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Abstract: Rockfalls can cause loss of life and material damage. In Northern Morocco, rockfalls
and rock avalanche-deposits are frequent, especially in the Dorsale Calcaire morpho-structural unit,
which is mostly formed by Jurassic limestone and dolostone formations. In this study, we focus
exclusively on its northern segment, conventionally known as “the Haouz subunit”. First, a rockfall
inventory was conducted. Then, two datasets were prepared: one covering exclusively the source
area and the other representing the entirety of the mass movements (source + propagation area). Two
algorithms were then used to build rockfall susceptibility models (RSMs). The first one (Logistic
Regression: LR) yielded the most unreliable results, where the RSM derived from the source area
dataset significantly outperformed the one based on the entirety of the rockfall affected area, despite
the lack of significant visual differences between both models. However, the RSMs produced using
Artificial Neural Networks (ANNs) were more or less similar in terms of accuracy, despite the source
area model being more conservative. This result is unexpected given the fact that previous studies
proved the robustness of the LR algorithm and the sensitivity of ANN models. However, we believe
that the non-linear correlation between the spatial distribution of the rockfall propagation area and
that of the conditioning factors used to compute the models explains why modeling rockfalls in
particular differs from other types of landslides.

Keywords: rockfall; susceptibility; propagation area; logistic regression; artificial neural network

1. Introduction

Landslide risk and hazard assessment is an essential step in land use mapping, land
management efforts, and urban planning, especially in mountainous regions. Of the various
landslide types, rockfalls and rock avalanches have the highest death rates due to their
high velocity, high kinetic energy, and long runout distances [1,2]. According to [3,4], such
landslide processes mainly involve large boulders and thus occur almost exclusively in
rocky domains. In Morocco, 52 people were killed in 1988 as a result of a cliff collapse in Fes
City [5], an event similar to the one that occurred in Cairo, Egypt in 2008. The Rif Mountain
chain is the most landslide-prone region in Morocco, particularly in the central Rif [6-8].
In this environment, rock falls occur mainly along the coastal cliffs of the Mediterranean
coast [9,10] and along the Dorsale Calcaire escarpments [11]. In the study area (the northern
segment of the Dorsale Calcaire morpho-structural unit), large boulders buried a house
in the village of Onsar (35°38'54" N; 5°25'47" W), leading to the death of its occupants
in the early 20th century [12]. Similar rockfalls reoccurred in 1963 and later in the year
2000, which pushed the authorities to temporarily evacuate the village shortly after the
events. Another rockfall-prone sector in the study area is the Bouanane cliff, which has
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produced recurring rockfall events since the early 1990s [13]. As of 2024, there have been
no reported casualties in Bouanane. Nevertheless, the size of the boulders, which may
exceed 5 m (1994 event), is cause for concern, especially given the damage endured by
two passenger vehicles in 2011 following the detachment of three mid-size boulders (1 to 2
m in diameter) [13]. Apart from the inherent rockfall incidents in the study location, the
rockfall threat is further intensified by human activities in other regions of the study area.
Changes were made to the natural topography of the terrain by old and new quarries,
which compromise the stability of relicts and mature processes [14].

In this respect, it is necessary to evaluate rockfall spatial representation’s effect on
susceptibility models” accuracy and reliability. As such, two datasets are used to build
two susceptibility models: the first includes only the source area (S) and the second
involves the entirety of the rockfall (i.e., source + deposition area (S + PA)). The study area
corresponds to the Dorsale Calcaire morpho-structural unit, which outcrops in Northern
Rif regions [15-18]. This geological domain consists mainly of massive limestone and
dolomite layers outcropping as N-S-oriented, mid- to high-altitude cliffs. The latter are
formed by the plio-quaternary erosion of West-verging thrust sheets during interglacial
periods [19,20]. Therefore, an abundance of rockfall processes can be inventoried, which
constitutes a statistically significant sample for our study. In addition, the above-described
socio-economic impact of such frequent rockfall occurrences requires a good understanding
of their spatial distributions, which we also attempt in this paper.

2. Study Area

The study area is large, covering over 350 km?. It is part of the Dorsale Calcaire
morpho-structural unit, which dominates over the western and central Rif chain re-
lief [21-23]. From a structural standpoint, it is located in an intermediate position between
the Paleozoic outcrops to its east (Ghomarides units) and the External Rif domain to its
west. In previous research [18-25], the Dorsale Calcaire is conventionally split into three
main blocks. The first one is located between the Gibraltar Straight (northern boundary)
and the Tetouan major tectonic accident (southern boundary). The second corresponds to
the Dorsale Calcaire thrust sheets that outcrop between Tetouan and Assifane [18]. Finally,
the third block can be located further to the East (Dorsale Calcaire of Nekkor) in the Al
Hoceima region.

This research mainly focuses on the first block, also known as the Haouz Dorsale
Calcaire subunit (Figure 1). In addition to the major thrust faults that dominate the Dorsale
Calcaire unit, the Haouz sub-unit is exclusively characterized by back-thrust and locked
thrust structures, especially near the Gibraltar strait [15-26]. In geomorphological terms, the
Haouz subunit is marked by lower elevation, base level, and mean slope values compared
to the central and southern segments of the Dorsale Calcaire [19-21]. However, its N-S-
oriented limestone ridges dominate over the entirety of the internal domain and are known
for their abundance of rocky cliffs and rockfall processes (Figure 2) [16].
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Figure 1. Geological map of the study area.
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Figure 2. Examples of rockfall processes in the study area.

3. Materials and Methods

As stated before, this work attempts to build rockfall susceptibility models (RSMs)
covering the study area using two explanatory statistics techniques. The first technique is
logistic regression (LR), which is a widely used multivariate statistical model that yields the
most reliable and consistent results with the least sensitivity to input data variations [27-30].
The second is the multilayer perception approach (MLP), which requires no prior knowl-
edge of the investigated phenomena or preprocessing of the explanatory variables [31,32].

The training data (i.e., 70% of the rockfall inventory) are split into two datasets de-
pending on the rockfall representation approach used for the inventory. The first set is
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composed of polygons that exclusively cover the source area of each individual rockfall,
while the second dataset covers the entirety of the rockfall processes identified within the
borders of the study area (Figure 3). This strategy allows us to assess the effect of rockfall
representation on the reliability and consistency of the results. Furthermore, the use of two
techniques should reveal any method-specific biases that can either exaggerate or minimize
such effects. With regard to RSM validation, the remaining 30% of the inventoried rockfalls
are used to build the testing dataset (Figure 3).

Data collection

Two rockfall inventory (With and
Without propagation area of blocs

. 2

Rockfall conditionning factors

S—

Training data (70%) Distance to streams

Testing data (30%) ) Distance to faults

Distance to roads

Models Elevation
computations using |
. s Lithology
multivariate
methodes : LR & Curvature
MLP
s Rainfall

Aspect

Rockfall susceptibilty Slope

mapping (RSM)

| The impact of the integration of the
block propagation area, in the
inventory of collapses, on the

susceptibility maps of rockfalls

Validation of RSM using ROC-AUC

Figure 3. Methodology flowchart followed in this study.

3.1. Logistic Regression

Multiple logistic regression evaluates the likelihood of a rockfall event using several
physical criteria [33]. It establishes a connection between the existence or absence of an
investigated phenomenon and its explanatory variables using the maximum likelihood
approach [34]. The dependent variable used in this work is binary, expressing the pres-
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ence/absence of previous rockfalls. The expression of the logistic regression model is
presented in Equation (1).

log(y) = B0+ B1X1 + B2X2 + - -- + BiXi+ E (1)
Thus, the probability of occurrence of a rockfall is calculated using Equation (2):

1 1
T 11e Ug(y) 1t e (POHPIXIHPIX2t+BiXi+E) (2)

RSI = (P)

where RSI is the rockfall susceptibility index, P is the probability of rockfall occurrence,
y is the dependent variable, B0 is a constant, i is the ith regression coefficient, Xi is the
explanatory variable, and E is the error.

However, using different measurement scales and units can compromise the reliability
of the regression coefficients (Equation (2)) and odds ratio (OR) estimation (Equation (3)).
Therefore, a z-score standardization was performed on all independent variables. Subse-
quently, OR values were computed using Equation (3) to assess the association between the
spatial distribution of each explanatory variable/factor and that of rockfall occurrence.

p
OR=" 3
. 3)

where p and g are the presence/absence probabilities of rockfalls, respectively, as deter-
mined by the regression model, and OR is the odds ratio coefficient.

3.2. ANNSs Built Using the Multilayer Perception Technique (MLP)

Artificial Neural Network analyses are based on powerful algorithms that emulate the
functioning of human brain cells. This technique is part of the soft computing techniques
that use evolutionary genetic algorithms, which differ from traditional methods in their
ability to analyze extremely complex phenomena [35,36].

Such highly adaptive and flexible algorithms [37] consist of multiple layers of inter-
connected neurons that use the provided training dataset to solve a specific problem. To
achieve this, the algorithm modifies the connection weights to reduce the error between the
expected and projected output [38]. Multi-layer neural networks, or MLPs, are considered
the ideal choice for landslide studies due to their standard error of around 0.14, which is
lower than that of other network structures [39]. The three layers of the MLP processing
chain are the input layer, the output layer, and one or more hidden layers. The performance
of the model improves through a process of trial and error until the optimal outcome is
obtained [29].

Thus, the RSI value for each cell is presented in Equations (4) and (5).

Net =Y ' xiwi (4)

1
1+ e Net ©

Each cell in the study area has a corresponding pseudo-probability value denoted by
Pj, and each neuron in the hidden layers of the model receives an input represented by Net.

RSI = Pj =

3.3. RSM Accuracy Assessment

Based on the area under the receiver operating characteristic (ROC) curve (AUC), the
output RSMs’ performance is evaluated and is obtained by plotting sensitivity values as
a function 1-specificity [40]. Sensitivity and specificity measurements are crucial tools for
evaluating the accuracy of probabilistic models. Equation (6) illustrates how to compute
sensitivity, which is the number of true positives divided by the sum of true positives and
false negatives. On the other hand, specificity is determined by dividing the total number of
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true negatives by the sum of true negatives and false positives. It quantifies the percentage
of correctly recognized genuine negatives (as seen in Equation (7)).

e TP
Sensitivity = TPLEN 6)
Specificity = FP];r—NTN (7)

where FP stands for false positives, FN for false negatives, TP for true positives, and TN for
true negatives.

After building the ROC curve, the AUC value is estimated for each model, which
ranges from 0 to 1. Accordingly, a model can be considered either bad (AUC < 0.5),
average (0.5 to 0.6), moderate (0.6 to 0.7), good (0.7-0.8), very good (0.8-0.9), or excellent
(0.9-1) [29-41].

4. Database of Rockfall Inventory and Conditioning Factors
4.1. Rockfall Inventory

The data used in this study are derived from various sources. For the rockfall inventory
effort, a set of aerial photographs dating back to 1966 and 2010 were used to identify old
processes. In addition, multidate, satellite-derived orthoimages provided by Google Earth
were used to recognize newer rockfalls and those related to recent manmade modifications
to the natural topography. The resulting inventory included a total of 125 rockfalls, most
of which were visited during field surveys. As stated before, a Geographic Information
System (GIS) was used to produce a polygon shapefile that exclusively maps the source
area of the identified rockfalls (Figure 4A) and another one that covers the entirety of the
inventoried processes (Figure 4B).
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Figure 4. A (a)—Rockfall inventory map showing exclusively the source area. B (b)—Rockfall
inventory map showing the entirety of the inventoried rockfalls.

In total, an area of 0.029 km? corresponds to rockfall sources, which is significantly
smaller than the area covered by the full inventory (0.243 km?). However, only 0.021 km? of
the first inventory and 0.2 km? of the second were used to build the model (i.e., 70% of the
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dataset). These data are thus deemed imbalanced concerning the proportion of rockfall vs.
non-rockfall pixels/area. In fact, less than 0.07% of the total investigated area is involved,
despite the Haouz subunit hosting a relatively large number of rockfall occurrences.

4.2. Rockfall Conditioning Factors
4.2.1. Slope

Rockfalls occur on near-vertical rocky slopes [42]. To accurately map such sub-vertical
surfaces, a slope raster layer (Figure 5A) was obtained from a 5 m resolution digital elevation
model (DEM) using a GIS plate form. The DEM itself was obtained by interpolating the
digitized contour lines of the official 1/25,000 topographic maps of the study area. This
high resolution relative to the size of the study region provides more detailed information
than the 30 m-SRTM models often used in RSM research.
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Figure 5. Rockfall conditioning factors ((A): slope; (B): aspect; (C): curvature; (D): elevation; (E): rain-
fall; (F): distance to faults; (G): distance to roads; (H): distance to streams and (I): lithology).

4.2.2. Aspect

In addition to slope steepness, the orientation of a given slope also influences its
stability. In fact, solar radiation in the temperate climate zone is highly dependent on the
season and the slope’s aspect. The latter variable controls the amount of radiation received
by the north-facing and south-facing slopes, where the former type receives less radiation
than the latter [43]. This leads to a significant difference in groundwater content between
both slope types. Therefore, the slope aspect (Figure 5B) must be included as a potential
predictive variable. In this case, study, it is derived from the same 5 m DEM described in
Section 4.2.1.

4.2.3. Curvature

In addition to the above variables, a slope’s geometry also plays a crucial role in
determining surface and groundwater flow. As such, two categories can be distinguished
(Figure 5C): concave slopes that tend to slow surface runoff and promote infiltration, and
convex surfaces that generate the opposite effects. To quantitively assess this geometry
the curvature variable is conventionally used [44], which can be automatically computed
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using GIS tools. In this case, study, the same 5 m DEM is used as input for the curvature
computation algorithm (See Section 4.2.1).

4.2.4. Elevation

Elevation may promote the occurrence of landslides in some geomorphological and
climatological conditions [45]. This is because precipitation and/or windspeed are depen-
dent on elevation. As such, the abovementioned 5 m-DEM is an elevation raster layer
covering the entirety of the study area, which can be used as is to represent the spatial dis-
tribution of this variable (Figure 5D). Similar to the slope raster layer, elevation is sensitive
to microtopographic variability, which can be captured using a higher-resolution raster.

4.2.5. Rainfall

Rainfall patterns are an undeniable factor in the occurrence of land movement. Rain-
water infiltration causes pore pressure to rise and soil suction to decrease on slopes; the
weight will also increase, meaning soil shear will reduce. The results provided by [35]
show that the frequency of minor rock instabilities increases significantly due to winter
freeze-thaw cycles and moderate precipitation. When assessing landslide susceptibility,
only the spatial component of precipitation is taken into account [46,47]. The precipitation
map (Figure 5E) used in this analysis is produced using a linear equation with the elevation
of the study area and the annual precipitation data between 2010 and 2021 from NASA
after IDW interpolation.

4.2.6. Distance to Faults

The presence of major faulting promotes the formation of complex tectonic landforms.
In the Haouz subunit, major sub-horizontal thrust faults seem to control the geological
structure and also promote the formation of sub-vertical cliffs alongside the said faults. This
is because differential erosion processes exploit the lithological heterogeneity alongside
such fault lines, which promotes slope instability processes. Therefore, a distance to the
major faults’ raster layer (Figure 5F) was produced using a shapefile of the thrust and strike—
slip faults mapped and documented in the 1/50,000 geological maps of the study area.

4.2.7. Distance to Roads

Given the recent mining activity in the Haouz Dorsale Calcaire, some roads were built
to connect the newly opened quarries to the major roads of the area, which introduced
significant modifications to the topography. Therefore, the distance to the road (Figure 5G)
was used as a predictive variable for our RSM computation effort. The road network used
to build the input raster layer is provided by the Ministry of Equipment and Logistics of
Morocco (METL).

4.2.8. Distance to Streams

Water stream erosion steepens hillslopes, which consequently promotes landslides. A
study by [48] shows that the frequency of landslides generally decreases as the distance
from water streams increases. In this regard, we used a water stream shapefile to generate
a distance to the stream raster layer using a GIS platform (Figure 5H). Although stream
erosion plays a less important role in rockfall dynamics, it may generate steep-to-sub-
vertical slopes in the geomorphological setting of the Dorsale Calcaire morpho-structural
unit. Therefore, it is included in the analysis as a potential conditioning factor.

4.2.9. Lithology

Lithology is widely used in landslide susceptibility research. It is considered to be
the most influential conditioning factor by many authors working in various geological
settings [30-49]. Despite its apparent lithological homogeneity (mainly formed by massive
carbonate rocks), the Dorsale Calcaire unit consists of limestones and dolostones that are
affected by various degrees of karstification, which consequently induces different slope



Land 2024, 13,176

10 of 16

dynamics. Its lithological formations also vary in terms of thickness, with Hettangian and
Sinemurian massive formations presenting the highest and steepest cliffs and consequently
housing the most rockfall occurrences [12]. Therefore, a lithological map (Figure 5I) derived
from digitizing the 1/50,000 geological maps is used as a conditioning factor to forecast the
spatial probability of landslide occurrence (i.e., susceptibility).

5. Results
5.1. Rockfall Susceptibility Maps (RSM)

The logistic regression models derived from the source area and the full rockfall
inventories are presented below (Equation (8)). In general, the source area model proves
the existence of an inversely proportional correlation with the distance to fault variable
and a strong proportionality with slope steepness. This indicates that steep slopes and
major fault lines are statistically associated with rockfalls. Other variables present a low
correlation with rockfall occurrence.

log (Source) = —14.206 + 0.717 x C.slope — 0.193 x C.aspect+
0.058 x C.curvature + C.lithology — 0.162 x C.rainfall — 2.499 x ®)
C.distancetofault + 0.042 x C.distancetoroad + 0.034 x
C.distancetostream + 0.199 x C.elevation

The model that includes the propagation and deposition area yields slightly similar
results for the LR technique. The slope and distance to fault variables present the highest
positive and negative correlation values, respectively. However, the correlation coefficient
values (Equation (9)) are lower in the second model, which shows that including the
propagation zone does not significantly affect the statistical tendencies of the model, but
rather affects the quantitative assessment of the correlation coefficients.

log(Wholerockfall)
= —13.013 + 0.661 x C.slope — 0.180 x C.aspect
— 0.038 x C.curvature + C.lithology — 0.105 x C.rainfall )
—1.739 x C.distancetofault + 0.172 x C.distancetoroad
—0.070 x C.distancetostream + 0.330 x C.elevation

The output RSM maps show evidence for slight variability, where the first model
(which exclusively considers the source area) produces more conservative results compared
to the second one (Figure 6A,B). About the ANN models, the results show more variability
when the deposition/propagation area is included (Figure 6C,D). The ANN model based
on polygons covering the entirety of the rockfalls in the study area overestimates the RSI
values. Consequently, the ANN algorithm is found to be more sensitive to input data
variability in comparison with the LR models.

In statistical terms, the frequency distribution of very low, low, medium, high, and
very high categories for both the LR RSMs (Figure 7A) suggests a significant difference
between the first and second categories. These two categories cover most of the study area,
which shows the rareness of rockfall occurrences in the Haouz subunit. Conversely, the
medium, high, and very high susceptibility distributions reveal no significant variability
in terms of frequency. However, they cover very small portions of the study area for both
models. As for the ANN algorithm, the difference is more relevant in the high to very high
categories, with the source + propagation training data producing more liberal models, with
more abundant high susceptibility pixels (Figure 7B). However, the very low susceptibility
class is still the most dominant, with a spatial coverage of more than 94% in both RSMs.
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Figure 6. Rockfall susceptibility maps were produced using logistic regression and artificial neu-
ral networks. ((A,C): RSM based on source area only; (B,D): inventory based on the entirety of
the rockfalls).

An analysis was carried out to explore the degree of influence of each variable (causal
factors) on both MLP output maps. The results are shown in Figure 8. Our findings
show that the most influential variables vary according to the inventory approach used to
generate the input. The variables, namely slope, aspect, distances to faults, and lithology,
had similar degrees of importance for both maps (Figure 6C,D), with the slope steepness
variable being the most significant. On the other hand, the degree of importance of variables
such as curvature, elevation, rainfall, distance to roads, and distance to streams changed
significantly after adding the propagation and deposition zones to the inventory (Figure 8).
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5.2. RSM Accuracy Assessment

RSM validation is conducted using 30% of the dataset. The ROC curves shown in
Figure 9 indicate that the AUC value differs when the rockfall-propagation zone is included
in the input training data.
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Figure 9. ROC curves for the output RSMs: (A)—logistic regression (LR) curves: (S/PBA);
(B)—multilayer perception (MLP) curves, with (S) being the designed source and (S/PBA) being the
source + propagation area.

The LR technique allowed for building a very good predictive model with an AUC
value of 0.83 when the source area was exclusively used as the input. However, the
RSM that uses the propagation zone as input can be considered poor, with an AUC of
approximately 0.49 (Figure 9A). This large difference in AUC values is not reflected in the
RSI geographic distribution maps, since the latter do not reveal as much difference between
both databases. As for the ANN algorithm, both models can be considered excellent, given
their high AUC values that exceed 0.9 (Figure 9B). The difference between both RSMs in
terms of accuracy assessment is small despite the significant variability in the geographic
distribution of the output susceptibility categories.

6. Discussion

Based on the results, including or deleting a portion of the input polygon surface
can significantly impact the output model both in terms of geographic and frequency
distributions as well as accuracy assessment. However, the amount of change and its
significance can vary depending on the technique used to build the model. In previous
research, LR was shown to produce the most reliable results both in terms of RSM category
distribution and AUC values [29,30].

In this case, study, the AUC values assigned to the LR models resulted in different
accuracy assessments despite the similar correlation coefficients and spatial distribution of
RSI values. One LR (S) model can be classified as very good, while the other (5/PBA) is
deemed to be poor. However, ANN produced consistent AUC values despite utilizing dif-
ferent inputs. This is in contrast to previous studies wherein LR algorithms were considered
robust. To explain this anomaly in our findings, one can refer to the particularity of rockfalls,
which are rarer than other types of landslides. In addition, mapping such processes is not
a settled issue because of the large difference between the physical characteristics of the
source and deposition areas.

In the MLP models, the number of hidden layers produced by the algorithm, which is
a very important indicator of the degree of complexity of a given model [38], is the same for
both training datasets. This means that including the propagation zone as input does not
change significantly the complexity of the model to the point where hidden layer estimation
is largely affected. However, the effect of some variables on the RSI estimation process was
significantly changed because of the large contrasts between rockfall scarps and deposition
areas in terms of geomorphological features. Although the geographical distribution and
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frequency of RSI values suggest that the results are different, the AUC assessment results
remained consistent unlike those of the LR algorithm.

These contradict previous research where the ANN is considered the most sensitive
RSI computation technique with regard to its accuracy. To explain this, one must consider
the ability of ANN algorithms to model complex relationships [35] between input and
output variables. In addition, ANN can handle imprecise and fuzzy data, whether ordinary,
categorical, or binary, without violating any assumptions [50,51], while LR is limited
in its ability to capture non-linear relationships between the explained and explanatory
variables [52]. Therefore, because the rockfall propagation zone confuses the logit model
and hinders its ability to estimate the intercept and correlation parameters of the model
effectively, the performance of the latter is negatively affected. On the other hand, the
multilayer, multistep ANN algorithm introduced some changes and differences to the
models without altering its accuracy. This is due to its ability to generalize from the whole
data set rather than focusing on specific data points [53]. Conversely, LR is sensitive to
outliers and noisy data. This sensitivity can lead to inaccurate and inconsistent results in
modeling rockfall susceptibility, which are more significant compared to other landslide

types [54].

7. Conclusions

Rockfall mapping is a difficult and laborious task that requires good knowledge of
morphological features. This type of landslide is particularly difficult to model because
the source and depositional areas are not similar concerning their geological and geomor-
phological characteristics. The findings of this paper constitute preliminary results that
suggest significant variability in the output of the models when different input areas used.
Therefore, the preparation of input data for rockfall susceptibility modeling must be based
on the desired outcome. If the researcher is more interested in the initiation of rockfalls,
he/she must only use the source area to build the RS model. Otherwise, the assessment
of the weight of rockfall conditioning factors may lead to inaccurate or erroneous values.
However, if one is attempting to model RS for hazard prevention and management pur-
poses, source area-derived models may produce very conservative models that may not
be very useful, especially given the fact that the rockfall deposition area is the inhabited
portion of this kind of landslide.
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