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Abstract: Precipitation patterns, water flow direction, and local land-use practices affect surface water
(SW) and shallow groundwater (SGW) nutrient concentrations in riparian wetlands. Given physical
process complexities, spatiotemporal quantification of nutrients and physical factors influencing
nutrient concentrations are needed to advance wetland water resource management. To address these
needs, a study was conducted in riparian wetlands of a mixed land-use catchment in West Virginia
(WV), USA. Observed data included SW–SGW levels and nutrient concentrations, including nitrate
(NO3-N), nitrite (NO2-N), ammonium (NH4-N), orthophosphate (PO4

3-P), total nitrogen (total_N),
and total phosphorus (total_P) from January 2020 to December 2021. Water samples were collected
monthly from stream gauge sites (n = 4) and co-located piezometers (n = 13). Results showed that, on
average, gaining stream conditions were observed in upstream sites, and losing stream conditions
were observed in downstream sites. Observed nutrient profiles between SW and SGW included SW
exhibiting a higher average NO3-N concentration (0.42 mg/L), while SGW displayed an elevated
NH4-N concentration (1.55 mg/L) relative to other nitrogen species. Significantly high (p < 0.05) SW
NO3

- concentrations in summer and fall were attributed to increased precipitation and corresponding
water level and, therefore, pressure head and transport fluctuations. Principal Component Analysis
(PCA) showed differences in nutrient concentrations based on the water source type and catchment
land use, explaining 65% of data variability. Spearman correlation analysis illustrated the correlation
among nutrient concentrations, land use, and water level changes in SW and SGW environments.
This study provides needed baseline data on nutrient dynamics for a riparian wetland in a mixed
land-use catchment, supplying science-based information to advance land and water management
practices in the study watershed and similar physiographic watersheds globally.

Keywords: nutrients; nitrogen; phosphorus; riparian wetland; mixed land-use; surface water;
shallow groundwater

1. Introduction

Nutrients are essential for surface water (SW) and shallow groundwater (SGW) aquatic
food web status and resilience [1–3]. However, excess nutrient concentrations in SW and
SGW can cause eutrophication, hypoxia, and degraded water quality and impact public
health [1,4,5]. Furthermore, the nutrient inputs to freshwater resources have increased
globally during the 20th century, making this issue a growing concern [4,6]. Due to the
risks associated with increased nutrient loading, spatiotemporal assessment of nutrient
dynamics in SW and SGW systems is necessary to make informed management decisions
and improve water quality remediation strategies [1,4,7,8].

Riparian wetlands serve as a zone of transition between aquatic and terrestrial environ-
ments [8–10]. As runoff and SGW generally flow through riparian zones before entering SW,
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these areas typically function as buffer zones for reducing nutrient concentrations, including
total nitrogen (total_N) in SW and SGW [1,11–15]. Total_N includes nitrate (NO3-N), nitrite
(NO2-N), ammonium (NH4-N), and organic N [5,15], among which NO3-N is typically of
greatest concern due to its high mobility and susceptibility to leaching [16,17]. However,
riparian wetlands generally have high water tables and anaerobic conditions, facilitating
higher denitrification-to-nitrification ratios [15,18,19]. As a result, NO3-N concentrations
are lower, and NH4-N tends to accumulate in wetland soil [15,18,19]. In addition, forest and
grassland vegetation use most of the NO3-N in wetland soils. Therefore, NO3-N transport
rates to SW and SGW in riparian wetlands tend to be relatively slow [9,15]. Similar to N,
there is generally less total phosphorus (total_P) leaching in wetland SW and SGW due
to absorption into soil, sediments, and water columns [20]. Despite advances in under-
standing nutrient cycling in riparian wetlands, a great deal of work is needed to advance
science-based decisions in managing these areas [9,16,18].

Although riparian wetlands generally act as buffer zones, riparian system nutrient
reduction efficiency depends on precipitation patterns and highly spatially and temporally
variable SW and SGW mixing processes [8,16,21–24]. For example, Chinnasamy and
Hubbart [24] showed an increase of NH4-N and PO4

3-P concentrations from an upstream
riparian area toward the stream in Missouri, USA. They further provided evidence that
riparian zones may not always attenuate nutrients and concluded that accounting for the
relative position of the riparian zone to SGW flow direction is necessary to advance riparian
nutrient management practices [24]. Similarly, in a study investigating a riparian wetland
in Maryland, Jordan et al. [23] showed that riparian zones did not effectively remove SGW
PO4

3-P inputs from adjacent agricultural activities. Many recent studies have concluded
that the SW and SGW nutrient dynamics of a riparian wetland depend on several factors,
including catchment land-use activities and flow paths [13,14,16,25]. For example, Kwon
et al. [16] highlighted elevated P levels in SGW within riparian zones adjacent to paddy
fields, establishing SGW discharge into SW as the principal source of P in the stream.
Similarly, Banner et al. [25] suggested that reducing cropland with permanent vegetation
near buffer zones may reduce nutrient concentrations in stream water. Ultimately, previous
work indicates an ongoing need for additional research in different geographic locations to
understand nutrient dynamics in SW and SGW of riparian wetlands in relation to catchment
land use, water level change, and water flow direction.

To address the complexity of nutrient transport and SW and SGW processes, recent au-
thors used principal component analysis (PCA) and correlation analysis to analyze nutrient
dynamics relative to land use, water level change, and flow paths. For example, Gootman
and Hubbart [26] conducted a study in Moore’s Run Watershed, WV, that showed distinct
differences between SW and SGW nutrient concentrations using PCA and concluded that
variations based on water source types (i.e., SW and SGW) imply potential for influencing
non-point pollutant loading. Gorgoglione et al. [27] similarly used PCA and Spearman cor-
relation analysis to understand the influence of land-use on SW quality in Uruguay. They
concluded that such multivariate exploratory tools help analyze space and time nutrient
dynamics and draw conclusions on water quality factors and land use. Li et al. [10] used
PCA and correlation analysis in a riparian buffer zone of Han River Basin, China. They
concluded that N pollution was linked to the entire catchment’s urban and agricultural
land use, and the forested 100 m riparian buffer could not reliably mitigate pollutant loads
to water bodies.

Water is a major natural asset of the Appalachian Mountain range of the northeastern
United States, and therefore, ensuring the quality of water resources is needed for cities
and rural communities within and around the region [28–30]. Thus, research has been
performed to understand the nutrient dynamics and its connections to variable land use.
For example, Merriam et al. [28] suggested that even though the Monongahela River
in West Virginia (WV) is less vulnerable to high nutrient loadings, potential changes in
future land use can increase the vulnerability of the river. In addition, Webster et al. [30]
suggested that the high N in Southern Appalachia’s water resources was associated with
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agriculture or development in the riparian area or the entire catchment. However, Flite
et al. [29] observed N depletion from wastewater effluent in forested riparian wetlands in
Appalachia, emphasizing the role of SGW as a nitrogen sink in the study area. The authors
suggested that further analysis of riparian wetlands in similar physiographic regions is
important as riparian nutrient concentrations depend on localized factors (water flow
direction, water table depth, land use). Therefore, analyzing nutrient fluctuations over time
in the Appalachian regions of WV will contribute valuable insights to the existing literature
and guide conservation efforts.

The overarching objective of this research was to examine the spatiotemporal varia-
tions in N and P (and species) concentrations in SW and SGW in the riparian wetlands of
a mixed land-use watershed in WV, USA. Sub-objectives included (a) quantifying spatial
and temporal SW and SGW levels and delineating gaining or losing stream conditions,
(b) analyzing concentrations of nutrients, including (NO3-N), nitrite (NO2-N), ammonium
(NH4-N), orthophosphate (PO4

3-P), total nitrogen (total_N), and total phosphorus (total_N)
in SW and SGW grab samples, (c) quantitatively comparing inter- and intra-site (among co-
located piezometers in each monitoring site) spatiotemporal nutrient concentration change,
and (d) describing correlations of nutrient concentration change relative to land use, water
level change, and water source type (SW and SGW). Results provide new information
to the scientific literature and science-based information for land management decisions
about nutrient dynamics in riparian wetlands of mixed land-use watersheds.

2. Materials and Methods
2.1. Site Descriptions

The study was conducted in seasonally flooded palustrine emergent riparian wetlands
of a second-order reach in the West Run Watershed (WRW) located in northeastern Morgan-
town, West Virginia (WV), USA (Figure 1). The study reach drains into the third-order West
Run Creek, a Monongahela River tributary [31]. The soil texture of the study reach was
predominantly sandy, and the observed average saturated hydraulic conductivity (Ksat)
ranged from 35.90 to 169.64 m/d [31]. The soil’s average dry bulk density, porosity, and
degree of saturation were 1.27 g/cm3, 0.57, and 0.94, respectively [31]. The elevation of the
study reach decreased from 327.67 m to 310.48 m in the downstream direction (Table 1).

The study reach was instrumented with four stream stage monitoring sites designated
1A, 1B, 1C, and 1D (Figure 1). Site 1A had four co-located piezometers, and all other sites
had three co-located piezometers, resulting in 13 total piezometers. This study design
followed a similar scale-nested and paired experimental study design used in previous
studies [32–34]. Site 1A and 1B encompassed approximately 34% (0.42 km2) of the study
area, while sites 1C and 1D encompassed 13.47% (0.17 km2) and 17.93% (0.21 km2) of the
study area, respectively (Table 1). The contributing drainage area associated with moni-
toring site 1B had the highest residential area (55.39%), and 1C had the lowest residential
area (2.44%) (Table 1). The residential areas primarily consisted of parking lots, roads,
and buildings [34]. Site 1C was highly forested (68.29%), and 1A had more grasslands
(43.48%) compared to other sub-catchments (Table 1). Forested areas were primarily Oak
dominated [34]. Aside from periodic cattle grazing in the summer and fall months, there
were no agricultural activities or fertilizer use in the study area. Thus, most of the study
area was undeveloped at the time of this study, with notable residential expansion on the
northeastern side (Figure 1), as confirmed by field observations.
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Figure 1. Project study reach within the larger West Run Watershed (WRW) with four stream stage 
monitoring sites (1A, 1B, 1C, and 1D) and thirteen nested piezometers in Morgantown, West Vir-
ginia (WV), USA. 

Table 1. Land use/land cover (LULC) and drainage area of sub-catchments associated with moni-
toring sites (1A, 1B, 1C, 1D) in West Run Watershed (WRW), Morgantown, WV. The % of study area 
indicates the percentage of total study area covered by each sub-catchment. Notes: All LULC data 
are in percentage (%). 

Site Residential (%) Forest (%) 
Grassland/ 
Pasture (%) 

Drainage Area 
(km2) % of Study Area Elevation (m) 

1A 25.36 31.14 43.48 0.41 34.08 310.48 
1B 55.39 21.98 22.63 0.42 34.52 311.66 
1C 2.44 68.29 29.27 0.17 13.47 318.82 
1D 48.95 43.57 7.47 0.21 17.93 327.67 

2.2. Observed Stream Stage and SGW Level 
Stream stage was monitored (at 30 min intervals) at four stream gauging stations (1A, 

1B, 1C, and 1D) located on the study reach (January 2020 to December 2021) (Figure 1). 
Gauging stations included Solinst Levelogger pressure transducers [35] installed in 5 cm 
polyvinyl chloride (PVC) stilling wells. The current study focused on analyzing nutrient 
concentration dynamics in relation to flow direction and water level (head) changes. Thus, 
streamflow data were not collected as it was beyond the fiscal scope of the study. The 
average observed stream depth was 0.34 m [34]. SGW level was monitored using Solinist 
Levelogger Junior Edge pressure transducers [36] placed in the bottom of each piezometer 
that sensed and stored water depth data at 30 min intervals. The water depth data were 

Figure 1. Project study reach within the larger West Run Watershed (WRW) with four stream stage
monitoring sites (1A, 1B, 1C, and 1D) and thirteen nested piezometers in Morgantown, West Virginia
(WV), USA.

Table 1. Land use/land cover (LULC) and drainage area of sub-catchments associated with monitor-
ing sites (1A, 1B, 1C, 1D) in West Run Watershed (WRW), Morgantown, WV. The % of study area
indicates the percentage of total study area covered by each sub-catchment. Notes: All LULC data
are in percentage (%).

Site Residential (%) Forest (%) Grassland/
Pasture (%)

Drainage Area
(km2)

% of Study
Area Elevation (m)

1A 25.36 31.14 43.48 0.41 34.08 310.48
1B 55.39 21.98 22.63 0.42 34.52 311.66
1C 2.44 68.29 29.27 0.17 13.47 318.82
1D 48.95 43.57 7.47 0.21 17.93 327.67

2.2. Observed Stream Stage and SGW Level

Stream stage was monitored (at 30 min intervals) at four stream gauging stations (1A,
1B, 1C, and 1D) located on the study reach (January 2020 to December 2021) (Figure 1).
Gauging stations included Solinst Levelogger pressure transducers [35] installed in 5 cm
polyvinyl chloride (PVC) stilling wells. The current study focused on analyzing nutrient
concentration dynamics in relation to flow direction and water level (head) changes. Thus,
streamflow data were not collected as it was beyond the fiscal scope of the study. The
average observed stream depth was 0.34 m [34]. SGW level was monitored using Solinist
Levelogger Junior Edge pressure transducers [36] placed in the bottom of each piezometer
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that sensed and stored water depth data at 30 min intervals. The water depth data were
measured from the soil surface [36]. To compare SGW and SW levels, the water depth
was converted to water level elevation above the WGS 1984 datum by subtracting water
depth from land elevation (Table A1) [16,36]. The gaining and losing conditions of the
stream were defined by comparing the surface water level with the adjacent groundwater
level at each piezometer. Precipitation data were obtained from a National Oceanic and
Atmospheric Administration (NOAA) weather station approximately five kilometers from
the study reach at Morgantown Municipal Airport [37].

2.3. Water Sample Collection

The grab sample method [24,26,38] was used to collect monthly water samples. SW
samples were collected from four stream monitoring stations (n = 4 per month), resulting
in 96 SW samples for the study period (2020–2021). Samples were collected with polyethy-
lene 1000 mL wide-mouth sample bottles after rinsing the bottle three times with site
water. The bottle mouth was plunged vertically downward to approximately 60% stream
depth [24,26,38]. The bottle was then turned so that the opening pointed upstream. The
sample was collected carefully to avoid disruption of the streambed, which might confound
the results [38]. SGW samples were collected monthly from the co-located piezometers
(n = 13 per month), resulting in a total of 312 SGW samples for the study period. Piezome-
ters were purged approximately three days before SGW sampling using a peristaltic pump
(Cole-Parmer Masterflex L/S Portable Sampling Pump) [39] to ensure that freshwater
samples were collected on the day of sampling, thereby avoiding testing stagnant water,
as per the United States Geological Survey (USGS) [38]. Both stream and SGW samples
were collected on the first Tuesday of each month to maintain temporal consistency and
facilitate comparative analysis.

2.4. Nutrient Analysis

Nutrient concentrations, including nitrate (NO3-N), nitrite (NO2-N), ammonium
(NH4-N), orthophosphate (PO4

3-P), total nitrogen (total_N), and total phosphate (total_P)
were analyzed within 24 h of grab sample collection. A DR 3900 Laboratory Spectropho-
tometer [40] and HACH TNTPlusTM [41] analytes were used following standard HACH
analytical methods [42].

2.5. Statistical Analysis

Descriptive statistics were developed from the observed data, including average, mini-
mum and maximum values of observed SW stage, SGW depth, and nutrient concentrations
for SGW and SW grab samples. A two-way ANOVA was performed for inter- and intra-
site spatial analysis to assess average nutrient concentration differences by water source
type (SW and SGW) and monitoring sites for the study period [26,33,43,44]. ANOVA was
followed by Tukey–Kramer honest significant difference (HSD) tests to identify significant
differences in nutrient concentrations (CI = 95%, p < 0.05) across all possible combinations
of monitoring sites in SW or SGW [26,43,44]. For temporal analysis, two-way ANOVA and
Tukey–Kramer HSD tests were used to detect significant seasonal differences in nutrients
(CI = 95%, p < 0.05) [44] at monitoring sites separately for SW and SGW environments.

Principal component analysis (PCA) was conducted to identify interrelationships
between nutrient concentrations, water source type (SW and SGW), catchment land use,
and water level changes [3,16,26,33,44]. Data were standardized to ensure consistency
among variables with different measurement units or scales, with a mean of 0 and a
standard deviation of 1, before performing PCA and correlation analysis [38]. Spearman’s
correlation test [38] was conducted separately for SW and SGW, quantifying correlations
among nutrients, catchment land use, and water level changes [3,16,26,33,44].
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3. Results and Discussion
3.1. SW–SGW Level and Precipitation Changes during the Study

The average annual precipitation for 2020–2021 was 1117 mm, with 2021 (1202 mm)
experiencing a 16% increase over 2020 (1031 mm). Based on monthly averages, April was
the wettest month of 2020 (119 mm), while August was the wettest month of 2021 (183 mm)
(Figure 2). September (35 mm) and November (29 mm) were the driest months of 2020 and
2021, respectively. Temperatures for both 2020 and 2021 showed a similar pattern with high
temperatures (20 deg. C to 29 deg. C) from May to August (Figure 2). The lowest maximum
(Tmax) and minimum temperature (Tmin) were 8 deg. C and −0.8 deg. C, respectively, for
January 2020 (Figure 2). Similarly, in January 2021, the lowest maximum (4 deg. C) and
minimum temperature (−2 deg. C) were observed.
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Figure 2. Average monthly precipitation (mm), maximum temperature (Tmax), minimum tempera-
ture (Tmin) in the study reach in West Run Watershed (WRW), Morgantown, WV, for (a) 2020 and
(b) 2021. Precipitation and temperature data were obtained from the Morgantown, WV municipal
airport’s National Oceanic and Atmospheric Administration (NOAA) weather station [31].
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SGW responded to precipitation events by exhibiting higher water levels from June
to October 2020, particularly at sites 1A and 1B (Figure 3). Sites 1C and 1D showed minor
fluctuations in SGW levels with precipitation (Figure 3). Overall, considering the average
for the study period (2020–2021), for the downstream sites 1A and 1B, creek stage was
higher than the SGW, displaying losing stream conditions, with differences ranging from
7.22 m to 0.42 m (Figure 3, Table 2). Except for one piezometer, upstream sites 1C and
1D displayed higher SGW levels than creek stage, exhibiting gaining stream conditions.
Considering the daily average of 2020–2021, piezometer PC at site 1B showed higher SGW
levels than the creek in August and October 2020, demonstrating seasonal gaining stream
conditions (Figure 3). For upstream sites 1C and 1D, an overall gaining stream condition
was observed, except for piezometers PD and PB, respectively (Figure 3).

It is understood that interactions between SW and SGW, as indicated by gaining and
losing stream conditions, influence water flow directions and nutrient transport [16,45,46].
For instance, Kwon et al. [16] demonstrated that the groundwater level was higher in the
upstream high-elevation area than the stream water level, leading to a gaining stream
condition. The authors proposed that elevated SW nitrogen (N) and phosphorus (P)
concentrations were linked to SGW flow to the stream during gaining stream conditions.
Musolff et al. [46] further suggested that the spatiotemporal dynamic of groundwater
head were the dominant control of water flow direction and NO3-N concentration changes.
Pistocchi et al. [47] emphasized the significance of in-stream processes such as retention,
sorption, and diffuse nutrient inputs from water table discharge in delineating source
and buffer areas within the drainage network. Ruiz et al. [48], supported this argument
emphasizing the role of stream water mixture with SGW in governing nutrient fate and
transport. Thus, analyzing spatiotemporal nutrient concentration dynamics necessitates an
understanding of SW and SGW nutrient concentrations in relation to water flow directions,
particularly in the context of gaining-losing stream conditions.

Table 2. Average surface water (SW) level and shallow groundwater (SGW) level in the study reach
West Run Watershed (WRW), Morgantown, WV, for the study period of 2020–2021. The SW and GW
levels are the observed water depths converted to water level elevations above WGS 1984 datum
(Table A1). The water level difference (SWL-GWL) is obtained by subtracting the SW level from the
GW level. Note: Data units are meters.

Site SW Level Piezometer GW Level SWL-GWL

1A 310.32

PA_1A 303.60 6.72
PB_1A 303.09 7.22
PC_1A 306.59 3.73
PD_1A 305.33 4.99

1B 311.42
PA_1B 309.91 1.51
PB_1B 309.49 1.93
PC_1B 310.57 0.42

1C 318.57
PA_1C 320.99 −2.42
PB_1C 322.52 −3.95
PD_1C 315.71 2.86

1D 327.46
PA_1D 331.22 −3.76
PC_1D 325.93 1.53
PB_1D 330.79 −3.33
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Figure 3. Average daily SW and SGW levels and precipitation for monitoring stations 1A–1D and
co-located piezometers in the study reach in West Run Watershed (WRW), Morgantown, WV, for
(a) 2020 and (b) 2021. The water depths were adjusted to the WGS 1984 datum. Precipitation data
were obtained from the Morgantown, WV municipal airport’s National Oceanic and Atmospheric
Administration (NOAA) weather station [31]. Note: The SGW level is illustrated for each co-located
piezometer in the monitoring site. PA_1A, PB_1A, PC_1A, PD_1A are 4 co-located piezometers in
site 1A, PA_1B, PB_1B, PC_1B are 3 co-located piezometers of site 1B, PA_1C, PB_1C, PD_1C are
3 co-located piezometers of site 1C and PA_1D, PB_1D, PC_1D are 3 co-located piezometers of site 1D.
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3.2. Intersite Spatial and Seasonal Nutrient Concentrations

During the study period (2020–2021), total nitrogen (total_N) and total phosphorus
(total_P) concentrations were significantly higher in SGW than in SW (p < 0.05). However,
there were no significant differences (p > 0.05) in NO3-N, NO2-N, NH4-N, and PO4

3-P
concentrations between SW and SGW, and these constituents exhibited no significant
variations across the monitoring sites (p > 0.05). Notably, SW exhibited a higher NO3-
N concentration (0.42 mg/L), while SGW displayed an elevated NH4-N concentration
(1.55 mg/L) compared to other nitrogen species (Figure 4, Table 3). Gootman et al. [26]
similarly suggested nutrient concentration differences between SW and SGW, with SGW
showing higher NO2-N and NH4-N concentrations. The authors concluded that water
source type (i.e., SW and SGW) and corresponding flow patterns, SW–SGW interactions,
and associated catchment land use were driving the differences.

Table 3. Average concentrations of nitrate (NO3-N), nitrite (NO2-N), ammonium (NH4-N), total
nitrogen (total-N), orthophosphate (PO4

3-P), total phosphorus (total-P) with maximum and minimum
concentrations in parenthesis for SW and SGW in the study reach, West Run Watershed (WRW),
Morgantown, WV from 2020–2021. SGW concentrations are averaged for piezometer clusters at each
monitoring site.

Nitrate (NO3-N)

Site Surface Water (SW) Shallow Groundwater (SGW)

1A 0.42(1.35, 0.001) 0.32(1.59, 0.001)
1B 0.42(0.99, 0.001) 0.66(6.03, 0.001)
1C 0.28(0.92, 0.001) 0.14(0.87, 0.001)
1D 0.30(0.62, 0.001) 0.19(1.23, 0.001)

Nitrite (NO2-N)

1A 0.01(0.04, 0.001) 0.06(0.53, 0.001)
1B 0.02(0.38, 0.01) 0.24(5.85, 0.001)
1C 0.01(0.03, 0.001) 0.08(3.92, 0.001)
1D 0.01(0.06, 0.001) 0.03(0.48, 0.001)

Ammonium (NH4-N)

1A 0.20(0.48, 0.05) 1.15(2.77, 0.02)
1B 0.23(0.44, 0.08) 0.22(1.78, 0.02)
1C 0.05(0.54, 0.01) 0.10(0.84, 0.001)
1D 0.05(0.50, 0.01) 0.16(1.23, 0.03)

Total nitrogen (Total-N)

1A 1.28(2.59, 0.75) 2.80(14, 0.40)
1B 1.44(3.57, 0.75) 2.13(9.31, 0.15)
1C 0.83(1.57, 0.34) 1.05(4.05, 0.01)
1D 1.06(6.77, 0.37) 1.20(3.52, 0.43)

Orthophosphate (PO4
3-P)

1A 0.003(0.02, 0.001) 0.008(0.06, 0.001)
1B 0.01(0.07, 0.001) 0.003(0.02, 0.001)
1C 0.004(0.03, 0.001) 0.004(0.03, 0.001)
1D 0.004(0.03, 0.001) 0.004(0.11, 0.001)

Total phosphorus (Total-P)

1A 0.06(0.28, 0.001) 0.56(12, 0.001)
1B 0.07(0.36, 0.001) 0.88(8.45, 0.001)
1C 0.04(0.27, 0.001) 0.29(4.35, 0.001)
1D 0.04(0.43, 0.001) 0.28(5.92, 0.001)
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Generally, soil is a major reservoir of N in wetlands, and organic matter is continuously
being decomposed to NH4-N, which can directly leach to SGW [15,19]. In addition, high
saturation levels in wetland soils (shallow GW) can facilitate redox conditions and lead to
denitrification and, therefore, lower nitrate concentrations [12,15,16]. Furthermore, SGW
often exhibits lower NO3-N concentrations, possibly influenced by its proximity to vegeta-
tion and enhanced plant NO3-N uptake [15,18,19,23]. NH4-N transforms to NO3-N in high
aerobic conditions of SW [15]. Overall, the average NO3-N concentration across all monitor-
ing sites was less than 1 mg/L (Table 3), suggesting minimal impact from human activities
in the area [49]. Typically, NO3-N concentrations exceeding 2 mg/L indicate the influence
of anthropogenic activities such as fertilizer application and wastewater treatment [49].
However, the developed areas within the study catchment have been expanding annually.
In addition, SW and SGW in the riparian wetland receive seasonal water flow from ad-
jacent areas in the catchment (Figure A1). Thus, nutrient concentrations are attributable
to contributing catchment land-use practices [5,16,18,21,26]. Site 1B demonstrated higher
nutrient concentrations in both SW and SGW, except for elevated SGW NH4-N and total
N in 1A (Table 3). Conversely, site 1C generally exhibited lower nutrient concentrations
across SW and SGW. The elevated nutrient levels in 1B may be attributed to the high
residential (55.39%) land use at the catchment scale (Table 1), which caused high runoff
from residential impervious surfaces that transported nutrients [17,21,50,51]. In contrast,
the prevalence of forested regions (68%) at site 1C (Table 1) likely contributed to lower
nutrient transport due to higher plant uptakes and higher infiltration rates of forest soils,
as demonstrated in multiple previous investigations [5,15,23].

To analyze the seasonal variation of nutrient concentrations, the results were averaged
across the fall, spring, summer, and winter seasons for the study period (2020–2021). In SW,
NO3-N concentrations were significantly different for all four seasons (summer, fall, winter,
and spring) (p < 0.05), whereas SGW NO3-N concentrations did not significantly differ
seasonally (p > 0.05) (Figure 5). For all the monitoring stations, SW NO3-N concentrations
in summer and fall were significantly higher than winter concentrations (p < 0.05). The
seasonal fluctuation of NO3-N concentration may be attributed to precipitation patterns
and resulting SW and SGW fluctuations (Figure 3). Runoff associated with high precipi-
tation events can transport NO3-N to SW [51]. Furthermore, periodic animal grazing in
the study area during summer and fall might have increased N concentrations due to
excrement deposition, as discussed by Kurz et al. [52]. The authors also suggested that
cattle grazing intensifies the frequency and magnitude of overland flow, resulting in more
N transport to SW [52]. Additionally, during fall storms, SGW levels increased (Figure 3),
presumably resulting in increased nutrient flushing from the soil that had built up during
the summer months [18,51]. Although dilution induced by rainfall events is known to
reduce nutrient concentrations, it is worth noting that this dilution effect may be balanced
by significant nutrient leaching from the soil owing to high mineralization in the summer
months [15,47,53]. There was no significant seasonal fluctuation (p > 0.05) observed in
NO2-N, NH4-N, total_N, and total_P concentrations in SW and SGW for the study period
(Figure 5).
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3.3. Intrasite Spatial Nutrient Variation

Nutrient concentration differences for the nested piezometer arrays at each monitor-
ing site are summarized in Table 4 and Figure 6. Piezometers in upstream sites 1C and
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1D represented decreased nutrient concentrations with a larger distance from the creek
(Figure 6, Table 4). The closest piezometers to the creek in sites 1C and 1D had lower water
tables than the reach stage, implying losing stream conditions (Figure 3, Table 2). As a
result, nutrients in SW can be transported towards SGW, thereby exhibiting higher nutrient
concentrations relative to SW in the closest piezometer to the creek. As the distance from
the creek increased in these sites, the nutrient concentrations in piezometers decreased
(Figure 6, Table 4). Previous studies have observed nutrient concentration decrease with
distance from the creek, often attributing this phenomenon to subsurface sink mecha-
nisms [53,54]. For example, Triska et al. [53] observed that wells > 4.3 m from the channel
acted as significant N sink. The authors suggested that anaerobic SGW increased the
denitrification potential of the site more than aerobic creek locations. Furthermore, nutrient
removal mechanisms such as plant uptake contribute to nutrient attenuation [15,54]. The
upstream sites of the study reach were highly forested (Table 1), making them prone to
nutrient removal by plants.

Table 4. Average nitrate (NO3-N), nitrite (NO2-N), ammonium (NH4-N), orthophosphate (PO4
3-

P), total nitrogen (total_N), and total phosphorus (total_P) concentrations in SGW from co-located
piezometers of monitoring stations 1A–1D in the study reach, West Run Watershed (WRW), Morgan-
town, WV from 2020–2021. Notes: The values in parentheses represent piezometer distance from the
creek.

Site Piezometer NO3-N NO2-N NH4-N Total_N PO4
3-P Total_P

1A

PC_1A (55 m) 0.51 0.10 0.53 3.10 0.001 1.31
PB_1A (21 m) 0.23 0.05 1.40 2.94 0.001 0.46
PA_1A (19 m) 0.29 0.06 1.16 2.34 0.001 0.29
PD_1A (16 m) 0.23 0.02 1.55 2.84 0.001 0.18

1B
PA_1B (28 m) 1.19 0.49 0.41 3.01 0.001 1.64
PB_1B (27 m) 0.57 0.17 0.16 2.01 0.001 0.69
PC_1B (18 m) 0.20 0.07 0.09 1.37 0.001 0.30

1C
PB_1C (36 m) 0.12 0.02 0.09 0.98 0.001 0.14
PA_1C (35 m) 0.15 0.03 0.09 1.02 0.001 0.22
PD_1C (19 m) 0.16 0.19 0.13 3.79 0.001 0.52

1D
PA_1D (43 m) 0.16 0.01 0.11 1.29 0.001 0.18
PC_1D (31 m) 0.17 0.03 0.16 1.04 0.001 0.30
PB_1D (8 m) 0.23 0.04 0.22 1.27 0.001 0.35

However, in downstream sites 1A and 1B, nutrient concentrations increased with
distance. Similar results were observed in Chinnasamy and Hubbart [24], who indicated
a high concentration of nutrients with stream distance and suggested SGW flow patterns
and interactions with SW are important for nutrient attenuation in riparian zones. As
per the primary literature [53,54], the nutrient concentration is expected to be lower at
greater distances due to dilution effects and the subsurface sink mechanism. However,
high nutrient leaching from soil to SGW is assumed to offset the dilution effect [15,47].
This assumption is reasonable because the decomposition of organic matter in wetlands
contributes to soil serving as a reservoir of nitrogen (N), which can subsequently leach into
SGW [15]. Furthermore, plant uptake in downstream sites was presumably low due to
less forest cover, resulting in less nutrient uptake and more leaching [15,54]. Additionally,
piezometers in the downstream site 1A represented higher NH4-N concentrations than
NO3-N (Table 4), exhibiting subsurface redox conditions as discussed by [15,24,53]. Thus,
despite the flow direction from the creek to SGW (a losing stream scenario), NO3-N entering
the subsurface underwent denitrification, and thus, SGW NO3-N concentration was lower
than SW. Both in SW and SGW, ortho-P levels were consistently low in all piezometers,
possibly attributed to sorption and the removal of sorbed ortho-P by plants and microbes
in wetlands, as presented in previous research [6,18].
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Figure 6. Nitrate (NO3-N), nitrite (NO2-N), ammonium (NH4-N), orthophosphate (PO4
3-P), total

nitrogen (total_N), and total phosphorus (Total_P) concentrations in SGW from monitoring stations
1A–1D in the study reach, West Run Watershed (WRW), Morgantown, WV from 2020–2021. The
X-axis represents the distance of co-located piezometers from the reach, where 0.0 m is the stream’s
edge at each monitoring site, with distinct shapes denoting piezometers from different sites.

3.4. Principal Component Analysis (PCA) and Correlation

The first four principal components (PCs) with eigenvalues >1 were given the primary
focus [16,26,44], as the four PCs (PC1-PC4) cumulatively explained 76% of the data variation
(Table 5). Loadings indicated the eigenvector weights, with values higher than the average
threshold (>0.31), implying stronger relationships between parameters and corresponding
PCs [44] (Table 6). PC1 displayed high positive loading for NO3-N, NO2-N, NH4-N, total_N,
total_P, and strong negative loading for forest (Table 6), reflecting primary nutrients in
both SW and SGW and their negative correlation with forested land use. PC2 represented
land use of the study reach with forest, grassland, and residential percentages showing
higher loadings (Table 6). The PC1-PC2 biplot depicted separations among monitoring
sites by sub-catchment land use (Figure 7a). PC1 separated sites 1B and 1D with more
residential catchments than sites 1A and 1C (Figure 7a). PC2 distinguished between sites
1A and 1B (less forested catchment) and 1C and 1D (more forested catchment). PC1_PC3
biplot represented distinct nutrient profiles by water source type (SW and SGW) (Figure 7b).
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Similar to the PC1-PC2 biplot, the PC2-PC3 biplot showed the separation of monitoring
sites (Figure 7d), further supporting the difference in nutrient dynamics due to catchment
land-use practices. Thus, water source type, monitoring stations, and associated land use
cumulatively explained 65% of data variability (Table 5). PC3 and PC4 biplots showed
no significant separation by water source type (SW and SGW), monitoring stations, and
associated land use (Figure 7c).

Table 5. The eigenvalue, proportion of variance, and cumulative variance of each principal compo-
nent (PC).

Principal
Component PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Eigenvalue 1.72 1.45 1.19 1.07 0.97 0.75 0.62 0.51 0.46 0.00

Proportion of variance 0.30 0.21 0.14 0.11 0.09 0.06 0.04 0.03 0.02 0.00

Cumulative Proportion 0.30 0.51 0.65 0.76 0.86 0.91 0.95 0.98 1.00 1.00

Table 6. Loadings of nitrate (NO3-N), nitrite (NO2-N), ammonium (NH4-N), total nitrogen (Total_N),
orthophosphate (PO4

3-P), Total phosphorus (Total_P), land-use percentages (forest, residential, agri-
culture), SW–SGW levels (water level) for first four principal components (PC1, PC2, PC3, and PC4).
Loadings higher than the average threshold (>0.31) are in bold.

Parameters PC1 PC2 PC3 PC4

Water level 0.12 −0.25 −0.55 0.31
Forest −0.33 −0.38 −0.31 −0.38

Residential 0.20 0.60 −0.08 0.29
Grassland 0.12 −0.46 0.54 0.03

NO3-N 0.33 0.25 0.24 −0.40
NO2-N 0.44 0.01 −0.24 −0.39
NH4-N 0.32 −0.30 0.28 0.44
Total_N 0.43 −0.22 −0.15 −0.07
Total_P 0.46 −0.11 −0.23 0.01
PO4

3-P 0.09 0.02 0.18 −0.40
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PCA analysis highlighted the distinct nutrient dynamics of SW and SGW. Correlation
analyses for SW and SGW were performed separately (Figure 8) to explore these differ-
ences further. Both in SW and SGW environments, forest areas exhibited a high negative
correlation with all the nutrients (Figure 8). Grassland areas were significantly positively
correlated with NH4-N in both SW and GW. Under wetland soil conditions, NH4-N accu-
mulates due to less nitrification and more denitrification under anaerobic conditions [15].
Furthermore, vegetation, including grasslands and forests in riparian wetlands, is essential
in NO3-N removal by plant uptake [9,15,18]. For example, plant uptake was shown to
remove 88% of N in a perennial cropping system and 100% in a mixed deciduous forest
in the riparian area of Calapooia River, Oregon [18]. Similarly, Hefting et al. [9] suggested
that 13 to 99% of GW NO3-N was removed by riparian forest vegetation uptake. In the
current study, catchment residential areas were significantly positively (p < 0.05) correlated
with NO3-N, NO2-N, and total_P in SGW. Similarly, in SW, residential practices at the
catchment scale had a significant positive relation (p < 0.05) with total_N. High NO3-N
levels in residential areas are attributed to high impervious surfaces and residential storm
runoff [21,51]. In addition, in the SGW environment, the water level difference between
SW and GW (SWL-GWL) had a significant positive correlation with NO3-N and total_N
(p < 0.05). With a higher difference between SW and GW levels, more SW will be dis-
charged to SGW and transport more NO3-N from the creek. However, the relationship
was not significant for NH4-N, NO2-N, and Total_P (p > 0.05) (Figure 8). Overall, PCA
and correlation analysis depicted primary nutrients in the SW and SGW environment
and identified the importance of water source type, catchment land use, and hydrology
on nutrient concentration dynamics, similar to previous results [3,10,16,26]. Despite the
immediate area’s minimal human impact, correlation analysis established a connection
between land-use practices in the contributing upland areas and nutrient loadings in the
riparian wetland. Thus, this study offers important baseline data showing that riparian
wetlands with low anthropogenic impact are nonetheless impacted, thereby providing
guidance to improve wetland management decisions and the formulation of sustainable
nutrient mitigation strategies in low-impact wetlands [3,10].
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3.5. Limitations, Implications, and Future Directions

The present study offers a distinct opportunity to understand the spatiotemporal
dynamics of nutrient concentrations in SW and SGW in riparian wetlands of a mixed land-
use catchment in the Appalachian region of West Virginia. The study provides valuable
insights into nutrient concentration differences relative to land use, water level change, and
water source type (SW and SGW). Moreover, the current project supplies greatly needed
baseline data for a low human-impacted riparian wetland in a mixed land-use catchment.
This baseline data offers insights into land management strategies. For example, while
the area has limited human impact, the correlation between catchment residential areas
and SW–SGW nutrient concentration dynamics emphasizes the importance of reducing
rapid development in the catchment. Additionally, cattle grazing, with its associated
activities of walking, trampling, and excrement deposition, can negatively affect water
quality and contribute to N transport via increased overland flow [52]. Therefore, reducing
cattle grazing is essential for preserving surface and SGW water quality in these areas.
The four SW monitoring stations and 13 co-located piezometers yielded high-resolution
data for a mixed land-use catchment, which could be extended to similar wetland studies.
Additionally, the current study used nutrient data from 2020–2021 to identify riparian
wetland-governed hydrology and nutrient dynamics. While a longer time series may
better support the findings in this investigation, the current project provides important
nutrient baseline data. In addition, the spatial nutrient concentration analysis showed
probable subsurface storage properties. However, to validate the subsurface storage (sink)
mechanisms, data involving soil organic matter, dissolved oxygen, and redox potential are
needed [16,53]. Mass balance calculations can offer insights into nutrient mass transport
mechanisms due to surface water seepage, groundwater discharge, and nutrient retention
through processes such as plant uptake and denitrification [55]. However, the current
data lack information on nutrient flux and rate and kinetics of the in-stream processes.
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In addition, PCA and correlation analysis advanced understanding of the influence of
catchment land use on nutrient concentrations in SW and SGW of riparian wetlands.
However, due to the complex topography in the study area, the nutrient transport from high
elevation land-use areas might have undergone subsurface changes, raising uncertainties
regarding nutrient transformation processes. Stable isotopes may provide more reliable
information about land-use contribution and residence times [16]. However, isotope
analysis and hydrochemical data collection were fiscally beyond the scope of the study.
Despite these limitations, the present study presents valuable baseline information, which
could be extended by performing SW–SGW integrated modeling to better understand SGW
flow dynamics to and from receiving SW. This information will be helpful to researchers
and water managers to understand nutrient fate and transport better and make informed
water resource management decisions.

4. Conclusions

Riparian wetland’s nutrient dynamics are impacted by surface water (SW)–shallow
groundwater (SGW) flow direction and local land-use practices. Thus, a spatiotemporal
assessment of nutrient concentrations is needed to ensure SW and SGW quality. Nu-
trient concentrations, including nitrate (NO3-N), nitrite (NO2-N), ammonium (NH4-N),
orthophosphate (PO4

3-P), total nitrogen (total_N), and total phosphorus (total_P) in SW
and SGW were monitored between 2020 and 2021 in riparian wetlands of a mixed land-use
catchment in West Run Watershed (WRW), located in northeastern Morgantown, West
Virginia (WV). On average, gaining stream conditions were observed in upstream sites,
and losing stream conditions were observed in downstream sites. Total_N and total_P
concentrations in SGW significantly exceeded SW concentrations (p < 0.05). Out of total_N,
NO3-N dominated in SW (0.42 mg/L), while NH4-N prevailed in SGW (1.55 mg/L), based
on 2020–2021 average concentrations. Significantly high (p < 0.05) SW NO3-N concentra-
tions in summer and fall relative to winter are attributed to increased precipitation and the
resulting SW and SGW fluctuations. Intra-site nutrient analysis indicated decreased nutri-
ent concentrations with distance from the creek in sites 1C and 1D. Due to losing stream
conditions in the nearest piezometers to the creek, nutrients in SW can move towards SGW
and exhibit high nutrient concentrations. Principal Component Analysis (PCA) showed
differences in nutrient concentrations based on the water source type and catchment land
use, explaining 65% of data variability. Spearman correlation analysis illustrated the corre-
lation among nutrient concentrations, land use, and water level changes in SW and SGW
environments. The study presents a distinct opportunity to analyze the spatiotemporal
dynamics of SW and SGW nutrient concentrations in minimally human-impacted riparian
wetlands in the Appalachian region of West Virginia. A notable component of the study
are the quantitative correlations between the SW and SGW nutrient concentrations based
on observed data in these minimally impacted riparian zones to the water flow direction
and catchment land-use practices. Consequently, this study provides needed baseline data
in riparian wetlands, offering valuable information to advance land management strategies
in similar mixed land-use wetlands.
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Table A1. Land surface elevation (Datum: WGS_1984), observed water depth, water level elevation of
monitoring stations and piezometers in the study reach, West Run Watershed (WRW), Morgantown,
WV. Land elevation data were obtained from the USGS National Elevation Dataset (https://www.
usgs.gov (accessed on 25 April 2023)). Water depth was converted to elevation above WGS_1984 by
subtracting water depth from land elevation.

Site Surface
Elevation (m)

Water Depth
(m)

Water Level
Elevation (m) Piezometer Surface

Elevation (m)
Water

Depth (m)
Water Level

Elevation (m)

1A 310.48 0.16 310.32

PA_1A 304.98 1.38 303.60
PB_1A 304.43 1.34 303.09
PC_1A 307.78 1.19 306.59
PD_1A 306.67 1.34 305.33

1B 311.66 0.24 311.42
PA_1B 310.96 1.05 309.91
PB_1B 310.95 1.47 309.49
PC_1B 311.72 1.15 310.57

1C 318.82 0.25 318.57
PA_1C 323.03 1.96 320.99
PB_1C 324.48 2.03 322.52
PD_1C 316.86 1.15 315.71

1D 327.67 0.21 327.46
PA_1D 333.06 1.83 331.22
PB_1D 327.30 1.37 325.93
PC_1D 332.44 1.64 330.79
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