conclusions

The present results showed that revegetation on the cropland enhanced the LOC contents and
decreased the AN contents in the 0–50 cm depth compared with the Corn treatment, and the changes
in AP and AK contents were very limited after the land use conversions. The SR values in different
soil depths in response to land uses were not consistent, suggesting that standard SR values of soil
properties are needed in the future studies and that the SR values at the depth of 0–10:10–20 may be
suitable as the standard considering the notable changes in surface soils induced by management
practices. However, more studies are needed to examine if the SR value at the 0–10:10–20 cm is suitable
in other managements or regions. The values of SR, GMSA, and SSAN were not affected by the land
use changes, indicating short term revegetation on the cropland had limited influences on the changes
in soil nutrients and LOC in northeastern China. Compared with AG treatment, values of GMSA
and SSAN were slightly lower than other land use treatments. These results were mainly due to the
very short term (five years) revegetation because revegetation may need more time to be incorporated.
Therefore, more studies are needed to assess the long term (more than 10 years) effects of revegetation
on soil properties in the Songnen grassland in the future. Although changes in soil available nutrients
were given in this study, variations in soil microbial populations, which are more sensitive to changes
in land uses than soil nutrients, were not mentioned. The influences of short term revegetation on soil
quality need to be comprehensively assessed. In addition, we recommend that farmers in Northeast
China should use revegetation to rehab grassland in areas with poor quality soils in the long run.
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