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Abstract: The urban agglomeration in the middle reaches of the Yangtze River holds a crucial
strategic position in China’s economic and social development landscape. Exploring the coordinated
development effects within the digital economy and innovation in this area is conducive to promoting
the development of the central region of China and the Yangtze River Economic Belt. This paper
uses the 28 sample cities in urban agglomeration in the middle reaches of the Yangtze River as the
study sample, and constructs a digital economy indicator system and an urban innovation efficiency
indicator system. Based on the coupling coordination degree model, we use kernel density estimation,
the Markov chain algorithm, and the Dagum Gini coefficient decomposition method to empirically
investigate the dynamic trends in coupling coordination development between the digital economy
and urban innovation efficiency from 2012 to 2021. The research results reveal an overall upward
trend in the digital economy, innovation efficiency, and coupling coordination development stages.
However, the upward trend is accompanied by the risk of recession. Moreover, there are significant
differences between cities, as highlighted by the differences between Wuhan and other cities. In the
light of the findings, it is recommended that government departments take measures, including being
alert to the risk of regressive development, developing cities in a realistic manner, and drawing on
the experiences of outstanding cities in development. This research can provide new insights and
empirical references for government entities to take measures for a more coordinated development of
the digital economy and innovation efficiency in the urban agglomeration in the middle reaches of
the Yangtze River.

Keywords: the urban agglomeration in the middle reaches of the Yangtze River; digital economy;
innovation efficiency; coupling coordination development

1. Introduction

Tapscott first proposed the concept of the digital economy (DE) [1]. With the rise
of the wave of digitization, the DE, as a new economic form formed after the industrial
economy, continues to attract the attention of all countries in the world [2]. The 20th
CPC National Congress made the instruction to accelerate the construction of digital
China, and the construction of digital China has become the necessary way to promote
Chinese-style modernization in the digital era. As the primary driver of economic and
social development, innovation has become the development engine and guiding force of
the DE by promoting technology iteration. With the DE booming, the boundaries of the DE
have expanded and digital technologies have been applied in more areas. The DE actively
contributes to economic development by boosting consumption, creating employment
opportunities, and innovating, while enabling the accelerated evolution of technological
innovations [2,3]. It can be seen that there is an interconnected and mutually influential
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relation between the DE and innovation, which is crucial for economic and social realization
of high-quality development.

The mutually reinforcing relationship between the DE and innovation is evidenced
in the existing literature. Existing research on the impact of the DE on innovation can be
summarized into the following two major aspects. From a macro perspective, the positive
effects of the DE on innovation were proven by analyzing data from 29 countries [4],
Chinese provinces [2,3], and Chinese prefecture-level cities [5]. From a micro perspective,
by conducting empirical research on the relevant data of Chinese A-share listed companies
and Chinese manufacturing listed companies, the significant promotion effect of the DE
on enterprise innovation has been confirmed [6–9]. It follows that the DE is a driving
force for innovation development of macro- and micro-agents. Existing literature on the
impact of technological innovation on the DE focuses on studies of driving force and
spatial variation. In terms of driving force, Chen et al. analyzed the data of 31 provinces in
China; the results showed that strong technological innovation has driven the DE to a high
level of development [10]. By analyzing the data of 171 listed companies in the field of DE,
Yang et al. conducted a study on the enhancement mechanism of corporate competitiveness,
and proposed that innovation, as a key contributing factor in the DE, significantly affected
the competitiveness of companies in the field of DE [11]. In terms of spatial variation,
scholars have conducted empirical studies based on Chinese provincial data, which show
that innovation accelerates the development of the DE and that the intensity of this positive
effect varies across regions [12,13]. An empirical study of China’s eight comprehensive
economic regions reveals a similar result [14]. It can be seen that innovation is the basis
and important driving force for the development of the DE. Innovation will accelerate the
continued growth of the DE.

In addition, co-evolution within urban systems facilitates in-depth studies of urban
development from temporal and spatial perspectives [15]. The research idea of evolution
and development is of great significance in regional studies [16]. Scholars have also studied
the coupling coordination evolution of the DE and innovation within different urban
systems from the perspective of co-evolution. For example, Zhang et al. investigated the
coupling and coordinated development between green science and innovation efficiency
(IE) and the DE in various provinces of China [17]. Li and Feng examined the coupled
coordination relation between innovation and DE development in the four strategic regions
of China [18]. A great number of research methods have been utilized in the study of
coupling and coordination relations, including methods such as kernel density estimation,
Markov chain, and Dagum Gini coefficient decomposition [18,19].

In conclusion, the existing research content related to innovation and the DE mainly
concerns evaluation measures, mutual unidirectional relations of the two, as well as the
coupling coordination relation. In the study of the coupling coordination relation, the
sample regions mainly focus on the provinces in China. However, the scope of the research
is limited to provinces and strategic urban agglomeration; they care less about intermu-
nicipal or inner cities in major urban agglomeration comparisons. Prefectural cities, as
spatial subregions of the province and the urban agglomeration, play an important role
in supporting the development of the provincial region. It is worthwhile to pay attention
to the differences in the level of development between prefectural cities within major
urban agglomeration.

The urban agglomeration in the middle reaches of the Yangtze River (UAMRYR),
located in the central part of China, is one of the key regions of the Yangtze River Economic
Belt, with a unique spatial geographic location and national strategic position, and it is a
crucial region for the rise of the central region and the development of the Yangtze River
Economic Belt [20]. Therefore, promoting the coordinated development of the UAMRYR
is an inevitable requirement in the context of the national major regional development
strategy. Since the implementation of the regional development strategy, the UAMRYR has
seen a significant increase in its innovative strength and a steady improvement in the level
of the DE. It not only provides a new spatial carrier for the improvement of IE, but also
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provides a new focus point for the high-quality development of the DE. IE synergizes the
development of the DE, injecting new kinetic energy for the promotion of the integrated
high-quality development of the UAMRYR [18].

However, compared with the other four large urban agglomerations in China, the
development of the UAMRYR has been relatively slow, and there are significant devel-
opmental differences existing within the urban agglomerations [21]. Therefore, scientific
evaluating and comprehensively analyzing the IE and DE development of the UAMRYR
will help to clarify and solve the development dilemma of the UAMRYR, which is of great
significance for the long-term high-quality development of the UAMRYR. In addition,
it will also provide some experiences for the development of other similar regions in
the world.

In this paper, we select 28 prefectural-level cities in the UAMRYR as the research
objects and review the Statistical Yearbook to obtain the research data from 2012 to 2021.
Based on the coupling coordination degree model of dual systems of IE and DE, we com-
prehensively apply kernel density estimation, the Markov chain algorithm, and the Dagum
Gini coefficient decomposition method, to explore the specific performance, evolution logic,
and difference paths of the coupling effect of IE and the DE in the UAMRYR. The research
findings answer the fundamental question of innovation development of the representative
urban agglomerations in the central region of China and provide a rationalized basis for
development and precise policy inspiration for the further formation of the integrated and
coordinated development pattern of the UAMRYR.

We try to make the following contributions:

1. We establish comprehensive level evaluation index systems for IE and DE separately
and measure and compare the IE and DE of the sample cities in the UAMRYR.

2. We construct a coupling coordination degree (CCD) model between DE and IE of the
28 sample cities in the UAMRYR, calculate the CCD values of the sample cities for the
period of 2012–2021, and analyze the fluctuating tendency.

3. We describe and analyze the spatial and temporal distribution and evolution charac-
teristics of the CCD values of the UAMRYR by using kernel density estimation, the
Markov chain algorithm, and the Dagum Gini coefficient decomposition method and
provide a scientific foundation for relevant departments to formulate policies to realiz-
ing differentiated development and integrated regional development of the UAMRYR.

2. Materials and Methods
2.1. Study Area

The UAMRYR is located in central China, spanning 3 provinces: Hubei Province,
Hunan Province, and Jiangxi Province. Refer to Figure 1a for details. It consists of 31 cities,
within a latitude range of 26◦07′–32◦10′ N and a longitude range of 110◦15′–118◦29′ E.
Due to the absence of crucial data indicators, Xiantao, Qianjiang, and Tianmen are not
included in the sample cities. In this paper, the remaining 28 cities are selected for the
study. These 28 sample cities are grouped into three regions based on their locations:
Hubei Province area, Hunan Province area, and Jiangxi Province area. Hubei Province
area includes 10 sample cities: Wuhan, Huangshi, Yichang, Xiangyang, Ezhou, Jingmen,
Xiaogan, Jingzhou, Huanggang, and Xianning. Hunan Province area includes 8 sample
cities: Changsha, Zhuzhou, Xiangtan, Hengyang, Yueyang, Changde, Yiyang, and Loudi.
Jiangxi Province area includes 10 sample cities: Nanchang, Jingdezhen, Pingxiang, Jiujiang,
Xinyu, Yingtan, Ji’an, Yichun, Fuzhou, and Shangrao. Refer to Figure 1b for details.

2.2. Data Sources

This research examines panel data of the 28 sample cities from 2012 to 2021. The
relevant data of the indicators are collected from the “China City Statistical Yearbook
(2013–2022)”, “HUBEI Statistical Yearbook (2013–2022)”, “HUNAN Statistical Yearbook
(2013–2022)”, “JIANGXI Statistical Yearbook (2013–2022)”, “Chinese Research Data Ser-
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vices”, “The Peking University Digital Financial Inclusion Index of China”, as well as
provincial and municipal statistical bulletins on economic and social development [22].
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2.3. Indicator Systems
2.3.1. Indicator System for the DE

In order to better measure the development level of the DE of the UAMRYR, we refer
to the related research by Zhao et al. and Shi et al., develop a comprehensive index system
of DE development under the principle of systematicity, scientificity, objectivity, and data
availability [23,24].

Specific indicators are shown in Table 1, and the entropy method is used to determine
the index layer weight.

Table 1. Digital economy indicator system.

Objective First-Level Index Second-Level Index Type Weight

Digital economy system

Internet penetration rate The number of internet access
ports per 100 people + 0.4316

Status of related outputs Telecommunications business
volume per capita + 0.0849

Number of internet employees Percentage of employees in
computer services and software + 0.0518

Mobile phone penetration rate The number of cell phone
subscribers per 100 people + 0.3921

Digital financial inclusion
development

The Peking University Digital
Financial Inclusion Index of China + 0.0396

2.3.2. Indicator System of IE

Urban IE is deeply related to the city’s innovation performance, which largely reflects
the ability of the urban innovation inputs to be transformed into innovation outputs, and is
a key factor for the city to gain a competitive advantage [25].

In the existing literature, two primary dimensions to measuring IE are identified,
which include inputs and outputs. Existing research often uses indicators such as personnel
and funding to measure city innovation inputs, and selects indicators like patents to
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measure city innovation outputs [26–28]. Moreover, the IE of cities is calculated based on
the input–output process.

In terms of input indicators, drawing on previous research by Fan et al., we select the
number of employees engaged in scientific research and technical services as the personnel
input indicator, and scientific expenditure as the financial input indicator [29].

In terms of output indicators, patents provide a fairly reliable measure of innova-
tion [30,31]. Considering that the number of patent applications does not have an approval
waiting period and is less affected by subjective human factors such as policies and ap-
proval departments, it can more accurately reflect the true level of innovation output [29,32].
In China, patents are categorized into three types: invention patents, utility model patents,
and design patents [33]. Each type represents different levels of creativity and technical-
ity [34]. Therefore, this paper selects the number of invention patent applications, the
number of utility model patent applications, and the number of design patent applications
as specific output indicators.

Using the aforementioned indicator system, we measure the IE of 28 sample cities in
the UAMRYR from 2012 to 2021.

Specific indicators are shown in Table 2.

Table 2. Innovation efficiency indicator system.

Objective First-Level Index Second-Level Index

Innovation efficiency

Input
The number of employees engaged in scientific research

and technical services (ten thousand people)
Scientific expenditure (ten thousand CNY)

Output
The number of invention patent applications(count)

The number of utility model patent applications (count)
The number of design patent applications (count)

2.4. Methods
2.4.1. The Entropy Method

Existing research has mainly utilized the entropy method and principal component
analysis to measure the level of the DE’s development [35–38]. Subjective weighting meth-
ods, such as principal component analysis, may create problems such as randomness due
to human factors [35,39]. To avoid this problem, we follow the general practice in existing
research [40,41] and employ the entropy method, a type of objective weighting method, to
measure the DE development levels of the 28 sample cities in the UAMRYR from 2012 to
2021. To facilitate comparisons across different years, this paper follows the approach of
Guan et al. by including a time variable in the model [42]. The steps are as follows:

(1) Given that various measurement indicators for the level of DE development differ
in their dimensions, it is essential to ensure horizontal comparability by using the range
method to standardize each indicator. The indicators we select are positive indicators,
which can be calculated using the following formula:

x′ ijk =
xijk − xmink

xmaxk − xmink
(1)

where xijk represents the value of the k-th indicator of the j-th sample city in i-th year.
(2) Data shifting of 0.00000001 is performed to prevent standardized data from having

zero values:
x′′ ijk = x′ ijk + 0.00000001 (2)

(3) Calculate the proportion of the k-th indicator for the j-th sample city in i-th year:

yijk =
x′′ ijk

∑r
i=1 ∑n

j=1 x′′ ijk
(3)
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where r represents the number of years, and n represents the number of sample cities.
(4) Calculate the information entropy and redundancy of the k-th indicator:

Sk = − 1
ln rn

r

∑
i=1

n

∑
j=1

yijkln yijk (4)

gk = 1 − Sk (5)

(5) Calculate the weight of the k-th indicator:

wk =
gk

∑m
k gk

(6)

where m represents the number of indicators.
(6) Calculate the comprehensive score of indicators:

hij = ∑m
k wkx′′ ijk (7)

2.4.2. SBM-DEA Model

Existing research has mainly utilized Data Envelopment Analysis (DEA) and the en-
tropy method to quantitatively measure and study regional innovation [26,43–45]. The Data
Envelopment Analysis (DEA) method is a non-parametric approach for handling multiple
decision-making units with multiple identical inputs and outputs [46]. This method has
several advantages, such as no requirement of predicting parameters and weights, and no
requirement of setting specific input–output functions [47]. To some extent, this method
can mitigate the influence of subjective human factors [48,49]. Based on these advantages,
it is widely used for assessing the relative efficiency of similar units [50].

However, the traditional DEA model based on radial and linear piecewise measures
can lead to overestimating decision unit efficiency and can constrain efficient decision units
to have efficiency values of 1 [51]. Tone (2002) proposed a non-radial DEA model—the
Super-Efficiency DEA model based on slacks (SBM, slacks-based measure) [52]. This model
fully considers the slackness issues of inputs and outputs, and distinguishes and ranks the
efficiency values for efficient decision units [53–55].

Therefore, this paper selects the Super-Efficiency SBM-DEA model to measure the IE of
the 28 sample cities in the UAMRYR from 2012 to 2021. Given that the evaluation of urban
IE requires considering both input and output perspectives and most production units
in reality operate under Variable Returns to Scale (VRS) conditions, this paper proposes
constructing a non-oriented VRS Super-Efficiency SBM-DEA model. The model is set in
the following formula:

minθ∗ =
1 + 1

m ∑m
i=1 s−i /xik

1 − 1
s ∑s

r=1 s+r /yrk
(8)

s.t.



n
∑

j=1,j ̸=k
xijλj − s−i ≤ xik

n
∑

j=1,j ̸=k
yrjλj + s+r ≥ yrk

n
∑

j=1
λj = 1

λj ≥ 0, s−i ≥ 0, s+r ≥ 0
i = 1, 2, · · · , m; r = 1, 2, · · · , s; j = 1, 2, · · · , n(j ̸= k)

(9)

In Equations (8) and (9), θ∗ represents the super-efficiency value, where θ∗ ≥ 1. m,
s, and n represent the number of input indicators, output indicators, and decision units,
respectively. j ̸= k is used to exclude a situation where the efficiency value of a decision unit
is 1, preventing it from referencing its own frontier construction. λj represents the linear
combination coefficients for all decision units. xij and xik refer to the i-th input indicator for
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the j-th and k-th decision units, respectively. Similarly, yrj and yrk refer to the r-th output
indicator for the j-th and k-th decision units, respectively. s−i and s+r are the slack variables
for the i-th input indicator and r-th output indicator, respectively.

2.4.3. Dual-System CCD Model

The concept of “coupling” originally stems from physics, revealing the processes of
coordinated development, mutual cooperation, and influence between systems [56–59]. In
this paper, we construct a CCD model for the two systems of IE and DE to accurately depict
the interactive relationship between city IE and DE.

The formula is as follows:

C =
2 ×

√
U1 × U2

(U1 + U2)
(10)

T = αU1 + βU2 (11)

D =
√

C × T (12)

In Equation (10), U1 and U2 represent the comprehensive values of IE and DE, respec-
tively. C denotes the coupling degree between the two systems.

In Equation (11), T stands for the comprehensive coordination index, and α and β
are the respective weights assigned to the systems. In this paper, IE and DE are of equal
importance, hence assigning them equal weights, i.e., α = 0.5 and β = 0.5.

In Equation (12), D represents the CCD value.
On this basis, utilizing the research findings of Yuan et al. [60] and Li and Feng [18],

the CCD values are divided into four level, as shown in Table 3 below.

Table 3. Classification of the coupling coordination degree values.

CCD-Value Interval Coupling Coordination Development Stage

[0, 0.3) Marginal Coordination
[0.3, 0.5) Primary Coordination
[0.5, 0.6) Intermediate Coordination
[0.6, 1] Advanced Coordination

2.4.4. Kernel Density Estimation Method

Kernel density estimation (KDE) is a non-parametric estimation method that does not
require a predefined function. It is better suited for estimating unknown distributions and
can provide an intuitive representation of the dynamic evolution of measurement values
for the research object [61,62]. Based on the advantages of the KDE method mentioned
above, this paper uses the KDE method to estimate the distribution of the CCD values for
each sample city from 2012 to 2021. Assuming f (x) is the distribution function for the set
X, and the sample observations Xi are independent and identically distributed, the formula
at point x is defined as follows:

f (x) =
1

nh∑n
i=1 K(

Xi − x
h

) (13)

where n represents the number of sample cities, h is the bandwidth parameter, x represents
the mean of the observed values, and K(·) is the kernel function.

2.4.5. Markov Chain Algorithm

A Markov chain reveals the evolutionary trend of each type by constructing a state
transfer matrix to calculate the probability distribution under the condition that the time
and state are discrete [63,64]. In this paper, the Markov chain method is employed to study
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the transition probabilities between different coupling types of cities within the sample
years in the 28 sample cities. Here are the specific details:

P = {Xt = j|Xt−1 = i, Xt−2 = it−2, · · · , X0 = i0} = P{Xt = j|Xt−1 = i} = Pij (14)

Pij =
nij

ni
(15)

In Equation (14), Xt = j represents the random variable X having a coupling coordi-
nation type of j at time t. The state of the random variable X at time t in the future is only
influenced by the adjacent previous period. Pij denotes the transition probability of a city’s
coupling coordination state, shifting from the i-th type in year t − 1 to the j-th type in year t.

In Equation (15), ni represents the total number of occurrences of the i-th coupling coor-
dination type. nij represents the number of occurrences in which the coupling coordination
type changes from the i-th type to the j-th type.

2.4.6. Dagum Gini Coefficient Decomposition Method

Compared to Theil’s Index and the traditional Gini coefficient, the Dagum Gini co-
efficient effectively solves the problem of sample data cross-overlapping [63–66]. This
approach has been widely adopted for characterizing and analyzing regional differences.
In this paper, the sample cities are divided into the Hubei Province area, Hunan Province
area, and Jiangxi Province area. The Dagum Gini coefficient for the CCD values of the
sample cities are calculated from 2012 to 2021, and they are decomposed to analyze the
differences between the areas. The formula is as follows.

G =
∑k

j=1 ∑k
h=1 ∑

nj
i=1 ∑nh

r=1

∣∣yji − yhr
∣∣

2n2y
(16)

where k represents the number of regional divisions, j and h represent different areas. n
represents the total number of sample cities within each area, while nj and nh represent
the number of sample cities within area j and area h, respectively. yji and yhr represent the
CCD values of sample city i in area j and sample city r in area h. y represents the average
CCD value.

Before decomposing the Dagum Gini coefficient, it is necessary to sort the means of
the CCD values within the divided areas:

Y j ≤ · · · ≤ Yh (17)

Dagum (1997) decomposed the overall Gini coefficient G into three components: Intra-
Group Gini coefficient Gw, Inter-Group Gini coefficient Gnb, and Transvariation Intensity Gt,
and the relationship between them satisfies G = Gw +Gnb +Gt [67]. The specific calculation
formulas are as follows:

Gjj =
∑

nj
i=1 ∑

nj
r=1

∣∣yji − yjr
∣∣

2n2
j yj

(18)

Gw =
k

∑
j=1

Gjj pjsj (19)

In Equation (18), Gjj represents the Gini coefficient in area j.
In Equation (19), Gw represents the Intra-Group Gini coefficient.

Gjh =
∑

nj
i=1 ∑nh

r=1

∣∣yjr − yhr
∣∣

njnh

(
yj + yh

) (20)
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Gnb =
k

∑
j=2

j−1

∑
h=1

Gjh(pjsh + phsj)Djh (21)

In Equation (20), Gjh represents the Gini coefficient between area j and area h.
In Equation (21), Gnb represents the Inter-Group Gini coefficient.

Gt =
k

∑
j=2

j−1

∑
h=1

Gjh(pjsh + phsj)(1 − Djh) (22)

In Equation (22), Gt represents the Transvariation Intensity, where pj = nj/n and
sj = nj × Y/(n × Y) for j = 1, 2, · · · , k.

Djh =
djh − pjh

djh + pjh
(23)

djh =
∫ ∞

0
dFj(y)

∫ y

0
(y − x)dFh(x) (24)

pjh =
∫ ∞

0
dFh(y)

∫ y

0
(y − x)dFj(x) (25)

In Equations (23)–(25), Djh represents the relative impact of the CCD values between
area j and area h. djh represents the difference between CCD values between area j and area
h, which is the mathematical expectation of the sum of all sample values where yji − yhr > 0
for area j and area h. pjh represents the first moment of Transvariation Intensity, which is
the mathematical expectation of the sum of all sample values where yhri − yji > 0 for area j
and area h. Fj and Fh represent the cumulative density distribution functions for area j and
area h.

3. Results
3.1. DE Development Status

Figure 2 displays the DE development levels of the 28 sample cities in the UAMRYR
from 2012 to 2021. Overall, from 2012 to 2021, the DE development levels of Hubei Province
area, Hunan Province area, and Jiangxi Province area have been progressively improving.
Starting in 2020, the impact of the COVID-19 pandemic accelerated the growth of the DE.
Furthermore, when comparing these three areas, it was evident that their DE development
trends have consistently shown synchronized growth. This information is illustrated in
Figure 2a. Throughout the 2012–2021 period, provincial capital cities, including Wuhan,
Changsha, and Nanchang, significantly outperformed other cities in terms of DE develop-
ment. Among these provincial capital cities, Wuhan consistently maintained its leading
position in DE development, aligning with the findings of the “2022 China Digital Economic
Development Index”. This pattern is detailed in Figure 2b–d.

3.2. IE Situation

Table 4 shows the IE of the 28 sample cities in the UAMRYR from 2012 to 2021. Overall,
during 2012–2021, the IE trend experienced fluctuations. Compared to 2012, the IE in 2013
declined from 0.338 to 0.185. Then, the years from 2013 to 2019 witnessed a strong upward
trend, increasing from 0.186 in 2013 to 0.512 in 2019. However, a noticeable decline occurred
in 2020 and 2021 compared to previous years. The IE for 2020 and 2021 declined from
0.512 to 0.169 and 0.306, respectively. From a temporal perspective, there was a significant
increase in the number of cities with effective efficiency. In 2018 and 2019, there were
six sample cities each that achieved effective efficiency, and in 2017, five sample cities
reached effective efficiency. This marked a significant increase compared to the two sample
cities that achieved effective efficiency in 2016. During the sample period, Changsha
maintained effective efficiency for three consecutive years, while Jiujiang, Fuzhou, and
Wuhan achieved effective efficiency for two consecutive years. From a spatial perspective,
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there are development differences within the UAMRYR, and the development of the IE
in Wuhan far exceeded that of other sample cities. Wuhan achieved effective efficiency
for two years and maintained an efficiency level exceeding 0.5 for five years between
2012 and 2021, indicating relatively high overall IE compared to other sample cities. Over
the ten-year sample period, several sample cities, apart from Wuhan, achieved effective
efficiency in their innovation development processes. However, the number of times that
they realized effective efficiency was much fewer than that of Wuhan. For example, cities
such as Jingdezhen, Jiujiang, Xinyu, Shangrao, Changsha, and Loudi achieved effective
efficiency for three years, while Yingtuan and Fuzhou achieved it for two years. Cities like
Pingxiang, Yichun, Ezhou, Xiangtan, Changde, and Yiyang achieved effective efficiency for
one year.
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3.3. Situation of the CCD Values

Figure 3 presents the spatial distribution and evolution of the CCD values for the
28 sample cities in the UAMRYR in 2012, 2017, and 2021. It can be observed that in
2012, the majority of the sample cities were in the marginal coordination stage. Only
Wuhan, Changsha, Zhuzhou, Xiangtan, Loudi, Xinyu, Yingtan, and Shangrao were in
the primary coordination phase. No sample cities achieved either the intermediate or
advanced coordination stages. In 2017, compared to 2012, the number of sample cities
in the marginal coordination phase decreased, and the number of sample cities in the
primary coordination phase increased. Meanwhile, Wuhan and Changsha progressed
to the intermediate coordination stage for the first time, yet none reached the advanced
coordination stage. In 2021, with the exception of a very few sample cities that remained
in the marginal coordination stage, the rest had entered various coordination states, with
their coordination levels further improving. Wuhan, Changde, Jingdezhen, Jiujiang, and
Fuzhou were already in the advanced coordination stage at this time.
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Table 4. Innovation efficiency situation from 2012 to 2021.

Sample City 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Nanchang 0.201 0.220 0.219 0.275 0.319 0.260 0.322 0.367 0.118 0.114
Jingdezhen 0.168 0.148 0.275 0.171 0.326 0.213 0.333 1.217 1.037 1.329
Pingxiang 0.127 0.102 0.151 0.139 0.188 1.022 0.457 0.346 0.146 0.171

Jiujiang 0.097 0.053 0.067 0.085 0.112 0.145 1.001 1.056 0.211 1.064
Xinyu 1.016 0.328 0.445 1.018 0.328 0.399 1.167 0.490 0.150 0.145

Yingtan 1.015 0.096 0.101 0.146 1.070 0.369 0.141 0.109 0.064 0.069
Ji’an 0.119 0.067 0.095 0.101 0.149 0.197 0.259 0.291 0.289 0.399

Yichun 0.280 0.193 0.260 0.212 0.365 0.362 0.525 1.075 0.230 0.332
Fuzhou 0.119 0.198 0.223 0.192 0.252 0.550 1.019 1.059 0.261 0.344

Shangrao 1.023 0.325 0.283 0.241 0.293 1.000 1.064 0.687 0.142 0.142
Wuhan 0.217 0.155 0.212 0.372 0.532 0.721 1.011 1.305 0.205 0.521

Huangshi 0.374 0.309 0.232 0.370 0.260 0.315 0.322 0.312 0.102 0.143
Yichang 0.148 0.121 0.128 0.104 0.135 0.138 0.151 0.116 0.049 0.078

Xiangyang 0.200 0.148 0.062 0.083 0.109 0.101 0.095 0.093 0.038 0.086
Ezhou 0.329 0.278 1.220 0.660 0.224 0.165 0.235 0.754 0.132 0.113

Jingmen 0.173 0.128 0.099 0.118 0.167 0.323 0.364 0.305 0.126 0.194
Xiaogan 0.125 0.151 0.146 0.153 0.195 0.266 0.250 0.164 0.069 0.087
Jingzhou 0.129 0.125 0.105 0.153 0.150 0.243 0.259 0.229 0.104 0.132

Huanggang 0.123 0.118 0.119 0.153 0.206 0.255 0.341 0.287 0.117 0.227
Xianning 0.224 0.127 0.148 0.283 0.352 0.516 0.357 0.316 0.151 0.205
Changsha 0.194 0.168 0.195 0.252 0.412 1.014 1.011 1.064 0.115 0.002
Zhuzhou 0.405 0.316 0.364 0.274 0.404 0.410 0.377 0.319 0.097 0.119
Xiangtan 1.103 0.393 0.319 0.406 0.322 0.351 0.284 0.353 0.127 0.206

Hengyang 0.281 0.317 0.382 0.549 0.645 0.575 0.621 0.595 0.172 0.060
Yueyang 0.119 0.093 0.092 0.105 0.096 0.115 0.123 0.100 0.056 0.029
Changde 0.269 0.183 0.184 0.184 0.272 0.193 0.192 0.237 0.087 2.009
Yiyang 0.287 0.166 0.210 0.712 0.807 1.007 0.816 0.650 0.190 0.043
Loudi 0.597 0.175 0.470 0.638 1.071 1.087 0.559 0.424 0.140 0.218

Mean 0.338 0.186 0.243 0.291 0.349 0.440 0.488 0.512 0.169 0.306
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Figure 3. Distribution and evolution of the coupling coordination degree values.

Further, Table 5 provides detailed information on the CCD values for each sample
city. From an overall perspective, the coupling coordination level of the sample cities
has been steadily improving from 2012 to 2021. Except for a slight decline in 2013 (0.257)
compared to 2012 (0.265), there was a yearly growth trend throughout this period, which
changed from preliminary coordination in 2012 (0.265) to primary coordination in 2021
(0.469). From a temporal perspective, the number of sample cities with high coordination
levels has increased significantly. In 2012, all sample cities were in marginal and primary
coordination stages. In 2017, Wuhan and Changsha became the first two sample cities
to achieve intermediate coordination. In 2019, Wuhan became the first sample city to
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move to the advanced coordination stage. By 2021, only two sample cities remained in
the marginal coordination stage, while the rest had all entered coordination phases. From
a spatial perspective, the coupling coordination level varied among the sample cities
over the sample period. Most sample cities, including Nanchang, Wuhan, and Changsha,
have shown a progressive development trend with few exceptions. Some sample cities
like Zhuzhou, Yichang, and Xiangyang maintained a stable level, barring a few years. In
contrast, the sample cities like Yingtan and Changde showed fluctuating development
levels. Significantly, Wuhan consistently exhibited a leading synergy level in comparison to
other sample cities. While most sample cities were still in the marginal coordination stage
from 2012–2016, Wuhan had already achieved primary coordination. Post-2017, Wuhan
remained in the intermediate or advanced coordination stage and became the first city to
reach an advanced coordination level in 2019.

Table 5. The coupling coordination degree values from 2012 to 2021.

Sample City 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Nanchang 0.279 0.317 0.333 0.352 0.374 0.398 0.386 0.400 0.414 0.470
Jingdezhen 0.297 0.254 0.303 0.279 0.325 0.303 0.332 0.469 0.617 0.753
Pingxiang 0.221 0.220 0.245 0.251 0.282 0.447 0.377 0.350 0.451 0.548

Jiujiang 0.184 0.190 0.206 0.227 0.248 0.274 0.452 0.461 0.373 0.625
Xinyu 0.369 0.305 0.344 0.448 0.361 0.378 0.556 0.493 0.388 0.403

Yingtan 0.340 0.218 0.230 0.257 0.436 0.343 0.273 0.258 0.295 0.341
Ji’an 0.222 0.194 0.215 0.226 0.260 0.289 0.310 0.322 0.422 0.522

Yichun 0.246 0.257 0.267 0.269 0.316 0.327 0.373 0.445 0.417 0.525
Fuzhou 0.203 0.244 0.256 0.259 0.289 0.366 0.434 0.444 0.550 0.692

Shangrao 0.359 0.289 0.291 0.287 0.303 0.429 0.447 0.406 0.370 0.424
Wuhan 0.313 0.303 0.333 0.392 0.438 0.500 0.569 0.607 0.542 0.783

Huangshi 0.272 0.291 0.279 0.324 0.309 0.333 0.353 0.371 0.402 0.504
Yichang 0.226 0.237 0.249 0.244 0.269 0.276 0.289 0.272 0.271 0.341

Xiangyang 0.229 0.236 0.192 0.223 0.243 0.253 0.253 0.256 0.280 0.390
Ezhou 0.270 0.291 0.429 0.382 0.322 0.290 0.321 0.434 0.401 0.442

Jingmen 0.244 0.244 0.236 0.254 0.284 0.345 0.364 0.349 0.363 0.454
Xiaogan 0.199 0.229 0.260 0.250 0.276 0.310 0.310 0.286 0.290 0.341
Jingzhou 0.231 0.242 0.234 0.266 0.273 0.318 0.322 0.318 0.322 0.387

Huanggang 0.198 0.226 0.224 0.250 0.280 0.303 0.332 0.323 0.276 0.341
Xianning 0.233 0.238 0.258 0.314 0.346 0.380 0.383 0.369 0.377 0.456
Changsha 0.301 0.304 0.318 0.347 0.404 0.511 0.520 0.538 0.466 0.183
Zhuzhou 0.303 0.305 0.330 0.314 0.354 0.360 0.360 0.351 0.320 0.378
Xiangtan 0.380 0.314 0.349 0.355 0.346 0.342 0.327 0.350 0.435 0.575

Hengyang 0.237 0.280 0.309 0.358 0.371 0.375 0.406 0.404 0.348 0.297
Yueyang 0.217 0.217 0.226 0.252 0.244 0.264 0.269 0.258 0.354 0.350
Changde 0.271 0.256 0.265 0.275 0.312 0.297 0.298 0.317 0.327 0.818
Yiyang 0.260 0.243 0.265 0.377 0.395 0.437 0.423 0.404 0.399 0.315
Loudi 0.305 0.253 0.326 0.358 0.420 0.440 0.377 0.361 0.375 0.482

Mean 0.265 0.257 0.278 0.300 0.324 0.353 0.372 0.379 0.387 0.469

3.4. Dynamic Evolution Trend

Figure 4 depicts the dynamic evolution trend of the CCD values for the 28 sample
cities in the UAMRYR from 2012 to 2021. From an overall perspective, the CCD values
have generally risen with some regional differentiation. During the sample period, the
main peak shifted to the left, indicating that the overall coupling coordination level con-
tinuously progressed. At the same time, side peaks existed on the left side of the main
peak, particularly in 2013, and the trailing phenomenon on both sides always existed,
indicating an internal polarization phenomenon in the overall structure. The trend of the
left trailing end gradually slowed down and became more apparent, while the right trailing
end significantly weakened, indicating that the density of sample cities in the primary and
intermediate coordination stage gradually increased. Refer to Figure 4a for details. From a
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diversity perspective, there were regional differences in the internal development. During
the sample period, both the main peak and the side peak in the Hubei Province area always
coexisted. However, as time went by, the height of the side peak gradually decreased, and
the width between the main and side peaks narrowed. This suggests that even though the
phenomenon of polarization persisted, its trend was mitigated over time, leading to a more
concentrated overall coordination level. Refer to Figure 4b for details. Hunan Province
area and Jiangxi Province area only showed side peaks in a few years, indicating that there
were instances of development imbalances in some years. However, Hunan Province area
and Jiangxi Province area had different main peak heights and positions, reflecting the
disparities in the specific development status across different areas. Refer to Figure 4c,d
for details.
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3.5. Internal Transition Situation

Table 6 reflects the internal transition characteristics and dynamic transition informa-
tion of the CCD stages of the 28 sample cities in the UAMRYR from 2012 to 2021 through
the transition probability matrix, with a time span of 1 year. From the perspective of the
stability of the CCD stages, the current CCD stages were likely to exhibit the characteristics
of the last phase. The transition probability of the samples on the diagonal was much
higher than that of the off-diagonal samples, indicating that various levels of the CCD
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were relatively stable, revealing a “club convergence” phenomenon. The sample cities
that were originally at the marginal coordination stage, primary coordination stage, in-
termediate coordination stage, and advanced coordination stage had the probabilities of
maintaining their current stages after 1 year at 73.39%, 82.71%, 37.5%, and 50%, respectively.
Moreover, sample cities in the marginal coordination stage and primary coordination stage
had a higher probability of maintaining their current levels than those in the intermediate
coordination stage and advanced coordination stage. From the perspective of the CCD
process, different CCD stages followed a gradual progression; transition phenomenon of
the CCD stages almost only occurred between adjacent states. In the meantime, leapfrog
transitions had an extremely low possibility, which were only observed from the primary
coordination stage to the advanced coordination stage with the probability of 2.26%. From
the perspective of the upward progress of the CCD stages, there was a significant dif-
ference in the probability of progression from different starting statuses. One year later,
the probability of advancing from the intermediate coordination stage to the advanced
coordination stage was the highest (37.5%). The next was progressing from the marginal
coordination stage to the primary coordination stage (26.61%). The probability of moving
from the primary coordination stage to the intermediate coordination stage was lower
(6.77%), and the likelihood of direct leapfrog development from the primary coordination
stage to the advanced coordination stage was the lowest (2.26%). From the perspective of
the regressive progress of the CCD stages, the possibility of regression existed, which was
directly proportional to the CCD level. One year later, the highest possibility (50%) was
regressing from the advanced coordination stage to the intermediate coordination stage,
followed by the possibility (25%) of moving from the intermediate coordination stage to the
primary coordination stage. The probability of regressing from the primary coordination
stage to the marginal coordination stage was the lowest (8.27%).

Table 6. The transition probability matrix of the coupling coordination development stages.

Stages Marginal
Coordination Stage

Primary
Coordination Stage

Intermediate
Coordination Stage

Advanced
Coordination Stage

Marginal Coordination Stage 0.7339 0.2661 0.0000 0.0000
Primary Coordination Stage 0.0827 0.8271 0.0677 0.0226

Intermediate Coordination Stage 0.0000 0.2500 0.3750 0.3750
Advanced Coordination Stage 0.0000 0.0000 0.5000 0.5000

3.6. Decomposition of Regional Differences

Table 7 describes the data of the overall, Intra-Group, and Inter-Group Gini coefficients
and the Transvariation Intensity of the CCD values from 2012 to 2021. During the sample
period, the overall Gini coefficient fluctuated, indicating the existence of differences in
CCD statuses. Decomposing the overall Gini coefficient, it can be observed that the Inter-
group Gini coefficient’s contribution rate to the overall Gini coefficient remained stable
at around 30%. The contribution rate of the Transvariation Intensity to the overall Gini
coefficient was the largest. However, it showed a decreasing trend, which counterbalanced
the increasing contribution rate of Intra-Group Gini coefficient to the overall Gini coefficient.
From the above trends, it can be inferred that in the initial phase of the sample period,
areas with a higher CCD value also had cities with a lower CCD value, and vice versa. This
phenomenon was quite prominent, indicating a certain degree of polarization. However, as
time progressed, this polarization trend relatively weakened, with the gradually increasing
differences between areas.
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Table 7. The overall Gini coefficient and its decomposition results.

Year
Overall Gini
Coefficient

Inter-Group Intra-Group Transvariation Intensity

Gini
Coefficient

Contribution
Rate

Gini
Coefficient

Contribution
Rate

Gini
Coefficient

Contribution
Rate

2012 0.1123 0.0366 32.57% 0.0185 16.47% 0.0572 50.96%
2013 0.0793 0.0259 32.68% 0.0132 16.70% 0.0402 50.62%
2014 0.1056 0.0334 31.67% 0.0149 14.10% 0.0572 54.23%
2015 0.1091 0.0327 30.02% 0.0264 24.22% 0.0499 45.76%
2016 0.1005 0.0303 30.18% 0.0307 30.60% 0.0394 39.22%
2017 0.1081 0.0340 31.48% 0.0258 23.91% 0.0482 44.61%
2018 0.1179 0.0368 31.22% 0.0272 23.05% 0.0539 45.73%
2019 0.1244 0.0371 29.81% 0.0259 20.80% 0.0614 49.39%
2020 0.1156 0.0346 29.97% 0.0412 35.65% 0.0397 34.38%
2021 0.1773 0.0544 30.67% 0.0542 30.57% 0.0687 38.75%

4. Discussion
4.1. Overview of Findings

Accurately grasping the coupling and coordination relationship between DE develop-
ment and IE can help accelerate the high-quality integrated development of the UAMRYR.
Our study area is the 28 prefecture-level cities in UAMRYR, and firstly, we measured
the level of DE development and IE in the region by using the entropy method and the
SBM-DEA model, respectively. On the basis of this, we obtained the CCD values between
the DE and IE of the sample cities in 2012–2021 by using the CCD Model, and further
analyzed the spatial and temporal evolution situation by using kernel density estimation,
the Markov chain algorithm, and the Dagum Gini coefficient decomposition method.

Our findings show that the DE in the UAMRYR showed a significant expansion
trend during 2012–2021, especially in 2020 and 2021. The significant increase after 2020 was
related to the COVID-19 pandemic. The enhancement of the DE in China’s central provinces
during the COVID-19 pandemic was confirmed in a study by Xu et al. [68]. Provincial
comparisons show that there was a balanced development among the three provinces.
However, there was heterogeneity among cities. Wuhan, Changsha, and Nanchang, as
provincial capitals, were significantly higher in the level of DE development than other non-
provincial capitals, which is consistent with the findings of Ma and Li [69]. This discrepancy
was attributed to a siphon effect, which is driven by the proximity of provincial capitals to
other cities, where some of the DE growth might be the result of resources transferring from
neighboring cities [70]. The development pattern of the DE in the UAMRYR is characterized
by Wuhan as the core, supported by Changsha and Nanchang, ultimately leading numerous
other cities to improve collectively [71].

In addition, the analysis results of our research also indicate that the development
trend of the IE in the UAMRYR has shown fluctuations with localized improvements from
2012 to 2021. Since the Chinese government introduced the innovation-driven development
strategy at the end of 2012, the IE has grown significantly. This trend corresponds with
the fact that sample cities in the UAMRYR have been actively responding to the rise of the
central area and emphasizing innovation during the 13th Five-Year Plan. Until 2020, IE
declined due to the impact of the COVID-19 pandemic. Spatially, the UAMRYR exhibited a
differential development pattern with ‘a core and multiple nodes’. Wuhan, as a core city,
has a strong capacity for innovation, and leads the development of neighboring cities [21].
There were large gaps in IE between cities in the urban agglomerations, so polarization
between provincial and non-provincial capitals emerged. This may be due to the fact that
provincial capital cities have richer innovation resources and have accumulated a great
deal of innovation experience, which continues to attract an inflow of talent and resources
from neighboring cities, leading to a further increase in the innovation gap. In addition, the
inequitable distribution of innovation resources by the government may also contribute to
this phenomenon [72].



Land 2024, 13, 292 16 of 20

To summarize, there was a trend consistency between the DE and IE in the UAMRYR.
From 2012 to 2021, the synergistic effect between IE and the DE has been strengthening
over time. The promotion of the innovation-driven development strategy and the vigorous
development of the DE have caused more and more regions to start to focus on the
synergistic effect of the two elements. The continuous strengthening of concepts and
introduction of policies for high-quality and overall coordinated development by the
Chinese government has comprehensively led to an overall upward trend in CCD values.
However, regional differences in the development of the CCD stages between cities were
apparent. While the CCD values were increasing, regional differences were widening.
This phenomenon may have been caused by various factors such as the level of urban
economic development and urban openness when entering the digital and information
era in 2012. Meanwhile, the growth of the CCD values was accompanied by the risk of
development recession. Therefore, it is necessary to take into account regional differences
in the development of cities, to learn from the advanced cities’ development experience,
and to be vigilant against development recession.

4.2. Policy Implications

According to the above discussions, in order to achieve differentiated and integrated
regional development, the following policy implications may be extracted.

First, follow objective development patterns and be vigilant to the phenomenon of
development regression. The upward development of the CCD stages should follow
objective development rules. It is essential to avoid a development pace that is too hasty
and eager. While CCD stages continues to rise, it is crucial to always be alert to the
accompanying regression in development. Based on consolidating the current development
achievements, upward development should be achieved.

Second, combine regional development realities and implement differentiated de-
velopment strategies. There are certain differences in DE development, IE, and the CCD
development statuses during the development process. For cities with lower IE, efforts
can be made by increasing personnel and financial inputs and encouraging and consoli-
dating innovation output to enhance the input–output efficiency of innovative elements
and increase the number of cities with effective efficiency. For regions with a lower level
of DE development, measures such as promoting broadband network coverage in remote
areas and accelerating the large-scale deployment and application of infrastructure in the
information and communication field can be taken to inject vitality into the high-quality
development of the DE. For the differentiation of the overall CCD development level,
the differences caused by Transvariation Intensity will increase the complexity of policy
design, which is necessary to treat cautiously. Adopting differential and targeted devel-
opment strategies based on the actual conditions and the resource endowments of each
region will be the path we must take to achieving high-quality coordinated development in
the UAMRYR.

Finally, learn from Wuhan’s advanced experience and build a radiating development
pattern. Wuhan’s performance in DE development, IE, and CCD development is far ahead
of other cities in the research region. It is important to fully draw on Wuhan’s excellent
development experience and technology. On the basis of breaking regional boundaries, we
should speed up the formation of a new development pattern that radiates and permeates
each other, enhance the development momentum of peripheral node cities, and achieve the
integrated development of the DE and regional innovation in the UAMRYR.

4.3. Limitations and Future Research Directions

There are several limitations in our research. Firstly, the construction of the indicator
systems is one of the limitations. With the in-depth study of the DE and IE, a wider range of
dimensions can be used in the indicator system for further research. Secondly, the research
methods adopted in this paper focus more on the description of the current situation, and
lack in-depth research on the process mechanism. In the future, more driving factors can be
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further explored to explain the evolutionary mechanism of the coupling coordination phase.
In addition, this paper selects the UAMRYR as research area, and lacks in-depth research
on other countries and regions. Therefore, future research could extend the study area and
categorize it according to regional heterogeneity to explore the differences in the coupling
coordination stages between the DE and IE. Finally, this paper selects prefecture-level cities
in the UAMRYR as the research samples, and in the future, subregions of prefecture-level
cities can be selected for in-depth research. We believe these limitations can be addressed
in future research.

5. Conclusions

Based on the panel data of 28 sample cities in the UAMRYR from 2012 to 2021, this
paper uses the entropy method to assess the DE development levels of these cities and
constructs the SBM-DEA model to calculate their IE. Then we adopt a dual-system CCD
model and examine the dynamic evolution trend and the regional differences by utilizing
the kernel density estimation, Markov chain algorithm, and the Dagum Gini coefficient
decomposition method. The main research findings of this paper are as follows.

First, the UAMRYR is generally developing in a positive and upward direction. From
2012 to 2021, the development levels of DE have steadily increased and experienced rapid
growth in 2020. IE shows strong growth from 2013 to 2019, with minor fluctuations in
other years. The CCD stages have continuously improved, generally progressing from the
marginal coordination phase to the primary coordination phase.

Second, positive development is gradual but comes with a probability of negative
shift. The development process of the CCD follows the general development rule. The
current development stage of most sample cities strongly depends on the foundation of the
last year. The probability of upgrading varies depending on the foundation, but there is
rarely a leapfrogging development process. As the CCD stage continuously progresses to a
higher phase, the likelihood of regressive development increases accordingly.

Third, there are widespread regional differences. From 2012 to 2021, provincial capital
cities have far surpassed non-provincial capital cities in terms of DE development levels.
The number of sample cities achieving effective efficiency is significantly lower than those
not achieving it. There are polarized differences in the process of CCD development, mainly
resulting from Transvariation Intensity. Additionally, the impact of the Inter-Group Gini
coefficient has been intensifying, and the differences within the areas of Hubei Province
area, Hunan Province area, and Jiangxi Province area have contributed stably to the
overall difference.

Finally, Wuhan stands out as the leading core of the development of the UAMRYR.
Wuhan’s DE level, IE, and CCD development situation are all at the forefront of the research
area, serving as the development center to guide regional coordinated growth.

In summary, the high-quality development of the UAMRYR is of great significance
to China’s economic and social development. At the same time, the development of this
region provides valuable experiences for the development of other regions in the world. In
the future, further research such as the exploration of indicator dimensions, the exploration
of mechanisms, the exploration of neighboring urban agglomerations, and the exploration
of subregions of prefectural-level cities will contribute to the high-quality development of
the UAMRYR.
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