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Abstract: Knowing the extent and frequency of forest cuttings over large areas is crucial for forest
inventories and monitoring. Remote sensing has amply proved its ability to detect land cover
changes, particularly in forested areas. Among various strategies, those focusing on mapping using
classification approaches of remotely sensed time series are the most frequently used. The main
limit of such approaches stems from the difficulty in perfectly and unambiguously classifying each
pixel, especially over wide areas. The same procedure is of course simpler if performed over a single
pixel. An automated method for identifying forest cuttings over a predefined network of sampling
points (IUTI) using multitemporal Sentinel 2 imagery is described. The method employs normalized
difference vegetation index (NDVI) growth trajectories to identify the presence of disturbances caused
by forest cuttings using a large set of points (i.e., 1580 “forest” points). We applied the method using
a total of 51 S2 images extracted from the Google Earth Engine over two years (2016 and 2017) in an
area of about 70 km2 in Tuscany, central Italy.

Keywords: LULUCF; Sentinel-2; Google Earth Engine; NDVI; forest management; forest policy;
Mediterranean areas; IUTI database

1. Introduction

Updated and reliable information on factors that affect forest ecosystem dynamics is required to
support forest management strategies and is particularly important in landscapes subject to considerable
human impact.

Since the launch of Landsat 1 in 1972, the first satellite specifically designed to study and monitor
Planet Earth, spaceborne images have become ever more suitable for environmental monitoring. Wide
coverage, rapid updating, and spatiotemporal synchronization are some of the most important features
of remotely sensed images [1]. In addition, the policy on providing free access to high-resolution
satellite data archives (mainly Landsat and Copernicus) coupled with computational capabilities
of platforms, such as Google Earth Engine (GEE) [2], open up new frontiers in change detection
approaches [3,4].

Evaluation of significant abrupt land cover changes (e.g., forest cuttings) with remote sensing
data is usually performed using bitemporal mapping approaches, i.e., by comparing, pixel by pixel,
the classification results obtained from two coregistered images taken at different times. Examples
of traditional algorithms used to solve this issue are maximum likelihood, support vector machine
classification, classification and regression trees, and random forests [5]. The main operational drawback
with such approaches is that when two standalone image classification processes are carried out, errors
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from both are summed, resulting in cumulative errors that reduce the change detection accuracy [6].
Such errors are unacceptable, especially if the products serve as reference in decision-making over
wide areas.

In addition to remote sensing, information on land use, land use change, and forestry (LULUCF)
can also be obtained using statistical approaches [7]. In Italy, a land use inventory based on a point
sampling statistic design was established in 1990 (IUTI: Italian Land Use Inventory [8]). This database
consists of more than 1,200,000 points covering the entire national territory. IUTI represents a key
instrument for the National Registry of forest carbon sinks but its update, based on visual interpretation
of very high-resolution images, is both time-consuming and costly.

Therefore, quantifying the area of different land cover classes and/or of their changes by remote
sensing-derived information or by inventories can be viewed as the same objective addressed by
different methodologies. However, the integration of both approaches may enhance support for
land monitoring programs [9,10], especially for specific natural (e.g., fires) or artificial (e.g., cuttings)
forest disturbances.

In this paper we present a method for the automatic detection of cuttings in forest areas. To do so,
we analyzed and compared the temporal variation with the normalized difference vegetation index
(NDVI) time series (two years: 2016 and 2017) obtained from Sentinel-2 data. The Google Earth Engine
(GEE) platform was used to facilitate analysis in such a wide spatial context.

2. Materials and Methods

2.1. Study Area and Inventory Data

Seven municipalities in the Upper Tiber Valley, a public authority managing an area of 67 km2

with a high proportion of forested areas (more than 60%) located in eastern Tuscany (Central Italy),
represent the area of interest (AOI) (Figure 1).
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Figure 1. Study area of Municipal Union of Upper Tiber Valley in Tuscany and the reference points
acquired from the IUTI database. The background is a true color digital aerial orthophoto of 2016
(20-cm resolution).



Land 2019, 8, 58 3 of 11

Land cover classes of 2693 points extracted from the IUTI dataset were updated by visual
interpretation of digital orthophotos at 20-cm spatial resolution covering the entire AOI and collected
during the summer (from mid-July to the end of August) of 2015, 2016, and 2017. FAO FRA 2000 [11]
defines “forest” as land with a tree canopy cover of more than 10 percent and areas of more than
0.5 ha nd, determined both by the presence of trees and the absence of other predominant land uses.
Adopting this definition, a total of 1580 points were assigned to “forest” land use, for validation
purposes (i.e., to confirm whether or not the forest was actually cut) visited in situ during the winter
(from October 2016 to February 2017) and used as reference in the next steps of the analysis. The forest
types found in the study area, according to the European classification [12], are Apennine-Corsican
montane beech forests (Fagus sylvatica L.), Thermophilous deciduous forests dominated by chestnut
(Castanea Sativa Mill.), and Turkey oak, Hungarian oak, and Sessile oak forest (i.e., Quercus cerris L.,
Quercus frainetto Ten., and Quercus petraea (Mattuschka) Liebl.).

2.2. Remote Sensing Data

Data Collection and Pre-Processing

The Copernicus Sentinel-2 (S2) program started in June 2015 with the launch of the first satellite
(Sentinel-2A) and achieved in 2017 its targeted average revisit time of five days with the second
(Sentinel-2B). The S2 program was specifically conceived for vegetation sensing purposes and offers
innovative features for environmental remote sensing by combining high spatial resolution, wide
coverage and a quick revisit time. S2 satellites carry a multispectral sensor with 13 bands, from 0.443
to 2.190 µm. The visible R, G, B, and the near infrared bands are available at a 10-m spatial resolution,
highly suitable for application in vegetation canopies. Four red-edge bands at 20-m spatial resolution
are also available and are particularly suited to chlorophyll content analysis and to parameterizing
ecophysiological large scale models.

The high spatial and time resolutions of the S2 satellite offer unprecedented opportunities for fine
discrimination of land cover classes and their changes [13,14], and despite their relatively small number
of acquisition bands, multispectral sensors like MSI mounted on the S2 platform have proved to be
adequate to discriminate broad land cover classes (e.g., forests, water, crops, and urban areas [15]).

The normalized difference vegetation index (NDVI) derived from the satellite’s sensors is frequently
used to characterize the annual greenness changes in forest land areas and to describe forest vegetation
phenology, e.g., in Maselli et al. [16] and Bascietto et al. [17]). In this experiment, NDVI-S2 measures
derived from the red (band 4) and near-infrared (NIR, band 8) level 1C reflectance bands were used to
detect changes in forest areas affected by forest cuttings in the following equation.

NDVI =
NIR− red
NIR + red

(1)

NDVI values acquired during the vegetative seasons (from May to October) for the years 2016
and 2017 were collected using the Google Earth Engine (GEE) platform, an integrated cloud computing
platform for remote sensing and geographic information processing [2]. It integrates massive satellite-
and ground-based observations and provides basic calculation functions for raster data and vector
data. The GEE development environment allows access to a data catalogue (a large repository of
publicly available geospatial datasets, including Sentinel-2) that can be accessed for analysis using a
library of operators provided by the Earth Engine API [2].

For this experiment, a specific GEE code was developed that considers only S2 tiles with cloud
cover lower than 20% of tile area. As output, the code produces a downloadable comma separated
value (CSV) file, where the rows are the sampled points and the columns the NDVI values at a
specific date.

In addition to reflectance data, the S2 Level 1 C product also includes a cloud cover mask layer
with 60-m spatial resolution (CCM-60m). During the NDVI extraction process in GEE, points falling
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on the CCM-60m layer were masked and set as Not Available (Figure 2). As a result, some values were
missing and gaps in the NDVI growth trajectory were produced (Figure 3A). The next steps of the
analysis (gap-filling and pixel classification based on NDVI growth trajectories) were performed in R
software [18].

The gap in the NDVI growth trajectory was filled by a linear interpolation between the available
values around the gap itself (Figure 3B). Due to the coarser spatial resolution of CCM-60m than the
obtained NDVI map (10-m), some cloudy points may still go undetected, and their NDVI values
exported from GEE as “noncloudy” points (Figure 4). To overcome this issue, we calculated and set
the annual-NDVI-median as threshold (Figure 3C): each NDVI value which, year by year, is below the
threshold was considered an outlier, removed from the yearly-NDVI growth trajectory, and recalculated
following the same procedure described above (linear interpolation, Figure 3D). As a final step, the
obtained trajectories were refined using a local regression (Figure 3E) and NDVI values were estimated
at regular intervals (3 days).
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which in turn is used as input for further analysis in R (see Figure 3).
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Figure 3. (A) Normalized difference vegetation index (NDVI) growth trajectories for sampling points 
with ID #622110, a mature forest without cuts during the observed period (2016–2017). The break in 
the 2016-line (the point in orange) is an NDVI value falling in a cloud and then masked by the 
CCM-60m layer. (B) The gaps in the NDVI growth trajectory were filled by linear interpolation 
averaging the previous and subsequent values to a gap (green points). (C) Specific threshold defined 
for each year (median NDVI value); black dots represent NDVI values lower than the threshold, 
considered as covered by clouds in the procedure (see Figure 4). (D) The final result of the gap filling 
procedure. (E) Estimation of NDVI values by regular intervals using a local regression (smoothed red 
line). 

Figure 3. (A) Normalized difference vegetation index (NDVI) growth trajectories for sampling points
with ID #622110, a mature forest without cuts during the observed period (2016–2017). The break in the
2016-line (the point in orange) is an NDVI value falling in a cloud and then masked by the CCM-60m
layer. (B) The gaps in the NDVI growth trajectory were filled by linear interpolation averaging the
previous and subsequent values to a gap (green points). (C) Specific threshold defined for each year
(median NDVI value); black dots represent NDVI values lower than the threshold, considered as
covered by clouds in the procedure (see Figure 4). (D) The final result of the gap filling procedure.
(E) Estimation of NDVI values by regular intervals using a local regression (smoothed red line).
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Figure 4. An example of false-positive masked values (the same as the green point on the left in
Figure 3B). The point in the center of each subimage is not masked by CCM-60m (on the left) but is
covered by clouds, as visible in the true color image on the right.

2.3. Identification of Forest Cuttings and Qualitative Assessment

In Mediterranean areas, forest cuttings are mostly carried out during autumn and winter, when
trees are dormant. Tree removal entails a significant decline in red reflectance values that persists for
a few years afterwards. Thus, in the aftermath of a forest cutting, the yearly seasonal NDVI growth
trajectory of the regeneration vegetation is very narrow ranged. Therefore, forest sample points affected
by forest cuttings can be simply distinguished from undisturbed points by computing the difference
in mean NDVI values on a yearly basis (∆ND̂VIy), calculated as an indicator of the seasonal trend of
the NDVI trajectory for each sample point. The performance of the adopted method was defined by
comparison with data obtained from visual interpretation and field surveys (see Section 2.1).

After this step, the IUTI points on which the forest was detected as cut in winter 2016–2017
were used to estimate the spatial extent of forest cuttings with a tessellation stratified sampling (TSS)
approach (for details on this approach, please see Section 2.4).

2.4. Forest Surface Area Estimates

Let U be the population of all the N forests in the delineated study area A (with surface area equal
to |A|). Superimpose a region of regular shape, say Q⊃

⋂
A, of size |Q|, consisting of R nonoverlapping

regular polygons Q1, . . . , QR of equal shape and size, and such that Qi ∩ A,∅ for all i = 1, . . . ,R.
The estimate of the total area of the population units coincides with a Monte Carlo integration, the
population is constituted by all the points p∈Q, and the interest variable is defined in each point, i.e.,

y(p) =
{

1 i f p ∈ A
0 i f p ∈ Q−A

(2)

Therefore, the parameter to estimate is

|A| =
∫

A
y(p)dp (3)

which can be estimated by means of tessellation stratified sampling (TSS).
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According to TSS [19,20], a point is randomly chosen within each of the R polygons Q1, . . . ,QR

and the value of the interest variable (in this case whether or not the forest is cut or not) is recorded at
all sample points, and R(A) denotes the number of sampling points falling in A. The estimator of |A| is
then given by

ˆ|A| = |Q|
R(A)

R
(4)

In this experiment, the area of interest was covered by a grid of 2693 tiles, each of which was 25
ha. When the number of “cut forest points” (Nfc) is detected over the AOI, the surface area of forest
cuttings (Sfc) can be easily estimated, applying Equation. 4 as the product Sfc = Nfc·25 ha.

The estimator of its variance is given by

V̂
2
( ˆ|A|) =

|Q|2

R− 1
pA

(
1− pA

)
(5)

where

pA =
R(A)

R
(6)

while ˆ|A| ± 1.96V̂( ˆ|A|) provides a confidence interval with nominal coverage equal to 95%.
Finally, to evaluate estimate accuracy, we used the percentage of relative standard error (RSE%):

RSE% = 100·
√

V̂/Â (7)

3. Results

A threshold value of −0.07 for ∆NDVIy separates the sampling plots between cut forests and
uncut forests with an overall accuracy of 100% (Figure 5). In the period of 2016 to 2017, a total of
23 points were detected as cut forests, corresponding to an area of 575 ha (RSE% of 20.7%) and to 1.5%
of forest land in AOI. Figure 6 depicts the spatial and temporal variability of two sampling plots (cut
and uncut) at the end of the procedure. The NDVI values of managed forests before cutting were found
to be high (usually higher than 0.75) while, after cutting, they decreased to values ranging between
0.35 and 0.55.
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Figure 6. Comparison of the results in an uncut forest (point #622110, upper row) and a cut forest
(point #629535, lower row). In 2017, the mean NDVI value decreases by about 0.35 because of clear-cut.
In 2018 the herbaceous vegetation reaches upper values of NDVI, but lower than those in 2016.

At the end of the process, fifty-one S2 tiles were handled over the selected region of interest in
the five months considered, 21 in 2016, and 30 in 2017. The increased number of tiles available from
2016 to 2017 was partly due to a high degree of cloudiness in 2016 (the GEE code discards tiles with an
overall cloudiness higher than 20%), but mainly to the launch of Sentinel-2B in the first quarter of 2017.

4. Discussion

A critical challenge in land cover mapping by remote sensing time series is the lack of spatial
continuity due to cloud cover [21]. However, the increasing interest in remote sensing NDVI time
series data as an important tool for monitoring terrestrial vegetation status at large spatial scales, hence
for forest management, has stimulated the development of several methods for noise reduction and
the detection of abrupt changes in forested areas [22,23]. In addition, as pointed out elsewhere [24],
the performance of the L1C cloud mask is low in critical environmental conditions and practical
precautions are suggested, particularly for cirrus clouds. Hence, with optical remote sensing products a
gap-filling procedure is strongly recommended in order to obtain consistent products and harmonized
time series.

The gap-filling procedure which we developed and applied in this experiment—based on
the assumption that for short periods (~15 days) the spectral variability can be considered
negligible—reconstructs, with good accuracy, the missing data due to cloud cover. This is probably
due to (i) the high temporal resolution of S2 data, i.e., up to five days of revisiting time, which yields
scarce probability of cloudiness in the same point for more than two or three consecutive dates and
(ii) the specific environmental conditions of the AOI, namely managed deciduous forests. In such a
specific context, a small variation of one indicator (∆ND̂VIy = −0.07) was enough to detect sampling
points affected by forest cuttings (Figure 5). Under more heterogeneous environmental conditions,
refined algorithms (e.g., classification and regression trees [25] or random forest algorithms [26]) can be
required to split sampling points into different forest disturbance groups (e.g., cuttings, fires, or storms).

In its final step, the proposed procedure smoothes the temporal trajectories of NDVI values. This
is not recommended for abrupt change detection within the same year [22]. However, considering that
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in Mediterranean areas forest cuttings are usually performed in winter, the smoothing approach can be
considered useful.

The results on a harvested forest area in 2016–2017 obtained by using the approach presented
herein (i.e., 575 ha) are similar to those published by the “Report on Tuscan forests—2016” (in Italian)
which reported a yearly average of about 500 ha year−1 for the period 2013–2015.

Yearly forest loss spatial data derived from a time series analysis of Landsat program images
(Global Forest Watch project, GFW) is also available for the AOI of this study [27]. Version 1.6, available
for consultation on the World Wide Web, covers the years from 2000 to 2018. We found that GFW
underestimated the forest loss area for 2017 in the AOI by a factor of 4x when compared to results from
this paper (147 ha vs. 575 ha, respectively), recording an average of 120 ha y−1 for the period 2001–2018.

From the operational perspective, the GEE code performed NDVI value extraction in less than
four hours. By contrast, standard procedures (i.e., download of the same 51 S2 products and processing
them using computational workstations) would have required significant computing power and time
(more than 50 hours) for processing and large storage capacity. The procedure can be refined for the
estimation of other disturbances affecting forest growth such as fires, storms, or droughts. Land use
change NDVI trajectories comparable to forest harvest are shared by land use changes to young orchard
plantations (olive, fruit, hazelnut, and walnut), where repeated weeding leads to invariant low NDVI
values over the growing season. Hazelnut production, in particular, is rapidly expanding in Italy both
in terms of fruit production and land use change [28]. This rapid expansion is radically transforming
the rural landscape of a few Italian districts in Piedmont [23] and Lazio. The GEE procedure which we
developed has the potential to detect land use change to new orchard plantations, needed to support
policy makers in evaluating rural policies for valuable crops (e.g., the EU’s Common Agricultural
Policy) and their effects on landscape, production, and society [29].

5. Conclusions

The workflow we presented demonstrates the efficiency of a point sampling approach combined
with frequent acquisition of remotely sensed images for detection and estimation of forest disturbances.
Particularly over large areas, updated data accessible for validation as reference data are scarce, and
some authors have raised concerns about the operational use of remotely sensed land cover products
for policy and decision-making [30]. For detection of LULUCF, an approach based on sampling points
leads to better results when compared with maps obtained from classification of remotely sensed
images over polygons.

The present study assessed the land use change at a subset of sampling points identified by the
Italian Land Use Inventory (IUTI) in order to estimate the proportion of forest land use change in
a specific area of interest. Sentinel-2 spatial resolution (100-m2 per pixel) enables land use change
detection at very fine spatial detail, such that the boundaries of harvested forest areas can be easily
identified and mapped.

Future activities will include the deployment of the presented workflow on a dedicated web-based
spatial decision support system platform in order to enhance benefits for a broader community and
support policy makers.
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