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Abstract: Drought is a common hydrometeorological phenomenon and a pervasive global hazard. To
monitor global drought-wetness conditions comprehensively and promptly, this research proposed a
spatial distance drought index (SDDI) which was constructed by four drought variables based on
multisource remote sensing (RS) data, including the normalized difference vegetation index (NDVI),
land surface temperature (LST), soil moisture (SM), and precipitation (P), using the spatial distance
model (SDM). The results showed that the consistent area of SDDI with the 1-month and 3-month
standardized precipitation-evapotranspiration index (SPEI1 and SPEI3), and the self-calibrating
Palmer drought severity index (scPSDI) accounted for 85.5%, 87.3%, and 85.1% of the global land
surface area, respectively, indicating that the index can be used to monitor global drought-wetness
conditions. Over the past two decades (2001–2020), a discernible spatial distribution pattern has
emerged in global drought-wetness conditions. This pattern was characterized by the extreme
drought mainly distributed deep within the continent, surrounded by expanding moderate drought,
mild drought, and no drought areas. On the annual scale, the global drought-wetness conditions
exhibited an upward trend, while on the seasonal and monthly scales, it fluctuated steadily within a
certain cycle. Through this research, we found that the sensitive areas of drought-wetness conditions
were mainly found on the east coast of Australia, the Indus Basin of the Indian Peninsula, the Victoria
and Katanga Plateau areas of Africa, the Mississippi River Basin of North America, the eastern part
of the Brazilian Plateau and the Pampas Plateau of South America.

Keywords: drought; spatial distance model; sensitive areas; remote sensing; global scale

1. Introduction

Drought is defined as the prolonged absence of rain high temperatures, or low rainfall
in an area, leading to the air and soil being deprived of moisture. The occurrence of drought
is mainly associated with episodic or periodic decreases in precipitation [1–3]. Drought is
one of the most serious climatic disasters affecting human society and is characterized by its
high frequency, long duration, and widespread impact [4,5]. The frequent occurrence and
long-term persistence of drought not only cause huge losses to society and the economy,
especially agricultural production but also result in a shortage of water resources, increased
desertification, frequent dust storms and many other adverse ecological and environmental
impacts [6–8]. According to a recent report released by the United Nations in 2020, drought
has caused at least 124 billion US dollars in economic losses and affected more than
1.5 billion people from 1998 to 2017, and approximately 5 billion people will live in water-
scarce areas by 2050 [9]. Therefore, drought studies are becoming increasingly essential
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globally for building a comprehensive monitoring system for natural hazards and ecological
risks [10,11].

Currently, drought can be divided into four primary categories: meteorological, agri-
cultural, hydrological, and socioeconomic drought [12]. Meteorological drought is a water
deficit resulting from precipitation being less than evapotranspiration. The most visible
manifestation of a meteorological drought is a decrease in precipitation [13]. Agricultural
drought is a phenomenon in which soil moisture is reduced and vegetation growth is
subjected to moisture stress. Soil moisture and vegetation growth conditions are the main
characteristics of this drought type [14]. Hydrological drought is a water deficit caused
by an imbalance between surface water or groundwater revenues and expenditures, with
groundwater levels and runoff being the main associated characteristics [15]. Socioeco-
nomic drought is a phenomenon in which a water deficit is caused by an imbalance between
the supply and demand of water resources [16].

At present, drought monitoring mainly depends on meteorological observations and
quantitative evaluations conducted with the help of drought indices. A suitable drought
index not only allows for the efficient and accurate monitoring of drought conditions but
also allows researchers to predict drought conditions and provides decision-makers with
the means to develop drought prevention and management strategies [17–20]. Based on the
means of observation methods, drought indices can be categorized into two types: tradi-
tional station-based drought monitoring indices (TS-BDIs) and remote sensing technology-
based drought monitoring indices (RS-BDIs).

TS-BDIs are derived from ground station observations and can thus effectively char-
acterize the drought-wetness characteristics around a given station. However, ground
stations are limited in their ability to observe various spatial scales, and the monitoring
accuracy is therefore heavily affected by the number, distribution density and mathematical
functions of existing stations, making it difficult to accurately characterize detailed drought
conditions from a spatial perspective. The most recognized TS-BDIs include the percent-
age of precipitation anomalies (PPA) [21], self-calibrating Palmer drought severity index
(scPDSI) [22], standardized precipitation index (SPI) [23], and standardized precipitation
evapotranspiration index (SPEI) [24]. The SPI calculation process is simple and has the
advantage of considering multiple time scales to allow for better spatial and temporal
monitoring. However, this index considers only a single precipitation element and ignores
the effects of temperature and evapotranspiration on drought in the presence of global
warming. Thus, it is somewhat one-sided. In contrast, the SPEI considers both temperature
and evapotranspiration, making it a more desirable drought monitoring index with better
application prospects in the context of global warming. Recently, RS-BDIs have compen-
sated for the shortcomings of TS-BDIs; RS-BDIs can continuously monitor spatial and
temporal drought characteristics due to their timeliness, objectivity, cost-efficiency, long-
term continuous data, and wide coverage. RS-BDIs have thus become the most promising
means for conducting drought monitoring research.

RS-BDIs include remote sensing single variable-based drought monitoring indices
(RSSV-BDIs) and remote sensing multivariable-based composite drought indices (RSMV-
BDIs). RSSV-BDIs primarily include the temperature condition index (TCI) [25], vegetation
condition index (VCI) [26], precipitation condition index (PCI) [27] and soil moisture con-
dition index (SMCI) [28]. The TCI was proposed according to land surface temperature
(LST) information and is a crucial link in the water cycle and heat exchanges in the atmo-
sphere, this index can be used to monitor the drought status in-depth through calculations
performed based on the thermal infrared bands of images. The VCI was developed from
the normalized difference vegetation index (NDVI) through RS image data and can directly
indicate vegetation conditions. However, precipitation, terrain and soil conditions are not
considered in the process of constructing the VCI or TCI [4,29,30]. Consequently, the PCI
and SMCI were proposed, and these indices can directly reflect drought characteristics from
key influencing factors. However, the global drought-wetness condition is a complex natu-
ral phenomenon, closely related to precipitation, vegetation, soil moisture, etc. Only one
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data type or one aspect of drought information can provide a comprehensive view due to
the complex conditions and influencing factors associated with drought monitoring [12–16].
Therefore, an increasing number of scholars are becoming aware of the importance of devel-
oping RSMV-BDIs, such as the temperature vegetation drought index (TVDI), vegetation
health index (VHI), scaled drought condition index (SDCI) and temperature vegetation
precipitation drought index (TVPDI). These indices have been widely used to study both
agricultural and meteorological droughts at different scales due to their simple principles,
straightforward calculations, and highly accurate results [10,15,22].

However, the multivariate weights of the drought indices listed above are dependent
on different methods, such as the use of multiple linear regression (MLR), the empirical
assignment method (EAM), principal component analysis (PCA), spatial principal com-
ponent analysis (SPCA), and the entropy weight method (EWM). Different methods have
different emphases, limitations, and complexities [31–34]. For example, MLR lacks physical
meaning in its interpretation [35], the EAM exhibits an artificial subjective characteristic,
the PCA method may lead to information losses, SPCA may also lead to small information
losses and the EWM is limited in its use of spatial datasets, especially RS datasets [35–38].
Therefore, a drought monitoring index with a scientific theory, simple calculation and
universal applicability should be developed for use worldwide.

The global scale can help us better understand the global distribution pattern of
drought, the links between different regions and their mutual impacts, and provide a
reference for international cooperation and resource allocation [5,10,37]. Therefore, we
have chosen the global scale to conduct an integrated drought study to provide scientific
support for drought management and response on a global scale. In this study, the VCI,
PCI, TCI and SMCI were selected as the four variables, and the spatial distance model
(SDM) was used to build the spatial distance drought index (SDDI) [8,32,39]. After the
SDDI was constructed, its applicability was verified, and the index was used to identify
and monitor the temporal and spatial distribution characteristics of global drought-wetness.
We considered an area with a very high drought degree compared to other areas was
considered to be experiencing extreme drought (ED), while an area with a very high degree
of drought at a certain time compared to the average value obtained during the research
period in the corresponding area was considered to be experiencing abnormal drought
(AD). Consequently, this study aimed to answer three questions: (1) What are the spatial
distributions of and changes in drought wetness worldwide? (2) How can we accurately
identify global drought-wetness conditions? (3) Where do extreme drought and abnormal
drought occur worldwide?

2. Data and Processing
2.1. MODIS Data

In this paper, two data products including the normalized difference vegetation index
(NDVI) and land surface temperature (LST) (Terra product) of the Moderate Resolution
Imaging Spectroradiometer (MODIS) were obtained from the National Aeronautics and
Space Administration (NASA) (http://modis.gsfc.nasa.gov) (accessed on 30 November
2021) and were used to calculate the spatial distance drought index (SDDI). To unify the
spatial resolution, all MODIS data were resampled 0.5 Deg (55 km), Table 1 shows detailed
information on MODIS data.

Table 1. MODIS/Terra data information.

Production Time Spatial
Resolution

Temporal
Resolution Description Source

MOD13C2_NDVI January 2001–December
2020 0.05 Deg (5 km) Monthly Building VCI http://modis.gsfc.nasa.gov

(accessed on
30 November 2021)MOD11C3_LST January 2001–December

2020 0.05 Deg (5 km) Monthly Building TCI

http://modis.gsfc.nasa.gov
http://modis.gsfc.nasa.gov
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2.2. GLDAS Data

Global land data assimilation systems (GLDAS) data were obtained from the Goddard
Space Flight Center (GSFC) of the National Aeronautics and Space Administration (NASA)
(https://disc.gsfc.nasa.gov) (accessed on 30 November 2021). The goal of the GLDAS is
to ingest satellite and ground-based observational data products, using advanced land
surface modeling and data assimilation techniques, to generate optimal fields of land
surface conditions and fluxes. Soil Moisture (SM) used SoilMoi0_10cm_inst production
of GLDAS, the period is from January 2001 to December 2020, the spatial resolution is
0.25 Deg × 0.25 Deg, was resampled to 0.5 Deg (55 km) to build the SDDI and the time
resolution is monthly scale.

2.3. GPM Data

Global precipitation measurement (GPM) data were obtained from NASA (https:
//daac.gsfc.nasa.gov) (accessed on 30 November 2021), which has higher spatial resolution
than TRMM data and covers global precipitation observations, and the integrated multi-
satellite inversion of GPM can significantly improve spatial and temporal resolution and
coverage. Precipitation (P) used GPM_3IMERGM production of GPM, which was obtained
from January 2001 to December 2020. The spatial resolution is 0.1 Deg × 0.1 Deg, was
resampled to 0.5 Deg (55 km) to build the SDDI, and the time resolution is monthly scale.

2.4. Other Data

The Standardized Precipitation-Evapotranspiration Index (SPEI) data was obtained
from the SPEI Global Drought Monitor (https://spei.csic.es/map) (accessed on 30 Novem-
ber 2021), which is an indicator of the deviation of drought in an area. It is calculated
through standardized potential evapotranspiration and precipitation and is an indicator
of the evolution of drought. self-calibrating Palmer Drought Severity Index (scPDSI) data
were obtained from Word Meteorological Organization (http://climexp.knmi.nl) (accessed
on 30 November 2021), which is calculated from time series of precipitation and tempera-
ture, and integrated fixed parameters related to the soil and surface characteristics. It can
reflect different climate regimes more comparable. Land cover types of data was obtained
from Earth System Science Data (https://essd.copernicus.org) (accessed on 30 Novem-
ber 2021), the GLASS-GLC dataset was built by the latest version of GLASS (The Global
Land Surface Satellite)-CDRs (Climate Data Records) and generated on the Google Earth
Engine (GEE) platform, to unify the spatial resolution, Land cover types of data were
resampled to 0.5 Deg [39]. Crop yield data were obtained from Nature Scientific Data
(https://www.nature.com/sdata) (accessed on 30 November 2021), which is a hybrid data
product of agricultural census statistics (national yield statistics reported by FAO) and
satellite remote sensing (crop indices derived from remote sensing inversions) including
four primary crops: maize, rice, wheat and soybean [38]. SPEI and scPDSI are used to
verify the accuracy of the SDDI, and Land cover types and Crop yield data were utilized to
characterize the spatial and temporal relationships with SDDI. Table 2 provides detailed
information on the datasets.

Table 2. Datasets information. All data accessed on 30 November 2021.

Data Type Production Time Spatial
Resolution

Temporal
Resolution Source

SPEI SPEI1, SPEI3 January 2001–December
2020

0.5 Deg
(55 km) Monthly https://spei.csic.es/map

scPDSI scPDSI-
4.05 early

January 2001–December
2020

0.5 Deg
(55 km) Monthly http://climexp.knmi.nl

Land cover types GLASS-GLC 2020 5 km Yearly https://essd.copernicus.org

Crop yields - 2001–2016 0.5 Deg
(55 km) Yearly https://www.nature.com/sdata

https://disc.gsfc.nasa.gov
https://daac.gsfc.nasa.gov
https://daac.gsfc.nasa.gov
https://spei.csic.es/map
http://climexp.knmi.nl
https://essd.copernicus.org
https://www.nature.com/sdata
https://spei.csic.es/map
http://climexp.knmi.nl
https://essd.copernicus.org
https://www.nature.com/sdata
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3. Method
3.1. Drought Indices Calculation

In this paper, the TCI, VCI, PCI, and SMCI were used to synthesize the SDDI, and the
details of the calculation of TCI, VCI, PCI, and SMCI are shown in Table 3. The higher the
value of the VCI, PCI, and SMCI, the wetter of the study area is. On the contrary, the higher
the value of the TCI, the drier it is.

Table 3. Calculation of TCI, VCI, PCI and SMCI.

Single Drought Indices Data Source Formula

TCI MOD11C3_LST TCI = LSTi−LSTmin
LSTmax−LSTmin

VCI MOD13C2_NDVI VCI = NDVIi−NDVImin
NDVImax−NDVImin

PCI GPM_P PCI = Pi−Pmin
Pmax−Pmin

SMCI GLDAS_SM SMCI = SMi−SMmin
SMmax−SMmin

Land surface temperature, vegetation, precipitation and soil moisture are the four
main influencing factors for drought-wetness on the land surface. Decreased precipitation
is the most direct manifestation of meteorological drought, vegetation growth conditions
and soil moisture are the most important characteristics of agricultural drought, and surface
temperature affects surface evapotranspiration, which in turn affects soil moisture expendi-
ture, so the land surface temperature is also a direct influence factor of agricultural drought.
However, a single land surface drought-wetness factor does not provide integrated in-
formation on the drought-wetness conditions on the land surface. The Spatial Distance
Model (SDM) is employed to integrate the information on these drought-wetness factors
to construct the spatial distance drought index (SDDI), which integrates the information
on drought-wetness conditions of the land surface [8,32,39]. The specific algorithm is as
follows:

SDDI =
√
(VCIi − VCImin)

2 + (PCIi − PCImin)
2 + (TCImax − TCIi)

2 + (SMCIi − SMCImin)
2 (1)

In the formula, VCIi, PCIi, TCIi and SMCIi represent each of the pixel values of VCI,
PCI, TCI and SMCI respectively, VCImin, PCImin and SMCImin represent the minimum of all
pixel values of VCI, PCI and SMCI respectively, VCIi − VCImin represents the Euclidean
distance between VCIi and VCImin in the VCI pixel space. and the other three represent
similar meanings. TCImax represents the maximum value of all TCI pixel values, and the
Euclidean distance of TCI pixel space (TCImax − TCIi) is calculated because the higher the
temperature, the drier it is. So, the smaller the Euclidean distance of each factor, the drier it
is. The threshold of VCIi − VCImin is 0–1, and the other three variables are also 0–1, so the
threshold of SDDI is 0–2, with 0 being the driest and 2 being the wettest. Therefore, in this
study, we have classified the global drought-wetness conditions as follows [33,40] (Table 4):

Table 4. The classification of global drought-wetness conditions.

SDDI Drought-Wetness Class

0–0.4 Extreme drought
0.4–0.6 Moderate drought
0.6–0.8 Mild drought
0.8–1 No drought
1–2 Wetness
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3.2. Analytical Method
3.2.1. Consistency Test of SDDI

The reliability of the SDDI in characterizing global drought-wetness can be verified by
the consistency test between SDDI and other drought indices. In this paper, the Pearson
correlation coefficient was used to test the consistency [41]. The calculation formula is
as follows:

Rxy =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2∑n
i=1 (yi − y)

2
(2)

In the formula, xi and x are the i-th value and average value of the variable x, respec-
tively; yi and y are the i-th value and average value of the variable y, respectively. n is the
total number of sample sequences. If the |Rxy| is close to 1, the correlation is stronger.
If Rxy = ±1, the two groups of variables have a perfect positive (negative) correlation. If
0 < Rxy < 1, the two groups of variables are positively correlated, and if −1 < Rxy < 0, then
the two groups of variables are negatively correlated.

The SPEI fulfils the requirements of a drought index since its multi-scalar character
enables it to be used by different scientific disciplines to detect, monitor, and analyze
drought. SPEI1 is primarily used to monitor meteorological drought and SPEI3 is primarily
used to monitor agricultural drought. The scPDSI uses readily available temperature and
precipitation data to estimate relative drought, and the scPDSI has been reasonably suc-
cessful at quantifying long-term drought. Therefore, spatial correlations between monthly
scales of SDDI and SPEI1, SPEI3 and scPDSI can indicate the monitor capability for drought-
wetness of the global land surface. This paper uses ArcGIS 10.4 to count the areas where
the correlation of SDDI with SPEI1, SPEI3 and scPDSI are greater than 0 as a percentage of
the study total areas, to measure the consistency of SDDI with these three indices.

CA =
C
S
× 100% (3)

In the formula, CA is the consistency areas as a percentage of the study’s total areas.
C is the consistency area of SDDI with SPEI1, SPEI3 and scPDSI (i.e., the areas where the
correlation of SDDI with SPEI1, SPEI3 and scPDSI is greater than 0), and S is the study total
areas. The larger value of CA indicates a higher degree of consistency.

3.2.2. Identification of Abnormal Drought-Wetness Areas and Sensitive Areas

The anomaly is the difference between a pixel value and the pixel average value of
a period. The pixel average value of a period reflects the general state of the data [42],
therefore the pixel-based anomaly can reflect the abnormal state of the pixel in a particular
period. The specific algorithm is as follows:

PA = P − P (4)

In the formula, PA is the per-pixel anomaly value, P is the per-pixel value and P is
the pixel average value of a period. PA < 0 indicates the pixel is an abnormal drought
condition in a particular period. PA = 0 indicates the pixel has stable drought-wetness
conditions. conversely, PA > 0 indicates the pixel is an abnormal wetness condition in a
particular period.

In this paper, the global areas of abnormal drought-wetness were identified by using
the Cell Statistics tool of ArcGIS10.4, the maximum value of the 20-year global SDDI
anomaly is greater than or equal to 0.06 is defined as areas of abnormal wetness and
the minimum value is less than or equal −0.06 is defined as areas of abnormal drought,
respectively [42,43] (Figure 1).
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Figure 1. Identification algorithm of abnormal wetness (AW) (a) and abnormal drought (AD) (b). all
pixel values in AW greater than or equal to 0.06 and all pixel values in AD less than or equal to −0.06.
Blue and brown pixels represent extreme wetness and extreme drought each year, respectively. And
the (a,b) red boxes represent extreme wetness and extreme drought events in the past two decades
(2001–2020), respectively.

Both abnormal drought and abnormal wetness can occur in the intersection areas of
AD and AW. Therefore, these intersection areas are sensitive areas to abnormal drought-
wetness conditions. The specific algorithm is as follows:

SA = (AD ∩ AW > 0.06) (5)

In the formula, the SA are sensitive areas of abnormal drought-wetness. ∩ stands
for the intersection of two variables. The intersection areas of AD and AW are defined as
SA [43].

3.2.3. Trends Analysis of Drought-Wetness Conditions

The Theil-Sen Median (Sen) and Mann-Kendall (MK) trend test methods are widely
used non-parametric trend tests of time series data [44]. This method does not require
samples to follow a certain distribution and is affected by a small number of outliers [45].
It is often used to detect trends in precipitation and drought under the influence of climate
change [33]. In this paper, the global drought-wetness trends based on pixel scale were
analyzed using the Sen and MK trends test methods. Firstly, The Sen trend was calculated
to indicate the trends of drought-wetness. Secondly, the MK method was used to indicate
the significance of the trend, when the absolute value of MK is greater than 1.96, it means
that it passes the 95% significance test. The specific algorithms are as follows: (1) the
Sen slopes were reclassified and assigned different values; (2) Pass the significance test
and those that did not were reclassified and assigned different values; (3) The two were
multiplied together to obtain the characteristics of global drought-wetness variability.

T =


Sen
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In the formula, T, S and ST are drought-wetness trends, significance test (calculated
by MK trends test) and significant drought-wetness trends, respectively.

3.2.4. Response Analysis of Crop Yields to Drought-Wetness Conditions Change

To explore the response of crop yields to drought-wetness conditions change, this
paper designed a set of algorithms to reflect the response. It is shown as follows:

SDDISen>0
crop yieldsSen

< 0, 1

(crop yieldsSen)− (SDDISen = 0) < 0, 2
SDDISen<0

crop yieldsSen
> 0, 3

SDDISen<0
crop yieldsSen

< 0, 4

(crop yieldsSen)− (SDDISen = 0) > 0, 5
SDDISen>0

crop yieldsSen
> 0, 6

(9)

In the formula, the numbers from 1 to 6 represent a trend of wetness but less produc-
tion, a trend of stable and less production, a trend of drought and less production, a trend
of drought but greater production, a trend of stable and greater production and a trend of
wetness and greater production, respectively.

4. Results
4.1. The Consistency Verification of the SDDI

Consistency verification was required to ensure the accuracy and usability of the
SDDI on a global scale, and the Pearson correlation coefficient was used to reflect the
consistency test. Therefore, we selected the widely recognized drought indices SPEI and
scPDSI from the period 2000 to 2010 to ensure consistency in verifying with SDDI. The
Pearson correlation coefficients of the SDDI with the SPEI1, SPEI3 and scPDSI on the spatial
scale were displayed in Figure 2. The result showed that the regions with a significant
positive correlation (R > 0.7, p < 0.05) between SDDI with SPEI1, SPE3, and scPDSI are
mainly located in the Central Great Plains of the United States, eastern South America, and
Australia. While the correlation coefficient in northern North America, northern Europe
and Siberia is negative, SDDI in these areas is negatively correlated with SPEI and scPDSI,
because SDDI considers the factors of land surface temperature and soil moisture. Despite
the lack of precipitation in these areas, the land surface temperature in these areas is usually
low and soil moisture is relatively abundant [46,47]. In addition, the negative correlation
coefficient of Congo Basin and Amazon Plain in Africa is due to the lush vegetation in these
areas, and the drought-wetness conditions are significantly affected by vegetation, while
SPEI and scPDSI do not consider vegetation factors, and the limitations of precipitation
estimated by GPM-IMERG satellites, is the difficulty of estimating the precipitation of some
types of clouds, such as the hot Amazonian clouds [48,49].

The correlation coefficient between SDDI and SPEI1, SPEI3 and scPDSI greater than
0, respectively, is defined as the region where the drought-wetness conditions meet the
consistency. From the mathematical and statistical perspectives, the consistency area of the
SDDI with the SPEI1, SPEI3 and scPDSI as a percentage of the global land surface total area
was 85.5%, 87.3% and 85.1%, respectively. Therefore, the SDDI exhibited a high degree of
spatial consistency with the SPEI and scPDSI on a global scale. To ensure the availability of
the SDDI on the continental scale, we counted the consistency of the SDDI with the SPEI
and scPDSI for each continent. The results of the consistency area of the SDDI with the
SPEI1, SPEI3 and scPDSI across continents as a percentage of the global land surface total
area are shown in Table 5. The average values of the three consistency area percentage
rankings were as follows: Australia (99.3%) > South America (88.2%) > Africa (87.7%) > Asia
(87.6%) > Europe (82.9%) > North America (78.4%). Therefore, the applicability of the SDDI
is strongest in Australia, and the performance was close to that in the other four continents.
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In summary, the SDDI can be used to monitor global drought-wetness conditions from a
spatial perspective and mathematical and statistical perspectives.
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Figure 2. The Pearson correlation coefficient of the SDDI with the SPEI1 (a), SPEI3 (b) and scPDSI
(c) at the spatial scale from 2000 to 2020. All the results passed the significance test (p < 0.05).

Table 5. The consistency area of SDDI with SPEI1, SPEI3 and scPDSI across continents as a percentage
(%) of the global land surface total area.

Consistency Asia Australia Europe North
America

South
America Africa

SDDI~SPEI1 87.1 99.4 85.4 77.4 89.9 85.0
SDDI~SPEI3 87.3 99.7 84.4 78.8 90.8 89.5

SDDI~scPDSI 88.5 98.8 78.8 78.9 84.0 88.5
Average 87.6 99.3 82.9 78.4 88.2 87.7

4.2. Global Drought-Wetness Conditions Monitoring
4.2.1. Global Drought-Wetness Conditions on the Annual Scale

The global distribution of drought-wetness conditions was determined by computing
the 20-year average value of each raster for the SDDI. From the mathematical and statistical
perspective, the average value of the global land surface drought-wetness condition was
0.67, indicating that the overall global land surface drought-wetness condition was mod-
erate drought. Furthermore, the 20-year average values of SDDI in each continent were
also compared and the results are as follows: South America (0.81) > Europe (0.79) > North
America (0.73) > Asia (0.66) > Africa (0.55) > Australia (0.5) (Figure 3). We found that South
America experienced no drought according to the drought classification, while Australia
experienced moderate drought in the past 20 years. In addition, the results of the drought
classes for each continent as a percentage of the global land surface area are presented in
Table 6. Except for Africa, which exhibited the largest area of extreme drought, accounting
for 8.67% of the global land area, Asia accounted for the largest area characterized by
the drought classes, accounting for 7.58%, 11.42%, 9.74%, and 0.44% of the global land
area, respectively.
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Table 6. Area percentage (%) of different drought classes for each continent as the global land
surface area.

Drought Classes Asia Australia Europe North
America

South
America Africa Total

Extreme drought 4.74 1.05 0.00 0.25 0.39 8.67 15.10
Moderate drought 7.58 3.75 0.17 2.34 1.41 4.75 19.99

Mild drought 11.42 0.84 3.07 8.35 4.01 5.65 33.35
No drought 9.74 0.23 4.12 5.25 7.43 3.87 30.63

Wetness 0.44 0.00 0.03 0.13 0.34 0.00 0.93
Total 33.91 5.88 7.38 16.32 13.58 22.94 100.00

Spatially, there were significant regional differences and regularities for global drought-
wetness conditions. The extreme drought areas were mainly distributed in the Sahara
Desert area (a), the Arabian Peninsula area (b), the Iranian Plateau area (c), the Tibetan
and Inner Mongolian Plateaus area (d), Australia (e), southern Africa (f), southwestern
North America (g) and southwestern South America (h)) (Figure 3). These areas are mainly
located on either side of the Tropic of Capricorn and the Tropic of Cancer and are mainly
controlled by subtropical high pressure and prevailing dry and hot sinking currents. Some
areas, such as a, b, c, d and e, are distributed inland and form a concentrated distribution
area of drought. Other areas (f, g, h) are located on the west coast of the continent and
are controlled by cold currents that act as a cooling and humidifying influence on the
western coastal areas. Parts of the Indonesian archipelago and Amazonian plains near the
equator are the wettest areas, as this area has the most abundant precipitation, the most
luxuriant vegetation and thus higher soil moisture. In short, we found that the global
drought-wetness conditions centred on extreme drought, with moderate drought, mild
drought and no drought areas expanding outward in a circular pattern.

4.2.2. Global Drought-Wetness Conditions on the Seasonal and Monthly Scales

The global distribution of drought-wetness conditions exhibits variability on the
seasonal scale. The wettest season was the 4th season and 2nd season (SDDI = 0.69),
and the driest season was the 1st season (SDDI = 0.65) (Figure 4a). The drought-wetness
conditions were compared across continents revealing that the 1st season (SDDI = 0.84) in
South America was the wettest, and the 3rd season and 4th season (0.46) in Australia were
the driest seasons (Figure 5a). Except for the Qinghai-Tibet Plateau and Inner Mongolia
Plateau areas of central Asia in the 4th season, there was little change in the extreme and
moderate drought areas across the seasons. Siberia in Asia and eastern and northern
North America were the areas with the greatest fluctuations in global drought-wetness
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variability, displaying different spatial distribution patterns of drought-wetness in all
seasons (Figure 6).
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On the monthly scale, the SDDI varied exhibited significant variation across months
in the following order: December (0.71) > January (0.7) > February (0.69) = November
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(0.69) > July (0.68) > August (0.67) = June (0.67) > September (0.66) > May (0.65) > Octo-
ber (0.64) > March (0.63) = April (0.63) (Figure 4b), indicating that the wettest month is
December and the driest months are March and April. The drought-wetness conditions
were compared across continents; December (SDDI = 0.85) is the wettest month in Europe,
and November (0.44) is the driest month in Australia (Figure 5b). Spatially, from January to
December, there was a certain regularity in the distribution of drought-wetness conditions
across the global land surface (Figure 7); for example, the Tibetan and Inner Mongolian
Plateau in Asia and the Siberian area in Asia exhibited a drier-wetter pattern, while the
Amazonian plains of South America showed an increasingly wetter-drier-wetter pattern.
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4.3. Temporal and Spatial Variation Regularity of Global Drought-Wetness Conditions

The temporal variation regularity of global drought-wetness conditions was analyzed
on different time scales in this section. The SDDI exhibited stable volatility on both the
seasonal scale with a cycle of four seasons and the monthly scale with a cycle of 12 months
(Figure 8a,b). On an annual scale, global drought-wetness conditions exhibited a steady
upward trend. The marked decline in SDDI in 2008 (0.685) and 2015 (0.683), within the
context of the general trend toward global wetting, was attributed to the major global
drought events that occurred in these two years (Figure 8c).

Figure 9 shows the spatial trend of global drought-wetness conditions from 2001 to
2020. Firstly, we found that 19.52% of the global land surface has experienced significant
wetness trends (p < 0.05), mainly in southern and northeastern China, peninsular India,
northern Europe, central Africa, and southern and central North America. These areas
are the most populated in the world and are thus highly disturbed by humans. Second,
only 5.13% of the global land surface has experienced significant drought trends (p < 0.05),
mainly in the Ural area, Siberia, western Australia, southern Africa, northern North Amer-
ica, and southern South America. In addition, 37.66% of the global land surface maintained
a stable state of drought-wetness conditions, mainly on the Tibetan Plateau, the Inner
Mongolia Plateau, the Arabian Peninsula, and the Sahara Desert. These areas are mainly
wilderness and desert areas, so the impact of climate change in a short period is very small.
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4.4. Identifying Globally Abnormal Drought-Wetness Areas and Sensitive Areas

The globally abnormal drought-wetness areas are shown in Figure 10a,b. We found
that areas that have frequently experienced abnormal drought conditions in the past
20 years also experience abnormal wetness conditions. Therefore, we define these areas as
sensitive areas of abnormal drought-wetness. These areas were mainly found on the east
coast of Australia (A), the Indus Basin of the Indian Peninsula (B), Victoria (C) and Katanga
Plateau areas of Africa (D), the Mississippi River Basin of North America (E), the eastern
part of the Brazilian Plateau, (F) and Pampas Plateau of South America (G) (Figure 10c).

To investigate the frequency of global abnormal drought-wetness conditions, the
numbers of abnormal drought-wetness events in the nine areas listed above over the
20 years were counted. The results showed that a total of 46 abnormal droughts (25.56% of
the total number of drought events) and 35 abnormal wetness events (23.75% of the total
number of wetness events) occurred over the 20 years of study (Figure 11).
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5. Discussion
5.1. Relationship between Drought-Wetness Conditions and Land Cover Types

Global distribution of drought-wetness conditions is closely associated with land
cover types (Figure 12a). Meanwhile, in our study, we found that the global drought-
wetness conditions and land cover types had perfect spatial consistency (Figure 12b).
The intersection of no drought and wetness with forest land accounted for 86.69% of the
former and 67.91% of the latter because forest land usually receives abundant rainfall
throughout the year, with high temperatures, rapid evapotranspiration, and vigorous
vegetation growth. Therefore, drought conditions were rare in these areas. The intersection
of mild drought with cropland, grassland, shrub land and tundra land accounted for 93.27%
of the former and 59.52% of the latter. In addition, the intersection of extreme and moderate
drought with barren land accounted for 58.33% of the former and 74.83% of the latter
(Table 7). Thus, distinct land cover types significantly influence the global distribution of
drought-wetness conditions, and similarly, changes in the latter variable feed back into the
distribution of the former.



Land 2024, 13, 95 15 of 19

Land 2024, 13, x FOR PEER REVIEW 15 of 19 
 

 
of mild drought with cropland, grassland, shrub land and tundra land accounted for 
93.27% of the former and 59.52% of the latter. In addition, the intersection of extreme and 
moderate drought with barren land accounted for 58.33% of the former and 74.83% of the 
latter (Table 7). Thus, distinct land cover types significantly influence the global distribu-
tion of drought-wetness conditions, and similarly, changes in the latter variable feed back 
into the distribution of the former. 

 
Figure 12. (a) Land cover types. (b) Intersections between drought-wetness conditions and land 
cover types. In the legend, “-” stands for the two sides of the intersection. 

Table 7. The intersection areas of drought-wetness and land cover types as a percentage of both. 

Intersection Areas Intersection Areas as a Percentage 
of Drought-Wetness (%) 

Intersection Areas as a Percentage 
of Land Cover Types (%) 

No drought and Wetness—Forest land 86.69 67.91 
Mild drought—Cropland, Grassland, Shrub 

land and Tundra land 
93.27 59.52 

Extreme and Moderate drought—Barren land 58.33 74.83 

5.2. Response of Different Crop Yields to Global Drought-Wetness Change 
Drought can diminish the water availability and quality necessary for productive 

farms, ranches, and grazing lands. It can also contribute to insect infestations, increases in 
wildfires, and altered rates of carbon, nutrient, and water cycling, thereby impacting ag-
ricultural production and critical ecosystem services. Meanwhile, the occurrence of 
drought can inhibit crop growth and reduce crop yields [50,51]. In this study, we analyzed 
the responses of the yields of major crops (wheat, rice, maize, and soybean) to global 
drought-wetness changes. Figure 13 shows the results of this response. First, we found 
that regardless of the crop yield, it was observed that approximately 60% of the produc-
tion areas exhibited a trend of wetness and greater production, and there were almost no 
production areas where drought-wetness changes did not occur. Second, approximately 
20% of the wheat, rice and maize production areas demonstrated a trend of drought but 
greater production; for soybean production areas, this value was 14.85%. This indicates 
that these production areas responded to drought with possible human intervention to 
make the crop yield unaffected by drought. In addition, approximately 10% of the wheat, 
rice and maize production areas exhibited a trend of wetness but less production; for soy-
bean production areas, this value was 20.55%. For example, wheat production in areas of 
northeastern China (A) and Ethiopia (B) (Figure 13a), rice production in areas of southern 
China (C), Congo (D), and northern South America (E) (Figure 13b), maize production in 

Figure 12. (a) Land cover types. (b) Intersections between drought-wetness conditions and land
cover types. In the legend, “-” stands for the two sides of the intersection.

Table 7. The intersection areas of drought-wetness and land cover types as a percentage of both.

Intersection Areas Intersection Areas as a Percentage of
Drought-Wetness (%)

Intersection Areas as a Percentage of
Land Cover Types (%)

No drought and Wetness—Forest land 86.69 67.91
Mild drought—Cropland, Grassland, Shrub

land and Tundra land 93.27 59.52

Extreme and Moderate drought—Barren land 58.33 74.83

5.2. Response of Different Crop Yields to Global Drought-Wetness Change

Drought can diminish the water availability and quality necessary for productive
farms, ranches, and grazing lands. It can also contribute to insect infestations, increases
in wildfires, and altered rates of carbon, nutrient, and water cycling, thereby impacting
agricultural production and critical ecosystem services. Meanwhile, the occurrence of
drought can inhibit crop growth and reduce crop yields [50,51]. In this study, we analyzed
the responses of the yields of major crops (wheat, rice, maize, and soybean) to global
drought-wetness changes. Figure 13 shows the results of this response. First, we found
that regardless of the crop yield, it was observed that approximately 60% of the production
areas exhibited a trend of wetness and greater production, and there were almost no
production areas where drought-wetness changes did not occur. Second, approximately
20% of the wheat, rice and maize production areas demonstrated a trend of drought but
greater production; for soybean production areas, this value was 14.85%. This indicates
that these production areas responded to drought with possible human intervention to
make the crop yield unaffected by drought. In addition, approximately 10% of the wheat,
rice and maize production areas exhibited a trend of wetness but less production; for
soybean production areas, this value was 20.55%. For example, wheat production in areas
of northeastern China (A) and Ethiopia (B) (Figure 13a), rice production in areas of southern
China (C), Congo (D), and northern South America (E) (Figure 13b), maize production in
areas of southern China (F) and central Africa (G) (Figure 13c), and soybean production
in areas of eastern and southern China (H) (Figure 13d) exhibited a trend of wetness but
less production. This finding is inconsistent with the objective rule that a trend of wetness
leads to increased yields. Therefore, these areas should adjust their industrial structures or
improve their planted crop types.
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5.3. Application of the Assessment Framework

This study employed the SDM to build a comprehensive remote sensing drought
index, the SDDI, for monitoring global drought-wetness trends; this index can not only
accurately and effectively identify extreme drought regions worldwide but can also stably
monitor globally abnormal drought and sensitive regions. Thus, the SDDI can be effectively
applied in large-scale drought monitoring studies. Effective drought monitoring often
requires observations with both high spatial and temporal resolutions. On a small scale,
if remote sensing image data with relatively high temporal and spatial resolutions can
be used, small-scale drought events can be identified and monitored at an increasingly
fine scale using this methodological process. Through more refined drought research,
realistic agricultural needs and flooding research can be better served. Moreover, this
set of monitoring methods can also be applied to different drought types; for example,
extreme and abnormal agricultural and meteorological drought events can be monitored
using this set of methods. Both agricultural and meteorological droughts are abrupt
in nature. Therefore, studying long time-series abnormal droughts can help ascertain
abnormal drought patterns and thus better serve agricultural and meteorological activities
and research.

Drought has become a focal issue that directly affects industrial and agricultural
production and the daily lives of residents and has received widespread attention from
scholars [6–8]. The utilization of remote sensing and geographic information systems (GIS)
technology for drought monitoring has achieved promising results, but some problems
still exist [14]. A comprehensive foundational database needs to be established to allow
basic data to be shared. Meteorological data and remote sensing monitoring data are kept
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in different departments, and poor data sharing among these various departments and the
inability to obtain relevant information promptly are among the main reasons responsible
for monitoring and analysis lags [9,22]. In addition, the development of remote sensing
drought monitoring technology is relatively mature, but some problems still need to be
studied in-depth; for example, in areas with complex topography, the influence of elevation
on vegetation, ground temperature and other parameters is very great, and the influence
of topographic factors should thus be considered more when monitoring drought in such
areas [11,25].

6. Conclusions

Drought is a frequent disaster with widespread impacts on agricultural production,
ecosystem protection, and the social economy. This study utilized RS data to assess drought
conditions, focusing on the VCI, PCI, TCI, and SMCI variables to develop the SDDI using
SDM. The main conclusions of this study are as follows:

(1) The consistency areas of the SDDI with the SPEI1, SPEI3 and scPDSI as a percentage
of the study area were 85.5%, 87.3%, and 85.1%, respectively, indicating that the SDDI
can be used to monitor global drought-wetness conditions on a global scale;

(2) A discernible spatial distribution pattern has emerged in global drought-wetness
conditions in the past two decades. This pattern was characterized by the extreme
drought mainly distributed deep within the continent, surrounded by expanding
moderate drought, mild drought, and no drought areas;

(3) On the annual scale, the SDDI was on an upward trend, while on the seasonal and
monthly scale, it fluctuated steadily with a certain cycle, and the trend analysis
revealed there was an overall trend of wetness worldwide;

(4) The sensitive areas of drought-wetness were mainly found on the east coast of Aus-
tralia, the Indus Basin of the Indian Peninsula, the Victoria and Katanga Plateau
areas of Africa, the Mississippi River Basin of North America, the eastern part of the
Brazilian Plateau and the Pampas Plateau of South America.
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