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Abstract: Significant carbon emissions, a key contributor to global climate warming, pose risks to
ecosystems and human living conditions. It is crucial to monitor the spatial and temporal patterns
of carbon emissions at the county level to reach the goals of carbon peak and neutrality. This study
examines carbon emissions and economic and social problems data from 89 counties in Zhejiang
Province. It employs analytical techniques such as LISA time path, spatio-temporal transition,
and standard deviational ellipse to investigate the trends of carbon emissions from 2002 to 2022.
Furthermore, it utilizes the GTWR model to evaluate the factors that influence these emissions
on a county scale. The findings reveal the following: (1) The LISA time path analysis indicates
a pronounced local spatial structure in the distribution of carbon emissions in Zhejiang Province
from 2002 to 2022, characterized by increasing stability, notable path dependency, and some degree
of spatial integration, albeit with a diminishing trend in overall integration. (2) The LISA spatio-
temporal transition analysis indicates significant path dependency or lock-in effects in the county-
level spatial clustering of carbon emissions. (3) Over the period 2002–2022, the centroid of carbon
emissions in Zhejiang’s counties mainly oscillated between 120◦55′15′′ E and 120◦57′01′′ E and
between 29◦55′52′′ N and 29◦59′11′′ N, with a general northeastward shift forming a “V” pattern. This
shift resulted in a stable “northeast–southwest” spatial distribution. (4) Factors such as population
size, urbanization rate, and economic development level predominantly accelerate carbon emissions,
whereas industrial structure tends to curb them. It is crucial to customize carbon mitigation plans
to suit the circumstances of each county. This study provides insight into the spatial and temporal
patterns of carbon emissions at the county level in Zhejiang Province. It offers crucial guidance for
developing targeted and practical strategies to reduce carbon emissions.

Keywords: county level; carbon emissions; spatio-temporal dynamic; influencing factors; Zhejiang

1. Introduction

Several crises, such as water scarcity, food insecurity, and public health emergencies,
are being brought on by recent trends in global warming, which have led to a persistent
degradation of the ecological environment and a threat to human survival [1–3]. The
primary cause of global warming is the increase in carbon dioxide emissions. As a result,
the world community has focused its efforts on reducing these emissions, encouraging
low-carbon, sustainable growth and supporting ecological preservation [4–6]. Following a
sharp increase in emissions, China overtook the US as the world’s top carbon producer in
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2007 [7]. By 2022, China’s carbon emissions had surged to 11.48 billion tons, marking an
annual growth rate of 3.7% since 2018 [8]. Predominantly, these emissions stem from fossil
fuels, comprising 84.1% of China’s total in 2020 [9]. As a result, China has actively looked
for ways to reduce its carbon footprint, set several goals and policies [10,11], and, at the
75th UN General Assembly, declared its intention to achieve carbon neutrality by 2060 and
a carbon peak by 2030, reiterating its commitment to a comprehensive green transition [12].

Counties, serving as the core administrative entities and spatial foundations for in-
dustrial and economic expansion in China [13], encompass 78% of the nation’s landmass,
are home to two-thirds of its population, and contribute approximately 51.8% to China’s
GDP [14]. The county-level administrative divisions here include counties (such as Deqing
county, Cangnan county, and Panan county), county-level cities (Dongyang City, Cixi City,
and Yueqing City), and districts (Wucheng district, Yuhang district, and Haishu district)
under city jurisdiction. Notably, they are responsible for over half of the nation’s carbon
emissions [15], underscoring the immense potential and urgent need for low-carbon initia-
tives at this level, which are crucial for China’s carbon neutrality aspirations [16]. Achieving
these reduction goals entails national macro-strategic planning and an emphasis on local-
ized carbon emission strategies [17]. Hence, it is crucial to examine county-level carbon
emissions thoroughly, accurately chart their spatio-temporal progression, and comprehend
the factors that drive them. Acquiring this knowledge is essential for fostering regional
cooperation in sustainable growth and improving the scientific accuracy, execution, and
efficacy of energy conservation and emissions reduction strategies [15].

Researchers in the modern era have used a wide variety of analytical tools to focus
more on the temporal and spatial patterns of carbon emissions. Duman [18] utilized the
standard deviational ellipse (SDE). They observed a progressive change in the trajectory
of urban carbon emissions in China, transitioning from a “northeast–southwest” to a
“northwest–southeast” orientation. Concurrently, the standard deviation ellipse grew,
indicating that air pollution and carbon dioxide emissions had expanded in space over
time. Liu [19] utilized spatial autocorrelation (SA) to reveal notable geographical variation,
self-correlation, and spillover effects associated with urbanization and carbon emissions.
Zhang [20] utilized Kernel Density Estimation (KDE) for their study, effectively pinpointing
spatial associations between carbon emission patterns and land-use-related emissions.
In another investigation, Soares [21] utilized the Gini Index (GI) to analyze the world’s
50 major economies and discovered a strong correlation between economic levels and
carbon emissions, revealing that higher economic levels lead to greater carbon emissions.
Williams [22] employed the Coefficient of Variation (CV) to analyze carbon emission
patterns in the Southern Ocean and discovered that this region significantly contributes
to the sequestration of heat and the absorption of anthropogenic carbon. These research
works provide essential perspectives on the spatio-temporal patterns of carbon emissions.
However, the main focus of these studies has been on the provincial and municipal levels,
with significantly less attention paid to the county level. This discrepancy underscores
the necessity for more detailed research at a finer scale. Delving into these aspects at a
more granular level is crucial for understanding the subtle dynamics of spatial interactions
and the specific impacts between neighboring areas. Such an approach can aid in the
formulation of more effective and targeted decision-making and planning strategies.

Understanding the factors influencing carbon emissions is vital for advancing carbon
reduction and environmental improvement. Scholars frequently employ methods like
Spatial Econometric Regression Models (SEMs), Logarithmic Mean Divisia Index (LMDI),
Geographically Weighted Regression (GWR), Multiscale Geographically Weighted Re-
gression (MGWR) models, and STIRPAT models in their research. For example, Qu [23]
analyzed the spatial response mechanism between carbon emission efficiency and ecosys-
tem services using SEMs, finding that overall ecosystem services are influenced not only
by local carbon emission efficiency but also by that of surrounding areas. Quan [24] and
González [25], through their analysis with the LMDI model, discovered that in Spain,
factors related to per capita output are predominant in the industrial sector, while factors re-
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lated to carbonization effects play a critical role in the commercial sector. Khodakarami [26]
used the GWR model to study how trees capture carbon, absorb CO2, and produce oxygen
across different areas and what affects these processes. He found that the carbon-absorbing
services of urban green spaces are key to cutting greenhouse gas emissions and supporting
sustainable environmental development. Li [27] utilized the MGWR model to investi-
gate the determinants of urban carbon emissions in China. Their findings uncovered
geographical variations in the effects of per capita GDP, secondary industry percentage,
and population density on carbon emissions. Nosheen [28] used the STIRPAT model to
analyze the factors affecting carbon emissions in some Asian countries and found that
energy consumption and urbanization contribute to increasing carbon emissions. Although
these studies provide valuable insights into the factors affecting carbon emissions, they
often focus more on the overall positive and negative impacts during the entire phase,
without delving into the temporal and spatial changes of these factors. Thus, there is a need
for in-depth research from different temporal and spatial perspectives to clearly observe
the changes in the time series of influencing factors and to reveal local factors causing
regional disparities. By expanding the research scope to these aspects, it becomes possible
to gain a more detailed understanding of the reasons affecting carbon emissions, thereby
formulating more targeted and effective mitigation and adaptation strategies.

This article endeavors to clarify the spatial–temporal aspects of carbon emissions
at the county scale in Zhejiang Province using ESTDA methods, including LISA time
path and LISA spatio-temporal transition, as well as the standard deviational ellipse. The
GTWR model is utilized to investigate the factors influencing carbon emissions at this
level. This study is innovative in two key respects: Firstly, it adopts a micro-scale approach,
analyzing the spatio-temporal attributes of carbon emissions at the county level in Zhejiang
Province, marking a shift from static to dynamic research methodologies. Secondly, it
leverages the GTWR model’s capacity to account for the spatio-temporal heterogeneity of
influencing factors. It enables a more nuanced understanding of these factors on carbon
emissions, in contrast to traditional global regression methods. This approach is valuable
for policymakers developing targeted carbon reduction strategies. The research objectives
were as follows: (1) to collect and examine Zhejiang Province county-level carbon emission
data in order to shed light on the spatio-temporal aspects of these emissions; (2) to create
and employ a GTWR model for analyzing the factors that affect carbon emissions in
different spatial and temporal dimensions within Zhejiang Province; and (3) to integrate
the findings from both analyses to formulate viable strategies and recommendations for
reducing carbon emissions at the county level.

The remainder of this work is organized in the following manner: Section 2 outlines
the data sources and methodologies used in this research. Section 3 explores the spatial and
temporal dynamics of carbon emissions, along with their determinants at the county level
in Zhejiang Province. Section 4 consolidates the key results, discusses possible approaches
and suggestions, recognizes the limitations of this study, and suggests future research
avenues and areas of focus.

Based on this research gap, this study aimed to investigate the spatio-temporal patterns
of carbon emissions and their influencing factors from a micro-perspective of county scale.
Therefore, we proposed two research questions:

RQ1. How do the local development directions and global trajectories of the spatio-
temporal pattern of carbon emissions at the county level in Zhejiang Province change?

RQ2. What factors drive the changes in the spatio-temporal pattern of carbon emissions
at the county level in Zhejiang Province?

This paper contributes to the literature on carbon emissions in several ways: First,
it delves into the county scale, moving beyond the provincial and city scales. Second, it
examines the spatio-temporal pattern of carbon emissions at the county level in Zhejiang
Province from both local and global dimensions. Third, it explores the factors affecting the
spatio-temporal distribution of carbon emissions at the county level in Zhejiang Province
and analyzes the spatio-temporal changes of significant influencing factors.
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2. Materials and Methods
2.1. Research Framework

Our empirical research framework is illustrated in Figure 1. Firstly, we organized
and processed data from the China Emissions Accounts and Datasets (CEAD), Zhejiang
Statistical Yearbooks, and some municipal statistical yearbooks for the years 2002–2022,
generating both total carbon emission data and data on influencing factors composed of
multiple indicators. Secondly, based on the total carbon emissions of each county over the
years, we comprehensively elucidated the spatio-temporal evolution of county-level carbon
emissions in terms of spatial distribution, regional disparities, and temporal evolution
using LISA time path, LISA spatio-temporal transitions, and standard deviation ellipse
methods. The analysis of relative length in the LISA time path examined the dynamic
nature of local spatial dependence and structure, while the analysis of curvature examined
the direction of local spatial dependence, and the analysis of transfer direction assessed the
competitive situation between neighboring counties. The LISA spatio-temporal transitions
analysis evaluated the transfer of local spatial association types, thereby determining
the stability of county-level spatial positions [15]. The analysis of centroid displacement,
centroid distribution, and ellipse orientation in the standard deviation ellipse examined
the overall spatial distribution and spatio-temporal trend [18]. The former two were
analyzed from a local perspective, while the latter was analyzed from a global perspective.
Finally, we conducted OLS and GWR analyses to examine and eliminate inappropriate
indicators from the total carbon emission and influencing factor data, and then constructed
a GTWR model to analyze the positive and negative impacts of key factors on county-level
carbon emissions, which are of great significance for government policy formulation and
intervention planning [26].
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2.2. Research Area

Zhejiang Province is located on the southern bank of the Yangtze River Delta in China’s
southeastern coastline region. It extends from 27◦02′ to 31◦11′ N latitude and 118◦01′ to
123◦10′ E longitude. Comprising ten cities, Zhejiang Province added one county-level city
in the 2021 administrative division adjustment, totaling 90 county-level administrative
districts (Figure 2). Although Zhejiang’s area accounts for less than 1.5% of the country’s
total, its per capita GDP in 2021 reached RMB 113,900, ranking fifth nationwide, with a gross
domestic product amounting to RMB 6.5 trillion [29,30]. Nevertheless, the swift pace of
development has brought about a multitude of environmental challenges, among which is
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the escalation of carbon emissions. As an “Ecological Civilization Demonstration Zone”, the
Zhejiang Provincial Government is committed to fostering a low-carbon economy, aiming
to mitigate carbon emissions through strategic spatial planning [31]. Over the years, it has
implemented policies such as “Implementation Opinions on Supporting Work for Carbon
Peak and Carbon Neutrality” and “Zhejiang Province’s 14th Five-Year Plan for Energy
Conservation and Emission Reduction.” The province’s efforts in energy conservation and
decreasing emissions have been particularly effective, making it a remarkable case for
research with significant demonstrative and referential relevance.
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2.3. Data Sources

This study selected 90 districts and counties in Zhejiang Province as research subjects.
To analyze the spatial and temporal patterns of carbon emissions in Zhejiang Province at the
county level, this study employed carbon emission data from 2002 to 2022. The data were
obtained from the China Carbon Accounting Database (CEAD), which may be accessed at
https://www.ceads.net/data/county/ (accessed on 6 August 2023). Due to the absence
of carbon emission data for Longgang City, this area was excluded from the data analysis,
making the other 89 counties the focus of the study. This study examined the factors that
influence carbon emissions in the counties of Zhejiang Province. It utilized social, economic,
and industrial data sourced from the Zhejiang Statistical Yearbook (https://tjj.zj.gov.cn/
col/col1525563/index.html accessed on 6 August 2023) as well as the statistical yearbooks
of different cities and counties spanning from 2002 to 2022.

2.4. Methods for Studying the Spatio-Temporal Dynamics of Carbon Emissions
2.4.1. LISA Time Path

The LISA time path is a continuous representation of the Markov transition matrix.
It dynamically displays spatial differential patterns over time by connecting changes in
each period through the movement’s length and angle in the Moran scatter plot. The
LISA coordinates of each county unit are composed of Z and WZ, derived from various

https://www.ceads.net/data/county/
https://tjj.zj.gov.cn/col/col1525563/index.html
https://tjj.zj.gov.cn/col/col1525563/index.html
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comprehensive indices. The transition path of the LISA coordinates is assessed through
the movement of these coordinates, and their temporal trajectory can be represented as[(

Zi,1, Wzi,1

)
,
(
Zi,2, Wzi,2

)
K,

(
Zi,t, Wzi,t

)]
. The LISA time path analysis not only elucidates the

joint spatial–temporal evolution of economies across different counties but also highlights
local spatial disparities and the dynamic spatio-temporal aspects of economic progress. Its
key geometric features predominantly encompass aspects like relative length, curvature,
and movement direction [32]. The calculation equation is as follows.

∼
Pi =

N ∗ ∑T−1
t=1 H(Li,t, Li,t+1)

∑N
i=1 ∑T−1

i=1 H(Li,t, Li,t+1)
(1)

In Equation (1),
∼
Pi represents the relative length of the LISA time path, N is the total

number of counties under study, T is the number of time intervals in the study period,
Li,t denotes the specific location of the county in the Moran scatter plot at time t, and

H(Li,t, Li,t+1) is the distance moved by the county from time t to t + 1. When
∼
Pi < 1, it

indicates that the movement of the county unit in the Moran scatter plot is more stable; the
opposite is more active [33].

Di =
∑T−1

t=1 d(Li,t, Li,t+1)

d(Li,t, Li,t+1)
(2)

In Equation (2), Di represents the curvature of the LISA time path. A smaller value
of Di indicates a straighter LISA time path, signifying that the county units exhibit more
stable local spatial dependency directions and a more gradual regional carbon emission
growth process [33].

θi = arc tan
∑j sin θi

∑j cos θj
(3)

In Equation (3), θi represents the annual average movement direction of the unit.
Directions from 0◦ to 90◦ and 180◦ to 270◦ indicate that the carbon emission trends of
the local and neighboring county-level cities are the same, with the former showing high
growth and the latter showing low growth. Meanwhile, directions from 90◦ to 180◦ and
270◦ to 360◦ indicate that the carbon emission trends of the local and neighboring county-
level cities are opposite, with the former exhibiting a low-growth trend locally while the
neighborhood experiences high growth, and the latter showing a high-growth trend locally
while the neighborhood experiences low growth [34].

2.4.2. Spatio-Temporal Transition

Rey [35] combined the spatial connectivity patterns of county-level units in Moran
scatterplots over specific time intervals with traditional Markov chains, proposing Local
Markov Transitions and Spatio-temporal Leaps. Spatio-temporal leaps can characterize the
spatio-temporal evolution of spatial connectivity patterns of county-level units and include
four types: Type I, Type II, Type III, and Type IV. Type I refers to transitions occurring
only within the unit itself, including HHt to LHt + 1, HLt to LLt + 1, LHt to HHt + 1,
and LLt to HLt + 1. Type II indicates transitions occurring only in the neighboring areas,
encompassing four scenarios: HHt to HLt + 1, HLt to HHt + 1, LHt to LLt + 1, and LLt to
LHt + 1. Type III involves transitions in both the unit itself and its neighbors, which can be
further divided into Type IIIA and Type IIIB. Type IIIA represents transitions in the same
direction, including HHt to LLt + 1 and LLt to HHt + 1, while Type IIIB denotes transitions
in the opposite direction, including HLt to LHt + 1 and LHt to HLt + 1. Type IV refers to
being located in the same quadrant, with no spatio-temporal transition occurring. Based
on the classification of these four types, the spatial autocorrelation (St) of the local Moran’s
I index [33] can be expressed as:

St =
F0,t

n
(4)
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2.4.3. Standard Deviational Ellipse and Gravity Center Migration

The standard deviational ellipse (SDE), characterized by fundamental parameters
like center, major axis, minor axis, and orientation angle, effectively unveils the general
traits of geographic features’ spatial distribution. It can quantitatively depict the spatial
pattern distribution and the process of spatio-temporal evolution [36]. The equation for the
standard deviational ellipse [37–39] is expressed as follows:

Xw =
∑n

i=1 wixi

∑n
i=1 wi

, Yw =
∑n

i=1 wiyi

∑n
i=1 wi

(5)

In Equation (5),
(
X, Y

)
represents the centroid coordinates of carbon emissions in

Zhejiang Province’s county-level units, n is the number of county-level units in Zhejiang
Province, and (xi, yi) represents the center coordinates of each county-level research unit,
while wi denotes the weight of the research unit.

σx =

√√√√√∑n
i=1

(
wi

∼
x i cos α − wi

∼
y i sin α

)2

∑n
i=1 w2

i
(6)

σy =

√√√√√∑n
i=1

(
wi

∼
x i sin α − wi

∼
y i cos α

)2

∑n
i=1 w2

i
(7)

In Equations (6) and (7), σx and σy reflect the degree of dispersion of carbon emissions
in the major and minor directions, respectively.

2.5. Methods for Studying the Factors Influencing Carbon Emissions
2.5.1. Indicator Selection and Processing

Drawing from relevant research, several critical factors were recognized as significant
contributors to carbon emissions. These include the size of the population, level of economic
development, rate of urbanization, composition of industries, advancements in technology,
investments in fixed assets, and intensity of energy usage [40–43]. Insufficient data acces-
sibility has led to insufficient records for technological level and fixed asset investments
at both the county and annual levels. Consequently, we chose to focus our investigation
on variables such as population size, economic development level, urbanization rate, and
industrial structure when exploring the spatio-temporal variations in carbon emission
factors across Zhejiang Province’s counties during the period spanning from 2002 to 2022,
as detailed in Table 1. Specifically, population size was defined by the year-end resident
population of each county within Zhejiang Province [44], economic development level was
quantified using per capita GDP data for Zhejiang Province [45], urbanization rate was
determined by the ratio of urban population to the total population at the year-end in each
county [46], and industrial structure was expressed as the proportion of the secondary
industry’s value relative to each county’s total GDP [47].

As the selected influencing factors had different units, it was necessary to normalize
the raw data of each influencing factor to ensure data uniformity and eliminate the influence
caused by unit heterogeneity [48]. Equation (8) was used to standardize positive indicators,
while Equation (9) was used to normalize negative indicators.

Yij =
xij − min(xi)

max(xi)− min(xi)
(8)

Yij =
max(xi)− xij

max(xi)− min(xi)
(9)
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In Formulas (8) and (9), Yij represents the jth indicator of the ith object among the
four indicators. Yij stands for the coefficient of this indicator, with larger values indicating
greater influence and vice versa.

Table 1. Definition of relevant indicators.

Indicators Indicator Abbreviations Connotation Unit

Population size POP Resident population by county at the end
of the year Ten thousand

Economic development level PGDP GDP per capita Ten thousand yuan

Urbanization rate URB Ratio of urban population to resident
population %

Industrial structure INS Ratio of secondary sector output to GDP %

2.5.2. Spatio-Temporal Geographically Weighted Regression Model

The traditional linear regression approach does not effectively account for the spatial
characteristics of regression parameters. To better assess the heterogeneity of elements
impacting carbon emissions, the GWR model is employed, enabling the quantification of
the spatial variability of these factors. However, the geographically weighted model lacks
consideration of time factors and cannot accurately analyze cross-sectional data over a long
time series. This issue is addressed in the GTWR model [49]. The GTWR model, building
on the GWR framework, incorporates temporal effects, transforming cross-sectional data
into panel data. This approach addresses issues of spatio-temporal non-stationarity and
unestimated parameters, leading to more reliable outcomes [50]. The formula is as follows:

Yi = β0(ui, vi, ti) +
p

∑
k=1

βk(ui, vi, ti)Xik + εi (10)

In Equation (10) [51], Yi represents the dependent variable for the ith sample area. Xik
denotes the observed value of the kth explanatory variable in the ith sample area. (ui, vi, ti)
represents the spatio-temporal coordinates of the ith sample area. β0(ui, vi, ti) represents
the spatio-temporal intercept for the ith sample area. βk(ui, vi, ti) represents the regression
coefficient of the kth explanatory variable in the ith sample area. β > 0 indicates that
the explanatory variable is positively correlated with the dependent variable, while the
opposite holds true for negative correlation. εi represents the random disturbance term.

3. Results
3.1. Analysis of LISA Time Paths

Based on the temporal variations in Moran’s Index in ArcGIS, the study period was
divided into four time intervals, 2002–2007, 2007–2012, 2012–2017, and 2017–2022, to
analyze the geometric features of LISA time paths.

3.1.1. Analysis of Relative Length

This paper classifies the relative lengths of LISA time paths into six levels. To ensure
comparability of data across the four time periods, the same division intervals and levels
for relative lengths of time paths were applied to all four periods (Figure 3). From 2002 to
2007, counties with high relative lengths, ranging from 2.088 to 5.982, included Yu Hang,
Ci Xi, and Yi Wu. From 2007 to 2012, additional counties, Tong Xiang and Hai Ning, were
added to the list, along with Yu Hang and Ci Xi. From 2012 to 2017, although the number
of counties remained the same, there were changes in the specific counties, namely Xi Hu,
Xiao Shan, Jiang Bei, and Yi Wu. Similarly, from 2017 to 2022, the number of counties
did not change, but they changed to Xi Hu, Xiao Shan, Ci Xi, and Yu Yao. This indicates
a solid dynamic nature in these areas’ local spatial structure of carbon emissions. The
primary cause of this phenomenon may be ascribed to swift advancements in multiple
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areas, such as industry and services, propelled by the strategy of integrated growth in the
Hangzhou metropolitan region. Among the four time periods, 144 counties, accounting
for 53.93% of all counties, had low relative lengths falling between 0.246 and 0.911. The
proportions for the first three periods experienced relatively minor changes, at 16.10%,
17.60%, and 16.48%, respectively, while the proportion for the 2017–2022 period showed
a significant increase, rising to 21.35%. This suggests an overall more robust local spatial
structure stability of carbon emissions in Zhejiang Province’s counties from 2002 to 2022,
with a trend of increasing stability. Spatially, it was observed that counties with low relative
lengths in all four time periods were predominantly distributed in the western part of
Wenzhou, Lishui in southern Zhejiang, Quzhou in Zhejiang’s west, and the western regions
of Taizhou and Hangzhou. This indicated that these areas exhibited the robust stability
in the local spatial structure of carbon emissions and showed a trend of spreading from
southern and western Zhejiang to northern and eastern regions. The primary cause of this
occurrence could be attributed to the fact that these regions predominantly comprise hilly
counties with relatively low levels of economic development, substantial forest resources,
and greater capacity for carbon storage [17].

3.1.2. Analysis of Curvature

Likewise, the curvature of LISA time routes was categorized into six levels, and these
same categorization intervals and levels were used for the four time periods (Figure 4).
From 2002 to 2007, six counties had high curvature values ranging from 5.899 to 13.932,
including Yuhang, Xiuzhou, Pinghu, Xinchang, and Xiangshan. For 2007–2012, it changed
to Deqing, Cixi, Zhenhai, Beilun, Linhai, and Wencheng, totaling six counties. In 2012–2017,
it was reduced to only one county, Lucheng. However, from 2017 to 2022, it increased to
19 counties, including Yuhang, Nanhu, Yuecheng, Jiangbei, and others. This indicates that
these counties exhibited high fluctuations in both local spatial dependence direction and
carbon emissions, and the counties with the most vital spatial dependence direction fluctu-
ations were on the rise. In 2002–2007, there were 14 counties with relatively high curvature
values ranging from 2.360 to 5.898. In the 2007–2012 and 2012–2017 periods, such counties
remained relatively stable at 9 and 18, respectively. However, in the 2017–2022 period, there
was a significant increase, reaching 44 counties. Spatially, the counties with relatively high
curvature in the first three periods were mainly distributed in northern Zhejiang, western
Zhejiang, and parts of eastern Zhejiang. In the 2017–2022 period, this trend expanded to
central and southern Zhejiang. This indicates that these regions exhibited high fluctuations
in both local spatial dependence direction and county-level carbon emissions, with an
upward trend. The proportions of counties with low curvature values ranging from 1.075
to 2.359 in the four periods were 77.53%, 83.15%, 78.65%, and 29.21%, respectively. This
suggests that carbon emissions and the direction of local spatial dependence in Zhejiang
Province were relatively stable in the first three periods but experienced a sharp decline in
the fourth.

3.1.3. Analysis of Transition Directions

Through the directional analysis of LISA time path transitions, this study revealed
the phased characteristics of competitive and cooperative situations among neighboring
counties in Zhejiang Province (Figure 5). From 2002 to 2007, 28 counties with synergistically
high growth formed a strip-like pattern, primarily distributed in the northern Zhejiang
counties like Yuhang and Deqing and southeastern Zhejiang counties like Yongjia and
Wenling. This indicates strong spatial integration in the evolution of these areas’ carbon
emission spatial patterns. From 2007 to 2012, there was an increase in the number of
counties experiencing extremely high development, reaching 29. This growth formed a
block-like pattern, with a shift in distribution from the northern and southern regions
to the western and eastern parts of Zhejiang. From 2012 to 2017, there were 27 counties
with synergistically high growth, down by two from the previous phase, with significant
changes in distribution from southeastern and western to northern and eastern Zhejiang.
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The move can be ascribed to implementing the 13th Five-Year Plan, which aimed to promote
integrated prosperity in north and east Zhejiang by accelerating economic growth and
transforming industries. Counties with synergistically low growth increased to 36, forming
a block-like pattern and shifting from northern to central, southern, and western Zhejiang.
From 2017 to 2022, there were 28 counties with synergistically high growth, showing
a fragmented pattern and shifting from northern and eastern to southern and western
Zhejiang. In summary, when comparing the four stages, the count of counties experiencing
synergistically significant growth remained relatively stable. In contrast, the count of
counties with synergistically low growth exhibited more substantial variations. Overall,
it appears that there is some regional coherence in the distribution of carbon emissions
in Zhejiang Province. However, this tendency toward integration has been dwindling for
some time now.
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3.2. Analysis of Spatio-Temporal Transition

Utilizing LISA space–time transitions allows for the investigation of the type transi-
tions in spatial correlations of county-level carbon emissions in Zhejiang Province and the
stability of the carbon emission space. As Table 2 indicates, the non-diagonal elements in
the transition probability matrix were all smaller than the diagonal elements, suggesting
transitions between types in all four categories of local spatial patterns. The most common
transition during the four periods of 2002–2007, 2007–2012, 2012–2017, and 2017–2022 was
of Type IV, with counties undergoing this type of transition accounting for 97.2%, 98.2%,
98.5%, and 97.6% of all counties, respectively. The stability in the Moran’s scatterplot
suggests a significant level of path dependency or lock-in features in the geographic aggre-
gation of carbon emissions at the county level in Zhejiang Province. The proportions of
transitions for Types I, II, and III were lower, indicating that the local county areas were
less influenced by spillover effects from surrounding regions. Conversely, internal causes
exerted a more significant influence on alterations in the geographical arrangement of
carbon emissions. This shows that there is less reliance on neighboring regions and more



Land 2024, 13, 381 13 of 24

emphasis on the role of internal dynamics in determining the geographic distribution of
carbon emissions in Zhejiang Province at the county level.

Table 2. Spatio-temporal transitions and spatial autocorrelation values for each period from 2002
to 2022.

Period t/t + 1 HH LH LL HL Types Number Proportions St

2002–2007

HH 0.975 0.005 0.005 0.015 I 7 0.013

0.972
LH 0.020 0.980 0.000 0.000 II 7 0.013
LL 0.000 0.005 0.989 0.005 III 1 0.002
HL 0.063 0.000 0.063 0.875 IV 520 0.972

2007–2012

HH 0.973 0.016 0.000 0.011 I 4 0.007

0.985
LH 0.000 0.991 0.009 0.000 II 4 0.007
LL 0.000 0.000 1.000 0.000 III 0 0.000
HL 0.025 0.000 0.025 0.950 IV 526 0.985

2012–2017

HH 0.977 0.012 0.000 0.012 I 4 0.007

0.985
LH 0.018 0.982 0.000 0.000 II 4 0.007
LL 0.000 0.000 1.000 0.000 III 0 0.000
HL 0.045 0.000 0.000 0.955 IV 526 0.985

2017–2022

HH 0.971 0.018 0.006 0.006 I 7 0.013

0.976
LH 0.017 0.983 0.000 0.000 II 4 0.007
LL 0.005 0.005 0.990 0.000 III 2 0.004
HL 0.047 0.000 0.047 0.907 IV 521 0.976

3.3. Standard Deviational Ellipse and Gravity Center Migration Analysis of Carbon Emissions

The spatial distribution and centroid migration of county-level carbon emissions in
Zhejiang Province can be further studied through the standard deviation ellipse method in
ArcGIS. With the ellipse’s primary axis modification, the spatial distribution produced a
consistent ‘northeast–southwest’ pattern, as shown in Table 3 and Figure 6. Its reduction
from 117.730 km to 117.487 km between 2002 and 2022 along the principal axis suggests a
centripetal aggregation of carbon emissions in Zhejiang Province, which extended from the
southwest to the northeast. One possible explanation is that the province of northern Zhe-
jiang was one of the first in China to undergo fast industrialization after the country joined
the WTO in 2001. The minor axis underwent a more significant change than the central
axis, shrinking from 165.998 km to 161.923 km, demonstrating a pronounced centripetal
distribution of county-level carbon emissions.
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Table 3. Spatio-temporal transition matrix and spatial cohesion value of each period.

Year
Coordinates of Gravity Center Shift of Gravity Center Long Axis/km Short Axis/km Angle◦Longitudes Latitudes Orientations Length/km

2002 120◦55′15′′ E 29◦55′52′′ N 117.730 165.998 1.798
2007 120◦56′18′′ E 29◦59′74′′ N northwestern 5.542 117.863 161.424 1.836
2012 120◦56′65′′ E 29◦61′72′′ N northwestern 0.746 117.597 160.764 2.117
2017 120◦56′47′′ E 29◦58′82′′ N southwestern 0.285 117.797 161.855 1.582
2022 120◦57′01′′ E 29◦59′11′′ N northwestern 0.853 117.487 161.923 0.820

Regarding the centroid position, from 2002 to 2022, the centroid carbon emissions
mainly varied between 120◦55′15′′ E and 120◦57′01′′ E and between 29◦55′52′′ N and
29◦59′11′′ N, with the centroid consistently located in Shengzhou City in northern Zhejiang.
This suggests that the high carbon emission values have always been in the northern
region during this period; hence, northern counties should assume more responsibility in
formulating differentiated emission reduction policies. Analyzing the centroid’s movement
trajectory, the overall trend was northeastward, forming a ‘V’ shape. From 2002 to 2007,
it moved 5.542 km northeastward; from 2007 to 2012, it shifted 0.746 km northeastward;
from 2012 to 2017, it moved 0.285 km southwestward; and from 2017 to 2022, it turned
0.853 km northeastward. This suggests that the counties in Zhejiang’s northeast are seeing
a faster-than-average rise in carbon emissions and that the regions with the highest rates of
overall carbon emissions increase continue expanding towards the northeast.

3.4. Analysis of Spatio-Temporal Heterogeneity of Carbon Emission Influencing Factors
3.4.1. Construction of GTWR Model and Analysis of Regression Model Results

This article utilized panel data from 2002 to 2022, specifically focusing on county-level
locations in Zhejiang Province. The indicator variable was the carbon emissions of each
district and county, while the explanatory variables included population size, economic
development level, urbanization rate, and industrial structure. To determine the parameters
of the factors affecting carbon emissions in various districts and counties throughout time,
the GTWR model was built at the county level. Due to the issue of multicollinearity among
the independent variables affecting regression analysis, this study first conducted an OLS
analysis of the four explanatory variables. Generally, a VIF more significant than ten and
a tolerance less than 0.1 indicate the potential presence of multicollinearity. As seen in
Table 4, the VIF values for each explanatory variable were all below 10, confirming the
absence of significant multicollinearity, thereby justifying the progression to GWR model
regression analysis. Subsequently, the data were input into the GWR model for testing. It
was found that these four explanatory variables could be included in the GWR model, thus
proving the absence of both explicit and implicit multicollinearity among these variables.
This validation allowed for the progression of GTWR model regression analysis.

Table 4. Multicollinearity test.

Variable Population Size Level of Economic
Development

Urbanization
Rate

Industrial
Structure

VIF 1.155 1.411 1.230 1.211

Utilizing the GTWR model, this study selected the goodness-of-fit R2, adjusted R2,
and AICc as indicators to evaluate the model’s confidence. An analysis of the parameter
estimation results was conducted. Higher values of R2, a measure of fit that ranges from 0.0
to 1.0, indicate that the model has greater explanatory ability; the AICc value is a measure
of model performance, with smaller values suggesting better model fit to the observed data.
This study also provided regression results from OLS and GWR models for comparison
to validate the applicability and accuracy of the GTWR model. According to Table 5,
the GTWR model shows R2 and adjusted R2 values of 0.8846 and 0.8844, respectively,
representing significant improvements compared to OLS and GWR; the AICc value is
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−4784.4224, indicating a substantial reduction compared to OLS and GWR. These findings
show that the GTWR model was better able to account for the spatial and temporal variety of
the many factors impacting carbon emissions in Zhejiang Province’s county-level locations.

Table 5. Comparison of model evaluation metrics.

Model Parameters OLS GWR GTWR

R2 0.7487 0.8556 0.8846
Adjusted R2 0.7368 0.8203 0.8844
AICc −157.3643 −180.3784 −4784.4224

3.4.2. Spatio-Temporal Evolution of Various Influences

Using the GTWR model, this study derived the contribution coefficients of various
influencing factors on carbon emissions across different counties during the research period,
and constructed a diagram illustrating the temporal and spatial variations of these factors
(Figures 7 and 8). The results showed the following:

(1) The population size contributes the most to carbon emissions in the county-level
regions of Zhejiang Province, with a positive coefficient. Temporally (Figure 7a), the
regression coefficient of population size showed an upward trend, rising gently between
2002 and 2008 and more sharply from 2008 to 2022. This phenomenon could be attributed
to rapid economic development after 2008, an improvement in living standards, and the
opening of the two-child policy in 2016, leading to a sharp increase in population once
again and intensified consumption of resources and energy. Spatially (Figure 8a), the areas
most affected by population size were mainly located in the northern counties and cities of
Zhejiang Province, including Hangzhou, Huzhou, and Jiaxing. Bui Minh [52] also proposed
in his research that the degree of population aggregation affects regional carbon emissions.
Counties less impacted by population size included two categories: one was counties with
smaller population sizes and relatively backward economic development, which have a
smaller impact on carbon emissions, such as Kaihua, Qingyuan, and Qujiang counties; the
other included counties with larger population sizes but higher degrees of aggregation,
where population aggregation has effectively improved energy utilization efficiency and
reduced carbon emissions, such as Ruian, Yongjia, and Cangnan counties. Rehman’s [53]
study also mentioned that high population density can develop renewable energy to reduce
carbon emissions.

(2) The level of economic development has a positive overall impact on carbon emis-
sions at the county level in Zhejiang Province. Temporally (Figure 7b), the coefficient of
overall economic development level gradually decreased, significantly from 2002 to 2017,
and then more gently from 2017 to 2022. This decrease may be attributed to the “Eleventh
Five-Year Plan” and the “Thirteenth Five-Year Plan” introduced after 2017, which promoted
further optimization of the economic structure and the development of a low-carbon econ-
omy. Spatially (Figure 8b), counties in the central part of Zhejiang Province, such as Yiwu,
Zhuji, and Dongyang, have seen significant positive impacts of economic growth factors on
carbon emissions. The main reason might be the continuous expansion of construction land,
development of industry and manufacturing, and increasing energy demands, thus leading
to rapid growth in carbon emissions. Gershon’s [54] study also found that economic growth
significantly increases energy consumption, being a major factor promoting carbon emis-
sions. Counties where economic growth hurt carbon emissions were mainly concentrated
in the eastern areas of Taizhou, Wenzhou, and the eastern counties of Jiaxing. The reasons
might be twofold: firstly, these countries might focus more on optimizing energy structure
and encouraging technological innovation while growing economically, thereby improving
energy efficiency and reducing carbon emissions, similar to Balta-Ozkan’s [55] findings in
the UK; secondly, by developing the tourism economy, this economic model can reduce
environmental degradation and carbon emissions, a finding confirmed by Raihan’s [56]
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study on the positive role of developing a low-carbon tourism economy in reducing carbon
emissions.

(3) Urbanization rates are positively correlated with overall carbon emissions in the
county-level regions of Zhejiang Province. From a temporal perspective (Figure 7c), there
was an upward trend from 2002 to 2012, and a stable state from 2012 to 2022, overall show-
ing an upward trend. The reason might be that after 2002, with the rapid advancement of
urbanization, the surge in urban population led to increased energy use in transportation,
industry, and urban land, resulting in continuous increases in carbon emissions. Wojew-
odzki’s [57] study also mentioned that rapid urban development intensified land use and
resource consumption, strengthening carbon emissions. Spatially (Figure 8c), in 62% of the
counties, urbanization rates have promoted carbon emissions, while the negative impact
of urbanization development on carbon emissions was mainly distributed in the northern
part of Hangzhou, the western part of Jiaxing, and Huzhou. The reason might be that as the
level of urbanization continuously improves, the quality of urbanization also shifts from
inefficient and extensive to ecologically sustainable, leading to high operational efficiency
of public facilities, industrial aggregation, improved production efficiency, and energy
utilization, thereby resulting in lower carbon emissions. This aligns with Awan’s [58] study,
which found that cities with rapid urbanization, developed transportation facilities, and
high efficiency emit less carbon.

(4) The industrial structure has suppressed the overall county-level carbon emissions
in Zhejiang Province, indicating that the optimization of industrial structure can reduce
county-level carbon emissions. Temporally (Figure 7d), the suppressive effect weakened
from 2002 to 2013, but gradually strengthened from 2013 to 2022. Qi’s [17] study shows
that the secondary industry occupies a high proportion of the total carbon emissions, but
the tertiary industry has gradually become the main “contributor” to the increase in carbon
emissions, with carbon emissions from the tertiary industry sectors such as transportation,
logistics, and residential life sharply rising. Spatially (Figure 8d), the areas most negatively
affected by the industrial structure were mainly concentrated in the eastern part of Shaoxing
City, the northeastern part of Taizhou City, and the counties of Ningbo City. This may
be because these counties have a smaller proportion of secondary industries and a larger
proportion of tertiary industries, while focusing on upgrading the internal structure of
industries and sustainable industrial development, which has reduced carbon emissions.
Mehmood’s [59] study also found that green industrial transformation and upgrading
are related to carbon emission reduction. However, the areas positively affected by the
industrial structure were mainly concentrated in the eastern part of Jinhua, the central part
of Hangzhou, and the eastern part of Huzhou, indicating that in these counties, industries
with high carbon emissions still dominated, increasing carbon emissions.
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4. Conclusions

This study examined the spatial and temporal patterns of carbon emissions in the
county areas of Zhejiang Province, considering global climate warming and China’s goals
of achieving carbon peak and carbon neutrality. Utilizing the GTWR model, it examined the
factors influencing carbon emissions in these county areas. The conclusions are as follows:

(1) LISA time path analysis results indicated that, overall, the county-level carbon
emissions in Zhejiang Province from 2002 to 2022 exhibited strong local spatial structure
stability, with an upward trend in this stability. Spatially, the most robust regional spatial
structural stability of carbon emissions was found in western Wenzhou and Lishui in south-
ern Zhejiang, Quzhou in Zhejiang’s west, and western Taizhou and western Hangzhou,
showing a trend of spreading from south and west Zhejiang to northern and eastern Zhe-
jiang. The spatial pattern of carbon emissions in the county areas of Zhejiang Province
possesses specific spatial integrative characteristics. However, this integrative tendency is
generally weakening, with non-synergistic growth predominantly exhibiting a fragmented
pattern.

(2) The spatio-temporal transition results from the Moran’s scatterplot indicated that
the most common transition was Type IV, with solid stability in the Moran’s scatterplot.
This suggests a relatively high spatial accumulation of carbon emissions in the county
areas of Zhejiang Province, a high degree of path dependence in carbon emissions spatial
aggregation, and relative stability in the spatial structure of carbon emissions. This reflects
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that spillover effects from surrounding regions influence local county areas less, and
internal factors significantly impact changes in their carbon emission spatial structure.

(3) A consistent “northeast–southwest” pattern emerged in the spatial distribution as
the axis length varied. From 2002 to 2022, the centroid of county-level carbon emissions
in Zhejiang Province varied within the range of 120.551◦ to 120.570◦ E and 29.555◦ to
29.591◦ N, moving generally northeastward and overall forming a ‘V’ shape. This indicated
that the rate of increase in carbon emissions in the northeastern counties of Zhejiang was
higher than the average, with the areas of high growth in overall carbon emissions still
developing towards the northeast direction.

(4) The elements that influence carbon emissions vary significantly in terms of space
and time. These factors, ranked in descending order of their degree of influence are
population size, urbanization rate, industrial structure, and economic development level.
Among these, population size, urbanization rate, and economic development level mainly
promote carbon emissions, while industrial structure acts to suppress emissions. While
Zhu [29] argued that the growth of the secondary industry has significantly worsened
carbon emissions, our research shows that the secondary sector reduces carbon emissions.
This finding aligns with the studies of Qi [17] and Yang [60].

5. Discussions
5.1. Implications

Exploring the spatio-temporal dynamics and determinants of carbon emissions in
Zhejiang Province’s counties through the lens of spatio-temporal interactions helps in the
detailed analysis of these emissions from a micro-perspective. This approach also offers a
basis for developing tailored emission reduction policies. Drawing from empirical findings
and relevant literature, we present the following insights:

(1) The results of the standard deviation ellipse indicated that the northeastern counties
of Zhejiang have higher carbon emissions, while the LISA time path results showed that
the spatial structure stability of carbon emissions in the southwestern counties of Zhejiang
was the strongest, with counties such as Yinzhou and Xiaoshan having the lowest stability.
Therefore, differentiated carbon governance measures need to be adopted for different
regional countries. For the northeastern counties of Zhejiang, more attention should be paid
to reducing the total carbon emissions, which can be achieved by enhancing technological
innovation [60], promoting the development of low-carbon industries, and accelerating
the modernization, integration, and transformation of traditional high-energy-consuming
enterprises [17]. For the southwestern counties of Zhejiang such as Wencheng and Kaihua,
more emphasis should be placed on the stability of carbon emissions through long-term,
progressive (rather than short-term, volatile) policy guidance and control. At the same
time, it is crucial to promote the transformation of the ecological economy in the long
term, by optimizing the energy structure, such as increasing the proportion of clean energy
and reducing reliance on fossil fuels, to ensure a stable decline in carbon emissions across
counties [61].

(2) Spatio-temporal transitions indicated that the spatial agglomeration stability of
carbon emissions in Zhejiang’s counties was strong, with weak influences between adjacent
counties, and effective inter-regional linkages had not yet formed. Therefore, it is necessary
to strengthen collaborative development between counties, breaking the highly stable
spatial structure and path dependence of carbon emissions. Different counties have varying
development modes and actual situations, which can complement each other’s advantages
for joint development. This can be achieved by improving resource utilization efficiency,
achieving regional coordinated development, and sharing ecological advantages [62]. Es-
tablishing a cross-regional cooperation mechanism can promote the sharing of experiences,
technologies, and resources between different regions, strengthening collaborative efforts
in carbon reduction. High-carbon emitting regions can collaborate with low-carbon emit-
ting regions to reduce carbon emissions through resource transfer and technical support.
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Promoting cross-regional energy interaction and the development of the electricity network
can enhance energy use efficiency and reduce carbon emissions [63].

(3) The factor of population size has a positive effect on carbon emissions, so attention
should be paid to densely populated counties, transforming large population size and
concentration into an advantage to improve per capita energy use efficiency. In addition,
increased fiscal support, talent cultivation, and innovation and progress in low-carbon
industries and products should be emphasized [64]. Similarly, the factor of economic de-
velopment increases carbon emissions, so the quality of economic development should be
emphasized over speed. Zhejiang should strategically implement the digital economy and
promote industrial digital transformation. By optimizing production processes and improv-
ing energy use efficiency, energy consumption can be optimized, thus effectively controlling
and reducing carbon emissions while promoting local economic development [65]. The
urbanization rate factor exacerbates carbon dioxide emissions; hence, high-quality new
urbanization development focusing on sustainable and eco-friendly urbanization growth
models should be pursued, contrary to traditional demolition and construction urbaniza-
tion patterns [66]. Meanwhile, the industrial structure factor inhibits carbon emissions, so
the transformation of industrial structure should continue, vigorously developing the low-
carbon and environmentally friendly tertiary industry, and accelerating the transformation
of energy-intensive industries [31].

5.2. Limitations and Future Research Direction

This study comprehensively discusses the influencing factors of carbon emissions
in the county areas of Zhejiang Province; however, due to the limited number of factors
considered, more than this depth of research might be required. Future research will
explore more relevant influencing factors on carbon emissions at the county level, aiming to
provide differentiated strategies and suggestions for various counties. This study provides
theoretical and empirical bases for formulating carbon emission reduction policies in Zhe-
jiang Province. Nonetheless, the features of county regions vary considerably throughout
Chinese provinces and cities. Consequently, other countries’ unique characteristics should
inform the careful formulation of policies aimed at reducing carbon emissions. Future
research directions should be more comprehensive than the study of carbon emissions in
the county areas of Zhejiang Province. Still, they should extend to more provincial regions
to explore county-level carbon emissions.
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