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Abstract: Electromagnetic induction (EMI) and electrical resistivity tomography (ERT) are geophysical
techniques measuring soil electrical conductivity and providing insights into properties correlated
with it to depths of several meters. EMI measures the apparent electrical conductivity (ECa, dS m−1)
without physical contact, while ERT acquires apparent electrical resistivity (ERa, ohm m) using
electrodes. Both involve mathematical inversion to obtain models of spatial distribution for soil
electrical conductivity (σ, mS m−1) and electrical resistivity (ρ, ohm m), respectively, where ρ is
the reciprocal of σ. Soil salinity can be assessed from σ over large areas using a calibration process
consisting of a regression between σ and the electrical conductivity of the saturated soil paste extract
(ECe, dS m−1), used as a proxy for soil salinity. This research aims to compare the prediction
abilities of the faster EMI to the more reliable ERT for estimating σ and predicting soil salinity. The
study conducted surveys and sampling at four locations with distinct salinity levels in Portugal,
analysing the agreement between the techniques, and obtained 2D vertical soil salinity maps. In
our case study, the agreement between EMI and ERT models was fairly good in three locations,
with σ varying between 50 and 500 mS m−1. However, this was not the case at location 4, where σ

exceeded 1000 mS m−1 and EMI significantly underestimated σ when compared to ERT. As for soil
salinity prediction, both techniques generally provided satisfactory and comparable regional-level
predictions of ECe, and the observed underestimation in EMI models did not significantly affect the
overall estimation of soil salinity. Consequently, EMI demonstrated an acceptable level of accuracy
in comparison to ERT in our case studies, supporting confidence in utilizing this faster and more
practical technique for measuring soil salinity over large areas.

Keywords: electromagnetic induction; electrical resistivity tomography; soil salinity

1. Introduction

Electromagnetic induction (EMI) and electrical resistivity tomography (ERT) are two
near-surface geophysical techniques that allow the electrical conductivity of soil to be
measured and therefore for properties that are correlated with it to be monitored to depths
that can reach up to several meters. These properties can be soil salinity [1–6], soil sod-
icity [7], soil water content [8–15], particle size distribution [16–19], soil cation exchange
capacity [20–23], and organic matter [24].
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EMI implies the acquisition of apparent electrical conductivity (ECa, dS m−1) using
a device that does not touch the surface of the soil, while ERT involves the acquisition of
apparent electrical resistivity (ERa, ohm m), which is the reciprocal of ECa, using a device
that takes measurements in electrodes placed at the surface of the soil. Both EMI and ERT
techniques involve the mathematical inversion of the apparent data [25] to obtain models
of the spatial distribution of the soil electrical conductivity (σ, mS m−1), and of the soil
electrical resistivity (ρ, ohm m), respectively. Different inversion methods (e.g., [26–28])
and software (e.g., [29,30]) have been developed to estimate the distribution of σ based
on measured ECa data. Similarly, various inversion codes are available to estimate the
distribution of ρ based on measured ERa data (e.g., [31–33]). ρ is the reciprocal of σ, so it
can be easily converted to σ.

While the fundamental physical principles differ (induction versus galvanic phenom-
ena), and the volume of ground investigated by the two techniques is also different, both
could yield similar electrical conductivity values under specific assumptions. Theoretically,
adopting low-frequency signals (f < 105 Hz) and the absence of metallic objects in the
subsoil should result in comparable outcomes for ERT and EMI techniques. However, it is
important to note that ERT is more sensitive to strong resistors, while EMI is more sensitive
to strong conductors [34].

Soil salinization is a process of soil degradation that limits agricultural productivity
and can lead to desertification and land abandonment. Salinization also decreases bio-
diversity, affects ground- and surface water, and degrades infrastructures. Such effects
represent major negative economic, environmental, and social impacts. According to the
Global Map of Salt-Affected Soils [35], salt-affected soils are distributed globally, but about
two thirds of the area is located in arid and semi-arid climatic zones. FAO ([35]) estimates
that 4.4% of the topsoil (0–30 cm) and more than 8.7% of soil at depths of 30–100 cm of the
total land area is salt-affected. Given this threat, it is very important to be able to monitor
soil salinity in agricultural areas. The monitoring of soil salinity along the soil profile is
key to understanding the specific processes related to salinization and to defining and
implementing measures to counter it and its impacts [36,37].

Soil salinity can be assessed from σ over large areas through a calibration process
consisting of a regression between σ and the electrical conductivity of the saturated soil
paste extract (ECe, dS m−1), used as a proxy for soil salinity, and the conversion of the σ

models into salinity maps using the obtained calibration equation (e.g., [21,38,39]). While
both EMI and ERT offer non-invasive, rapid, and cost-effective analysis, EMI stands out
for its capacity to cover extensive areas in a very short timeframe. However, several
studies (e.g., [40–46]) have highlighted that EMI may not provide precise estimations of σ
distribution and may require the prior calibration of ECa data against ERT or time domain
reflectometry (TDR) measurements to account for expected shifts and offsets to obtain
more representative ECa measurements. However, the calibration process is site-specific,
time-consuming, and may not be feasible in many cases.

In this study, we explore the prediction ability of EMI in assessing soil salinity without
prior calibration, comparing the outcomes to equivalent results derived from the ERT data.
The aim is to assess whether satisfactory prediction results can be achieved without a prior
EMI calibration process. Given that many applications of EMI in soil salinity assessment
often skip such a calibration step due to its time-consuming nature or the unavailability of
necessary geophysical equipment, this case study offers insights into potential uncertainties
associated with the absence of calibration. To achieve our goal, we conducted EMI and ERT
surveys, along with soil sampling, at four locations with varying salinity levels from non-
saline to severely saline soils in the Lezíria de Vila Franca de Xira, an alluvial agricultural
area in Portugal. The selection of locations aimed to encompass a range of soil salinity
levels, also ensuring a great variability of σ, expected when conducting EMI surveys over
saline soil across the globe. To this aim, we generated 2D vertical σ models and analysed
the agreement between the two techniques in estimating σ at the same subsurface points.
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Then, we obtained one calibration equation for each technique, compared their abilities to
predict ECe from the σ models, and generated 2D vertical soil salinity maps.

2. Materials and Methods
2.1. Study Area

The investigation was conducted in Lezíria de Vila Franca, situated 10 km northeast of
Lisbon, Portugal (see Figure 1). It is a 130-square-kilometer alluvial peninsula bounded
by the Tejo and Sorraia rivers. The climate is classified as temperate with hot and dry
summers, according to the Köppen classification. In the northern region, the soils exhibit
a fine to very fine texture and are categorized as Fluvisols, and in the southern region
they are categorized as Solonchaks, based on the Harmonized World Soil Database [47].
There is a gradient of soil salinity that increases from north to south that affects the land
use distribution. This gradient is a combination of (1) primary salinization [48], attributed
to the regional presence of marine sediments and the saline influence of the estuary on
groundwater in the southern part of the study area; and (2) secondary salinization [48],
attributed to the irrigated farming that, using good quality water, has washed the soil in
the northern part of the region. In fact, in this region, land use primarily comprises mainly
irrigated annual crops in the north and rainfed pastures in the south.
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Figure 1. Location of Lezíria, the study area, details of the four locations with the geophysical
transects and soil sampling sites, and images of the electromagnetic induction (EMI) and electrical
resistivity tomography (ERT) instruments used in geophysical acquisition. © Google Earth.

For the comparative assessment, four distinct locations with varying salinity levels
were selected within the study area (see Figure 1). According to the soil salinity classification
defined by [49], location 1 exhibited non-saline conditions (ECe < 2 dS m−1), location 2 was
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slightly saline (2–4 dS m−1), location 3 was moderately to highly saline (4–16 dS m−1), and
location 4 was severely saline, surpassing 16 dS m−1 at the time of the experiment [4,7,38].

Moreover, previous studies conducted by our team at this study area [4,7,38] have
provided a detailed description of the soil’s physico-chemical properties. We have deter-
mined the pH, cation exchange capacity, and exchangeable sodium percentage. From this
analysis, we know that all locations have a pH above 8 at depths below 30 cm, and that
the exchangeable sodium percentage is above 15% in the subsoil at locations 2, 3, and 4.
The latter indicates a high concentration of sodium in the soil exchange complex in relation
to those of calcium and potassium. The principal component analysis showed that the
soil electrical conductivity in this study area is mainly influenced by soil salinity [7]. This
correlation is attributed to the significant north–south gradient of soil salinity, which pre-
dominates in influencing soil salinity impact, coupled with the limited variability observed
in other soil properties like soil texture.

During the surveys, location 1 featured drip-irrigated tomatoes, and locations 2 and 3
centred on pivot irrigated maize, with no irrigation occurring on survey days. Location 4 is
a rainfed natural pasture that had not been ploughed for at least the past decade.

2.2. Electromagnetic Induction

Electromagnetic induction (EMI, Figure 1) data were gathered, employing the EM38
instrument. The instrument comprises two coils housed in a case—one for transmiting the
electromagnetic signal and the other for receiving it—positioned 1 m apart. The instrument
can be oriented vertically (horizontal dipole mode) for a maximum depth of investigation
of 1.5 m or horizontally (vertical dipole mode) for a maximum depth of 0.75 m. EMI
surveys were conducted in the dry seasons of 2017 (locations 1 and 4) and 2018 (locations 2
and 3). ECa measurements were collected at 1 m intervals along a 20 m transect at each
location (refer to Figure 1) and at two heights from the soil surface (0.15 and 0.4 m) in both
horizontal and vertical dipole orientations. This positioning was facilitated by placing the
EM38 on a custom-built cart for precision [38].

The inversion of ECa data to derive σ was executed using EM4SOIL software (V-
3.05) [29]. The ECa responses in the model were determined through forward modelling
based on the complete solution of the Maxwell equations [50]. The subsurface model
employed in the inversion consisted of a series of 1-D models distributed according to
the ECa measurement positions. Each subsurface model at a measurement position was
influenced by neighbouring models, enabling algorithm use in regions characterized by
high conductivity contrast. The inversion of ECa data employed an approach grounded in
Occam regularization [51]. Data from all four locations were inverted, applying a five-layer
earth initial model with an electrical conductivity of 100 mS m−1 and a fixed layer thickness
of 0.30 m. The algorithm’s parameters, including the inversion algorithm type, number of
iterations, and smoothing factor (λ) controlling model roughness, were chosen according
to the methodology outlined in [38]. With the evenly distributed inverted data across the
modelled area, 2D vertical σ models were generated for each location utilizing triangulation
with linear interpolation.

2.3. Electrical Resistivity Tomography

Electrical resistivity tomography (ERT, Figure 1) data were acquired using a 4-point
light 10 W system (LIPPMANN, Schaufling, Germany). The technology of this system is
based on the measurement of voltage between two reading electrodes installed on the soil
surface, when direct current is injected into two other electrodes, to calculate subsurface
electrical resistivity. In this system, the disposition of the electrodes changes according to
the array used, so that a grid of subsoil ERa values is obtained. The maximum depth of
investigation and resolution vary with electrode spacing and the array configuration. ERT
surveys were carried out at the same transects as EMI surveys, on the same dates, with
electrode spacings of 1 m at location 1 and 0.75 m at locations 2, 3, and 4. ERa data were
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collected using the Wenner array, known for effective mapping in areas with significant
vertical gradients of σ and a superior signal-to-noise ratio [31].

The inversion of ERa data to derive σ was performed using RES2DINV software
(V-3.71) (Geotomo Software, Penang, Malaysia). Given the pronounced vertical salinity
gradients due to saline groundwater in the region, robust inversion and mesh refinement
to half of the electrode spacing were implemented to address anticipated strong resistivity
contrasts. In robust inversion, the objective function aimed to minimize the absolute change
in resistivity values, yielding models with well-defined interfaces between regions with
varying resistivity values [31]. Since the inverted data were evenly distributed over the
modelled area, 2D vertical σ models were produced for each location using triangulation
with linear interpolation.

2.4. Soil Salinity

Soil samples were collected simultaneously as the geophysical surveys, in the medium
point of each profile, as shown in Figure 1. There, five soil samples were collected between
a depth of 0.15 m and 1.35 m representing topsoil (0–0.3 m), subsurface (0.3–0.6 m), upper
subsoil (0.6–0.9 m), intermediate subsoil (0.9–1.2 m), and lower subsoil (1.2–1.5 m). It is
noteworthy that the number of soil samples was limited to one borehole in each plot. This
was because of the short length of the transects and the relatively small lateral variability of
σ, suggesting that a single borehole could adequately represent soil properties. Further-
more, during the 18-month monitoring period at these four locations, a larger number of
boreholes were drilled, and laboratory analysis confirmed the limited lateral variability
of soil properties [4,7,38]. In the laboratory, ECe was determined using a conductivity
meter (WTW 1C20-0211 inoLab) on liquid extracts obtained by suction filtering of the
soil saturation paste derived from 300 g of air-dried and 2 mm sieved soil samples. The
methodology employed for ECe measurement followed the procedures by [52], and soil
samples’ salinity was classified according to [49], as described in Section 2.1.

Two regional calibrations were developed to predict ECe from all locations together,
one using σ obtained from the inversion of EMI data and the other using σ obtained from
the inversion of ERT data. The prediction ability of these calibrations was analysed through
cross-validation, using the leave-one-out cross-validation in R language [53] through the
function train(). In this method, one sample is removed and a calibration is established
based on the remaining samples to predict the ECe of the removed sample. This procedure
is iteratively repeated for each sample, until all 19 samples have been removed. The
prediction ability of the calibrations was evaluated by calculating the root mean square
errors (RMSE), and the mean errors (ME). RMSE evaluates matching between measured
and predicted data, indicating more precise predictions when closer to zero. ME evaluates
whether the predicted data are overestimated (negative ME) or underestimated (positive
ME). RMSE and ME were calculated according to the following equations:

RMSE =

√√√√∑n
i=1

(
mECei − pECei

)2

n
(1)

ME =
∑n

i=1

(
mECei − pECei

)
n

(2)

where mECe indicates measured ECe and pECe indicates predicted ECe.
The two regional calibrations were then used to estimate ECe from σ (obtained from

either EMI or ERT). Since the estimated ECe data were evenly distributed over the mapping
area, 2D vertical soil salinity classification maps were produced for each location using
triangulation with linear interpolation.
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2.5. Agreement Analysis

Agreement analysis was performed for EMI and ERT techniques in estimating σ

and ECe on the same points of the subsurface, based on the methodology described
in [54]. In this methodology, the agreement is analysed using the differences between
measurements made by two techniques on the same subject. In this study, we considered
the subsurface position as the subject. However, both EMI and ERT data surveys and
inversion processes produced subsurface σ grids that were not entirely coincident in space
(Figure 2). To overcome this issue, σ grids obtained from EMI and ERT modelling results
were ordered in data pairs selected for being distanced less than 0.22 m horizontally
and 0.05 m vertically. This criterion was looser in the horizontal direction to maintain
a statistically significant number of selected points, and it could be accepted because it
was known from the previous studies [4,7,38] that the subsurface was highly horizontally
stratified. The position attributed to each data pair was the position of the corresponding
EMI measurement. These data pairs were then used for a comparison of EMI and ERT
techniques in estimating σ, represented by (σERT, σEMI).

Land 2024, 13, x FOR PEER REVIEW 6 of 18 
 

RMSE =  √
∑ (mECei

− pEC
ei

)2n
i=1

n
 (1) 

ME =  
∑ (mECei

− pEC
ei

)n
i=1

n
 (2) 

where mECe indicates measured ECe and pECe indicates predicted ECe. 

The two regional calibrations were then used to estimate ECe from σ (obtained from 

either EMI or ERT). Since the estimated ECe data were evenly distributed over the map-

ping area, 2D vertical soil salinity classification maps were produced for each location 

using triangulation with linear interpolation. 

2.5. Agreement Analysis 

Agreement analysis was performed for EMI and ERT techniques in estimating σ and 

ECe on the same points of the subsurface, based on the methodology described in [54]. In 

this methodology, the agreement is analysed using the differences between measurements 

made by two techniques on the same subject. In this study, we considered the subsurface 

position as the subject. However, both EMI and ERT data surveys and inversion processes 

produced subsurface σ grids that were not entirely coincident in space (Figure 2). To over-

come this issue, σ grids obtained from EMI and ERT modelling results were ordered in 

data pairs selected for being distanced less than 0.22 m horizontally and 0.05 m vertically. 

This criterion was looser in the horizontal direction to maintain a statistically significant 

number of selected points, and it could be accepted because it was known from the previ-

ous studies [4,7,38] that the subsurface was highly horizontally stratified. The position 

attributed to each data pair was the position of the corresponding EMI measurement. 

These data pairs were then used for a comparison of EMI and ERT techniques in estimat-

ing σ, represented by (σERT, σEMI). 

For the comparison of EMI and ERT techniques in predicting ECe, the data pairs used 

were composed by predicted ECe using ERT and predicted ECe using EMI, (pECe ERT, pECe 

EMI), and were located at the position of the soil samples, as a result of the procedure for 

the calibration development. 

 

Figure 2. Comparison of electromagnetic induction (EMI) and electrical resistivity tomography (ERT)
σ grids for location 1, Lezíria, Portugal.

For the comparison of EMI and ERT techniques in predicting ECe, the data pairs used
were composed by predicted ECe using ERT and predicted ECe using EMI, (pECe ERT,
pECe EMI), and were located at the position of the soil samples, as a result of the procedure
for the calibration development.

To visualize the agreement of σ, data pairs were represented through σEMI against
σERT plots, and modified Bland–Altman plots [54]. In the latter type of plot, the difference
between each data pair value is plotted against the mean between the two values, which
represents the most approximate value to the true value being studied [54]. However, in
this case, we used σERT in the y-axis, as we considered it to be the σ reference and true
value. A reference interval within which fall most differences between the data is also
included, and it is called the 95% limit of agreement [54]. The 95% limit of agreement
can be calculated in different ways, depending on the differences between the data pair
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values following a normal distribution or not [54], which was investigated using the qqPlot
function of R language [53].

When the normal distribution of the differences between the data pair values was
verified, the 95% limits of agreement were calculated using the mean difference (MD) and
the standard deviation (SD) of the differences as MD ± 1.96SD agreement [54]. MD and SD
were calculated according to the following equations:

MD =
∑n

i=1
(
σEMIi − σERTi

)
n

(3)

SD =

√
∑n

i=1
(
σEMIi − σERTi − MD

)2

n − 1
(4)

When the normal distribution of the differences between the data pair values was not
verified, the 95% limits of agreement were defined using the median (MeD), the 5 percentile
(p5), and the 95 percentile (p95) of the differences [54].

To visualize the agreement between measured ECe and predicted ECe for each tech-
nique, data pairs were represented through another modification of the Bland–Altman plot,
in which the difference between measured ECe and predicted ECe for each technique was
plotted against the measured ECe.

Spearman’s rank correlation coefficient (RCC) between (i) the differences between σERT
and σEMI, and σERT, for σ data, and (ii) the differences between measured ECe and predicted
ECe, and the measured ECe, for ECe data, were calculated using the SpearmanRho()
function of R language [53]. Spearman’s RCC always returns a value placed between −1
and 1. In this case, it would indicate if the differences between the values being compared
are related to the magnitude of the property being estimated. A Spearman’s RCC closer
to 1 means that the differences are closely related to the magnitude of the property being
estimated [54].

3. Results and Discussion
3.1. Soil Electrical Conductivity Obtained from EMI vs. ERT

Figure 3 shows the 2D vertical σ models obtained by EMI and by ERT techniques for
locations 1 to 4. For both techniques, a general increasing trend of σ is evident from the north
to the south of the peninsula, accompanying the known soil salinity gradient, illustrating
the strong correlation of σ with ECe in the region, as verified previously in [4,7,38]. Also,
both techniques show that σ increases with depth at locations 2, 3, and 4, which correlates
well with groundwater depth and salinity in these locations. However, this trend is not
observed at location 1, possibly due to irrigation and the deeper positioning of the saline
groundwater at this site, making it less prone to capillary rise. Location 1 exhibits the
lowest σ values, ranging from 50 to 160 mS m−1, followed by slightly higher σ values at
location 2 (i.e., 60–460 mS m−1). Location 3 displays a greater variability in σ compared to
the other two locations, featuring a minimum σ of 30 mS m−1 and a higher maximum of
530 mS m−1. The σ gradient at location 4, however, is the most substantial, with an extreme
maximum σ of over 1600 mS m−1.

To compare the EMI model with ERT, Figure 4 shows the plots that support the agree-
ment analysis between EMI and ERT σ estimations. At location 1, a normal distribution of
the differences between σERT and σEMI data was verified, so the 95% limits of agreement
were calculated using the mean difference (MD) and the standard deviation of the differ-
ences (SD), as explained in the Materials and Methods section. It could be verified that most
differences between σERT data and σEMI data fell in the −14.98 mS m−1 to 32.16 mS m−1

interval. The mean difference was 8.59 mS m−1, and, since it was a positive value, indi-
cated that, at this location, the EMI model tended to underestimate σ compared to the
ERT model. This mean difference value was relatively low compared to the range of σERT
data (82.20–143.10 mS m−1, Table 1). In terms of depths, agreement was generally good in
topsoil (0–0.3 m), subsurface (0.3–0.6 m), and upper subsoil (0.6–0.9 m). However, the agree-
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ment diminished in the intermediate subsoil (0.9–1.2 m) and lower subsoil (1.2–1.5 m), as
evidenced by the distance of points to the 1:1 line in the σEMI against σERT plot. Differences
between σEMI and σERT data in the topsoil, subsurface, and upper subsoil were the closest
to the 0-horizontal line in the Bland–Altman plot. The Bland–Altman plot indicates that, at
this location, agreement increased with σ and decreased with depth. In comparison to the
ERT model, there was an obvious tendency for the EMI model to underestimate σ in the
lower subsoil (1.2–1.5 m). Spearman’s RCC of −0.34, as observed in location 1, indicates
that generally the differences between σEMI and σERT are not related to the magnitude of σ.
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Table 1. Statistics of soil’s electrical conductivity obtained from electrical resistivity tomography
(σERT), and measured soil salinity (mECe): minimum, maximum, range, and amount of data, at
locations 1 to 4 and at all locations together, respectively.

Unit Location Minimum Maximum Range Amount of Data

σERT mS m−1 1 82.20 143.10 60.90 80
2 126.70 446.20 319.50 252
3 107.40 427.50 320.10 252
4 356.40 1640.00 1283.60 196

mECe dS m−1 all 0.75 37.10 36.75 19
σERT is soil electrical conductivity obtained by electrical resistivity tomography. mECe is measured soil salinity
obtained from saturated soil paste extract (ECe).

At locations 2 to 4, a normal distribution of the differences between σEMI and σERT
data was not verified, so the 95% limits of agreement were calculated using the median
(MeD), the 5 percentile (p5), and the 95 percentile (p95) of the differences (see Section 2.5).

At location 2, most differences between σERT and σEMI data fell in the −24.88 mS m−1

to 77.19 mS m−1 interval. The median was 9.72 mS m−1, which indicates that, in general,
at this location the EMI model similarly tended to underestimate σ, compared to the ERT
model. Also, this value was low compared to the range of σERT data (126.70–446.20 mS m−1,
Table 1). In terms of depth, agreement was generally good in the upper subsoil (0.6–0.9 m)
and lower subsoil (1.2–1.5 m), which could be verified by the distance of points to the 1:1
line in the σEMI against σERT plot. Also, differences between σEMI data and σERT data in
the upper and lower subsoil were the closest to the 0-horizontal line in the Bland–Altman
plot. At this location, agreement increased with σ and with depth. This contrasted with the
observations at location 1, where the most significant disagreement was noted in the lower
subsoil (1.2–1.5 m). However, the distribution of σ at location 1 differed significantly from
the variability observed in the other three locations, as σ decreased with depth at location 1.
Spearman’s RCC of −0.54 indicates that generally, the differences between σEMI and σERT
tend to slightly decrease when σ increases.

At location 3, most of the differences betweenσERT andσEMI data fell in the−126.62 mS m−1

to 107.34 mS m−1 interval. The median was 16.90 mS m−1, which indicates that, similar to
locations 1 and 2, and in general, at this location the EMI model tended to underestimate
σ, compared to the ERT model. Also, this value was low compared to the range of σERT
data (107.40–427.50 mS m−1, Table 1). In terms of depth, agreement was generally good in
the subsurface (0.3–0.6 m) and upper subsoil (0.6–0.9 m), as evidenced by the proximity
of points to the 1:1 line in the σEMI against σERT plot and to the 0-horizontal line in the
Bland–Altman plot. Spearman’s RCC of −0.65 indicates that the differences between σEMI
and σERT slightly decrease when σ increases.

At location 4, most differences between σERT and σEMI data fell in the 291.90 mS m−1

to 1179.60 mS m−1 interval. This interval was totally above the 0-horizontal line in the
Bland–Altman plot, which, together with a median of 667.72 mS m−1, indicated that at this
location, the EMI model tended to drastically underestimate σ, compared to the ERT model.
Also, this value was significantly high in the range of σERT data (356.40–1640.00 mS m−1,
Table 1). In terms of depth, there was no significant agreement between σERT and σEMI, as
evidenced by the lack of proximity of points to the 1:1 line in the σEMI against the σERT plot
and to the 0-horizontal line in the Bland–Altman plot. Spearman’s RCC of 0.57 indicates
that the differences between σEMI and σERT slightly increase when σ increases.

Comparing the results between locations suggests that the EMI models tend to under-
estimate σ when compared to the ERT models in all four locations. However, in locations
1, 2, and 3, with σ variability inferred from the ERT model in the 50–500 mS m−1 range,
the underestimation of the EMI model was not significant, suggesting that the obtained
EMI models were in good and acceptable agreement with those inferred from detailed ERT
investigation. This was not the case at location 4, as the underestimation tendency was
quite drastic at this location, where the σ variability inferred from the ERT model fell in the
range of 500–1600 mS m−1. This is likely linked to the relationship between the quadrature
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component of the EMI signal and σ in superconductive soil at location 4, which may exhibit
a non-monotonic behaviour [33]. In such situations, obtaining more representative ECa
values may need the use of both the in-phase and quadrature components of the EMI
signal [55]. However, the in-phase component has to be adequately calibrated, as it is sus-
ceptible to signal instability and offsets [56], which was not considered in this study. This
presents a significant challenge when estimating σ in highly saline soil, where conductivity
is anticipated to be extremely high. In this context, the robust ECa estimation approach,
proposed by [57], may enhance the reliability of ECa estimation over superconductive areas.
Alternatively, ERT (e.g., [44]) or TDR (e.g., [45]) measurements carried out along the same
transects can be used to calibrate ECa data to obtain more representative ECa values.

3.2. Soil Salinity Obtained from EMI vs. ERT

Figure 5 shows the two regional calibrations that were developed to predict ECe, one
using the σ obtained from the inversion of EMI data and the other using σ, obtained from
the inversion of ERT, and their prediction results. Both models had a strong R2, with
EMI (0.86) being higher than ERT (0.75). The leave-one-out cross-validation resulted in
acceptable and comparable RMSE and ME results. The obtained RMSE of 3.96 dS m–1 for
EMI, and of 4.72 dS m–1 for ERT, were low in the measured ECe range (0.75–37.1 dS m–1,
Table 1) and comparable between them. ME of 3.22 dS m–1 for EMI, and 2.32 dS m–1 for
ERT, mean a comparable underestimation of the predicted data for both techniques.
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Figure 5. Measured soil salinity (mECe) versus soil electrical conductivity (σ) obtained from electro-
magnetic induction (EMI) and electrical resistivity tomography (ERT) techniques for the regional
calibrations (left), and predicted soil salinity (pECe) obtained from the leave-one-out-cross-validation
of the calibrations (right). Plots include calibrations and their coefficient of determination (R2) (left),
and their root mean square error (RMSE) and mean error (ME).

Figure 6 shows the plot of the differences between measured ECe and predicted
ECe, for each technique, against the measured ECe. The proximity of the points to the
0-horizontal line indicates that there is good agreement between measured and predicted
ECe. Points above the line indicate underestimation, while points below the line indicate
overestimation. In the non-saline classification interval of soil salinity, both techniques
showed good agreement between measured and predicted ECe. In the slightly saline
classification interval, EMI provided mostly overestimated predictions but also some
underestimated predictions, whereas ERT showed good agreement between measured
and predicted ECe. In the moderately saline classification interval, EMI provided one
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overestimated prediction, while ERT underestimated that same ECe measurement. In the
very saline classification interval, EMI provided one underestimated prediction, while ERT
overestimated that same ECe measurement. In the highly saline classification interval, the
same happened as in the previous interval, except for one ECe measurement, which was
underestimated by both techniques, but still classified as highly saline, for both techniques.
Spearman’s RCC calculated for EMI (0.24) indicated that there was an underestimation
tendency as the magnitude of ECe (soil salinity) increased. In the case of ERT, Spearman’s
RCC of −0.12 indicated a slight overestimation tendency as the soil salinity grew.
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Figure 6. Agreement of measured soil salinity (mECe) and predicted soil salinity (pECe) obtained
using electromagnetic induction (EMI) and electrical resistivity tomography (ERT) techniques, with
Spearman’s rank correlation coefficient (RCC).

A thorough examination of the calibrations reveals that, despite the EMI model signifi-
cantly underestimating σ in the superconductive zone at location 4, resulting in a distinct
linear regression slope between ECe and σ (EMI vs. ERT), this issue did not adversely affect
the overall predictive capability of the regional calibration when compared to the results
obtained from ERT. This is attributed to the fact that, although EMI underestimated σ at
location 4, the pattern of σ distribution and its variations with depth aligned with those
obtained from the ERT model.

To provide a better insight into the prediction ability of both methodologies in different
locations, Figure 7 depicts the 2D vertical maps of soil salinity classification obtained from
the conversion of σ obtained by EMI and ERT for locations 1 to 4, using the corresponding
calibration. The filled-in circles in the maps represent the position and classification of the
soil samples (measured ECe).

At location 1 there is total agreement between the predicted classification and the
actual classification obtained from the samples, for both techniques. At location 2 soil
salinity is overestimated by EMI at intermediate (0.9–1.2 m) and lower subsoil (1.2–1.5 m),
while it is also overestimated by ERT but only in lower subsoil (1.2–1.5 m). At location
3, soil salinity is underestimated by EMI at the subsurface (0.3–0.9 m) and overestimated
at intermediate (0.9–1.2 m) and lower subsoil (1.2–1.5 m), while it is underestimated by
ERT at the subsurface (0.3–0.9 m) and upper subsoil (0.6–0.9 m). At location 4, soil salinity
is underestimated by EMI from topsoil to upper subsoil (0–0.9 m), while there is total
agreement between the predicted classification and the actual classification by ERT.
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The filled circles represent the position and classification of the soil samples (measured ECe).

As anticipated, the salinity maps obtained from EMI and ERT are acceptably compara-
ble, although EMI generally underestimated σ. Both techniques displayed similar levels of
underestimations and overestimations, indicating a comparable level of prediction accuracy.
The underestimation or overestimation of soil salinity based on σ is not only related to the
geophysical approach but also influenced by the variability of other soil properties along
the transects, such as soil texture, moisture content, salinity type, and temperature. For
instance, in our previous study in the same study area, we observed that at location 2 the
presence of slightly higher clay content in the subsoil, combined with the lower range of soil
salinity (compared to locations 3 and 4), made it challenging to estimate ECe from EMI data
and regional calibration [38]. Also, in the same study area, a relatively larger variability
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of moisture content and soil temperature in the topsoil at all locations was a major factor
limiting ECe prediction in the topsoil [4]. Addressing such variability in soil properties
may require location-specific calibration to consider soil texture and moisture variations,
as discussed in [38]. Additionally, developing multiple regression models can account for
the influence of other parameters on σ and soil salinity prediction. Nevertheless, since all
measurements were conducted simultaneously at each location, we expect that comparable
effects of other soil properties on both ERT and EMI techniques will not significantly impact
the comparison between these two methodologies in assessing soil salinity, as they should
have a similar effect on both.

4. Conclusions

In this study, EMI and ERT surveys and soil sampling were carried out at four locations
with different salinity levels across the study area of Lezíria de Vila Franca, in dry season
conditions, to analyse the agreement between the two techniques in estimating soil electrical
conductivity and compare their ability in predicting soil salinity. While ERT may not offer
a precise subsurface conductivity distribution of the subsoil (as no indirect method can
achieve that), it stands out as one of the most reliable techniques for imaging the subsurface
conductivity distribution. Conversely, EMI measurements are highly sensitive to various
factors, including ground coupling, thermal drifts, and EM noise. Hence, it is sensible
to consider an ERT inversion as a reference model that the EMI inversion should strive
to approximate.

Based on the obtained results in this study, there was a reasonable agreement between
the EMI and ERT models in three locations, where σ ranged from 50 to 500 mS m−1. In
contrast, at location 4, where σ surpassed 1000 mS m−1, EMI notably underestimated σ in
comparison to ERT. However, EMI models could still predict the increasing trend of σ well
with depth. This suggests that the obtained EMI model may substantially underestimate σ

in an extremely saline area given the very high level of soil conductivity, which exhibits a
non-monotonic relationship between the quadrature component of the EMI signal. Under
this condition, the σ values inferred from EMI modelling cannot be used alone to assess
the soil salinity level without a location-specific regression or by applying a more robust
approach to obtain a more representative ECa value. Further case studies across different
soil types and salinity levels will offer more insights into the circumstances under which
EMI performs optimally.

The regional calibrations based on both EMI and ERT demonstrated similar predictive
capabilities. Despite the EMI model significantly underestimating σ in the superconductive
zone at location 4, leading to a distinct regression linear slope between ECe and σ, this issue
did not markedly affect the overall predictive performance of the regional calibration when
compared to the results from ERT. This is because despite the underestimation of σ by EMI
at location 4, the distribution pattern and depth-related variations in σ similarly mirrored
those obtained from the ERT model, resulting in comparable prediction abilities.

Our case study was limited to four plots with distinct soil salinity levels, but with
the same soil type. In addition, the number of soil samples was relatively limited, with
one borehole for each location. Additional case studies across areas with different soil
types and high conductivities are necessary to further evaluate the precision of EMI in
soil salinity assessments. Specifically, EMI vs. ERT studies across sites with inverted soil
salinity gradient in depth, where there is a superconductive zone over a more resistive zone,
are particularly needed to assess the prediction ability of EMI in contrasting conditions,
compared to this study. Larger numbers of boreholes and soil samples can also enhance
the soil salinity prediction ability and the evaluation of the EMI prediction ability.

Lastly, we advise caution to EMI practitioners when working with superconductive
soils. While it is not feasible to establish a definitive limit based solely on a single experiment
using specific EMI equipment and across a study area with a similar soil type, our experi-
ment indicated a significant underestimation σ in ranges above approximately 500 mS m−1.
It is important to note that this finding may vary in different experiments across diverse
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soil and salinity types, as well as when using different EMI sensors. However, this does not
diminish the concern regarding the challenge of using EMI in superconductive soil.
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