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Abstract: Nowadays, European program Copernicus’ Sentinel missions have allowed the devel-
opment of several application services. In this regard, to strengthen the use of free satellite data
in ordinary administrative workflows, this work aims to evaluate the feasibility and prototypal
development of a possible service called Sen4MUN for the distribution of contributions yearly allo-
cated to local municipalities and scalable to all European regions. The analysis was focused on the
Aosta Valley region, North West Italy. A comparison between the Ordinary Workflow (OW) and the
suggested Sen4MUN approach was performed. OW is based on statistical survey and municipality
declaration, while Sen4MUN is based on geospatial deep learning techniques on aerial imagery
(to extract roads and buildings to get real estate units) and yearly Land Cover map components
according to European EAGLE guidelines. Both methods are based on land cover components which
represent the input on which the financial coefficients for assigning contributions are applied. In
both approaches, buffers are applied onto urban class (LCb). This buffer was performed according to
the EEA-ISPRA soil consumption guidelines to avoid underestimating some areas that are difficult
to map. In the case of Sen4MUN, this is applied to overcome Sentinel sensor limits and spectral
mixing issues, while in the case of OW, this is due to limits in the survey method itself. Finally, a
validation was performed assuming as truth the approach defined by law as the standard, i.e., OW,
although it has limitations. MAEs involving LCb, road lengths and real estate units demonstrate
the effectiveness of Sen4MUN. The developed approach suggests a contribution system based on
Geomatics and Remote sensing to the public administration.

Keywords: Sen4MUN; geomatics for public administration; Sentinel-1 & Sentinel-2; AGEA orthophoto;
ArcGIS Pro; land cover; money assignment to local entities; Europe; Italy; Alpine region

1. Introduction

The European Space program Copernicus, with its Sentinels missions, has allowed the
creation of many research projects and prototypes aiming at developing several services,
many of them already available based on earth observation data [1–6]. Unfortunately, there
are still few available or prototype services based on an applied use of geomatics and
remote sensing, despite an expansion of Space Economy. The distribution systems of re-
gional contributions to municipalities are overwhelmingly based on territorial components.
Therefore, the geospatial component and the technological transfer offered by the growing
development of geomatics and remote sensing in this sector would be enormous, allowing
for important impacts on administrative processes currently carried out with systems that
are often onerous, as well as poorly efficient and inaccurate. To achieve real digitalization
in public administration is necessary to develop services capable of responding to ordinary
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questions in a modern way, guaranteeing scalability and a certain degree of standardization.
In fact, nowadays there is a growing need of standardization and validation procedures of
geographical and earth observation data/product/services with special concerns about the
expected roles they can have within monitoring/control actions from institutional subjects
(e.g., CAP controls. natural hazards, etc.).

One of these, still under development, and one of the few that aims to use remote
sensing in a highly economic key is the Sen4CAP system for the payment of contribution
and control in agriculture, according to the Common Agricultural Policy (CAP) in light
of EU regulation (N. 746/2018) [7–9]. The EU’s Common Agricultural Policy (CAP) seeks
to raise agricultural productivity in Europe in a sustainable manner while maintaining
a respectable level of living for EU farmers. The CAP, which has an annual budget of
about EUR 59 billion, uses a variety of strategies such as direct payments, market reforms,
and rural development, to improve the sustainability and competitiveness of agriculture
in Europe [10]. The Integrated Administration and Control System (IACS) oversees and
manages the majority of the CAP budget with the goal of protecting the program’s fi-
nances and assisting farmers in submitting their declarations. [11]. Earth observation (EO)
satellites are regarded to play a bigger part in the CAP reform satellite’s enhancement
and cost-effectiveness of the IACS. It is important to note that the CAP reform has estab-
lished the role of EO data as being of utmost importance. Their adoption is expected to
be required in 2024–2025, and may also extend to future planned missions like IRIDE,
which the Italian Space Agency (ASI) and the European Space Agency (ESA) are working
on together. Sentinel missions—Sentinel-1 and Sentinel-2 (hereinafter called Sentinels)
in particular—play a major role. In the years after 2020, the initiative will give special
consideration to demonstrating how data obtained from Sentinels may help modernize
and streamline the CAP. Sen4CAP was established by the ESA in response to requests from
European payment agencies like other EO services [12–14].

Also, other space agencies worldwide like NASA (US), JAXA (Japan), CNES (France),
DLR (Germany), and more recently the ASI (Italy) with the ambitious program IRIDE,
have developed or have planned to strengthen their services addressed to the private
and public sector, not only for research purposes, but to promote technological transfer
in many sectors [15], but at the present time fewer are related to contribution systems in
different sectors which play a huge role. The space race has opened up new frontiers of
investment for individuals and enterprises at different levels, not only the large economic
giants of the ICT and geospatial services such as Planet, SatVu, Albedo, Maxar, e-Geos, etc.
Despite several services being available from forest management monitoring to precision
agriculture, to the management of migratory flows passing through the management of
urban areas and planning of smart cities and much more [16], almost none are related to
contributions system. The reason is related to the fact that, on one hand, many services and
products offered are often too general and not specific, or worse, without solid scientific
validation. On the other hand, public administration is too slow to embrace the new
opportunities offered by applied sciences. It is often incapable of understanding them
because they are not transferred in the correct way or suitable for use as a support and
then a replacement for old methods without creating big changes (especially when it comes
to money). Added to all this is bureaucracy and the need to legislate on new approaches
so that they become operational and can complement and replace conventional ones. It
is therefore not surprising that more bureaucratic countries are often slower to assimilate
the news. Added to this is the need for foresight on the part of the political sector and
of regional managers and technicians capable of understanding and getting involved,
abandoning safe but often obsolete paths to support new ones that require hard work,
experimentation, and continuous understanding [17].

Therefore, this work aims to create a tentative service based on European EO data
and geospatially based processing about the distribution of contributions intended for
municipalities called Sen4MUN, where Sen means Sentinels for municipalities. It is worth
noting that in Italy, as in other EU countries, the municipalities receive income from
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different types according to different criteria [18]. Current incomes of taxes, contributions,
and equalization nature are made up of four income items: taxes, duties, and similar
income; tax sharing; equalization funds from central administrations; equalization funds
from the region or autonomous province. Generally, equalization funds from central
administrations and regions or autonomous provinces are the most important and the
main core of the approach suggested [19,20]. Concerning contribution delivered by regions
to municipalities, they are assigned following two possible approaches; the first one is
based on the estimated expenditure, taking into account the previous year (the more you
spend the more you receive money for local development within a budget defined at the
regional and governmental level); the second is a little more rigorous, based on indicators
of territorial development (in which, at least in Italy, the more the urbanized area develops,
roads, housing units, factories and more in general areas for urban use, the higher the
revenues) as a function of the resident population without going into the criticisms of
the present approaches, which certainly should be reviewed from the point of view of
environmental sustainability dealing with SDGs goals [21]. Since the second approach
permits an exploitation of the possibility offered by EO data and GIS updated data; a system
similar to the idea at the base of Sen4CAP has been suggested in this work. Urbanized
components, like other territorial bio-physical surfaces, can potentially be mapped to the
temporal resolution of Sentinels by translating the information produced by a medium-high
resolution land cover into a datum that can be used by administrations at an economic
level [22]. To date, the monitoring of land cover is carried out only from an environmental
point of view (to map the territory or quantify land consumption or for other research
purposes), but without, up to now, deriving any form of economic quantification. To try to
bridge this gap, the Sen4MUN has been designed.

Sen4MUN aims to create a single and standardized approach for the item concerning
government revenue or, as in the case of this study, regional revenues for local authorities
considering also the environmental issues. Sen4MUN aims to replace the approach cur-
rently based on the estimation of territorial indicators obtained from statistical analyzes
or very rough estimates used up to now by suggesting a more rigorous, efficient, and
objective approach, based on the technology transfer offered by EO data trying to suggest
new approaches by space economy and the actual and expected roles of geomatics within
the next generation EU framework from science to public services.

In this regard, therefore, to strengthen the use of free European satellite data in
Ordinary administrative workflows such as Sen4CAP, this work has been focused to assess
the feasibility and prototypal development of a possible service called Sen4MUN for the
distribution of contributions yearly allocated to local municipalities and scalable to all
European regions.

The analysis was focused on Valle d’Aosta Region, North West Italy, considered
complex in land cover mapping because of its geo-morphology and Sentinels geometrical
resolution limits in alpine areas linked to SAR distortions [23] and spectral mixing, as
well as phenology detection in pixels located in high slope degree in multispectral remote
sensed data [24].

A comparison between the ordinary methodology based on the estimation of territorial
indicators (OW), with the buffer zone retrieved with statistical surveys and the Sen4MUN
approach, which is based on yearly land cover classification according to EAGLE guidelines,
has been performed. Finally, due to the fact that some roads cannot be correctly mapped
by Sentinels due to a GSD limiting factor, updated GIS geodatabases were included in the
Sen4MUN prototypal approach.

2. Materials and Methods
2.1. Study Area

Sen4MUN was realized and tested within the Aosta Valley Region in the North West
of Italy. Aosta Valley is a region in northwestern Italy which hosts the highest peaks in the
whole alpine chain and in general in Europe. The region borders France in the Western
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part and Switzerland in the Northern. Figure 1 has reported Aosta Valley’s location in
respect to Italy. Though it is the smallest in Italy, its geomorphology makes it one of the
most complex. It is situated in the Western Alps [25].
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2.2. Ordinary Workflow

This approach adopts municipality declaration and statistical data obtained from re-
gional or national offices that starts from building practices or territorial surveys performed
within a time range (for example every 5 years [26]. In the most likely cases, data comes
from GIS databases (like the cadastre of buildings real estate units and municipalities
streets lengths), and the land cover areas divided into three marco-classes derived from
municipality declarations. These three land cover components are: urban areas which
are the most important, semi-anthropic areas, and sterile areas, buffered 10–20 or 30 m
(over-estimated) due to inhomogeneity data collection through the different times [22].
Nowadays, Ordinary Workflow (hereinafter called OW) does not use deep learning pro-
cessing to update the GIS geodatabase and earth observation data. In fact, almost the
entire OW data collection is based on municipality declaration and statistical surveys at
different level with yearly temporal gaps. This is the case of the Aosta Valley region that
follows the Cerutti’s approach since 1979, which is entirely based on statistical surveys and
declarations [27–29]. This approach considered the following patterns: the municipal area,
the urban and anthropic areas, the semi-anthropic areas (that includes all vegetated areas
cultivated and not cultivated by humans), the sterile areas (that means all land unproduc-
tive surfaces, like water bodies and courses, snow and ice, rocks), roads lengths, and finally
real estate units. All these components are properly weighted and normalized according to
financial criteria defined at regional, national, and European levels. The financial criteria
are based on the resources made available by the annual regional budget on the basis of a
legal resolution, the expenses made in the current year, the actual resident population and
the municipal area. These indicators, based on state and regional tax formulas, which vary
over time because they are the result of political economy choices, define the coefficients
to be applied to the territorial development components covered by this study and which
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characterize the contributions paid. In fact, the financial criteria are defined and regulated
by national law and regional regulations, leaving greater freedom in their calculation to
regions with special statutes such as the Valle d’Aosta Autonomous Region.

Therefore, OW is based on data collection campaigns for statistical purposes and
declarations from municipalities. The municipal offices are required to communicate
certain parameters such as the municipal area, resident population, roads belonging to the
municipality and real estate units present in the municipality. The poor communication
between offices at various levels often makes these data not always representative and
homogeneous in qualitative terms for all municipalities.

It is worth noting that OW is based on a simple weighted sum of factors that sum to
total land cover as reported in financial land components workflow in Figure 1 which is
used also in Sen4MUN using a different collection data method. In this regard, the role of
remote sensing and GIS is to properly map these areas instead of using periodic surveys as
it happens nowadays and in the issue previously discussed. Equations (12) and (13) are
the core of this approach, and each variable cab be obtained weighing each component
(representing the input variable) properly mapped. Table 1 shows how each variable was
obtained for the only purpose of complete clarity, although the procedure is as described
previously, a simple weighing of weighed remote sensed variables.

Table 1. Ordinary Workflow equations adopted to retrieve territorial inputs for the financial contribu-
tion counting. It is worth to note that these equations are adopted also in Sen4MUN approach.

Description Algorithm

Land Cover Areas (LCA)

d = e + g + i (1)
where,
e = urban and anthropic area
g = semi-anthropic areas
i = sterile areas
d = municipality’s administrative boundaries

LCA Weights

f = e × α (2)
where,
e = urban and anthropic area
α = weight (in this case = 3)
f = urban weighted area

h = g × β (3)
where,
g = semi-anthropic area
β = weight (in this case = 1.5)
h = semi-anthropic weighted area

l = i × γ (4)
where,
i = sterile area
γ = weight (in this case = 0.5)
l = sterile weighted area

Weighted areas

m = f + h + l (5)
where,
f = urban weighted area
h = semi-anthropic weighted area
l = sterile weighted area

n = m
∑n

i=1 m × 100 (6)
where,
m = conventional municipality area
∑n

i=1 m = sum of all the municipalities in the regional areas
n = conventional weighted municipality area
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Table 1. Cont.

Description Algorithm

Weighted areas

o = n × δ (7)
where,
n = conventional weighted municipality area
δ = weight (in this case = 50%)
o = sub-conventional weighted municipality area

Roads length

q =
p

∑n
i=1 p × 100 (8)

where,
p = roads length
∑n

i=1 p = sum of all the municipalities in the regional areas
q = roads weighted length

r = q × ε (9)
where,
q = roads weighted length
ε = weight (in this case = 30%)
r = sub-conventional weighted roads length

Real estate units

t = s
∑n

i=1 s × 100 (10)
where,
s = real estate units
∑n

i=1 s = sum of all the municipalities real estate units
t = real estate weighted units

u = t × ζ (11)
where,
t = real estate weighted units
ζ = weight (in this case = 20%)
u = sub-conventional weighted real estate units

The sub-conventional parameters, respectively obtained by Equations (7), (9) and (11)
are used to obtain algorithms reported in Equations (12) and (13), respectively. These
are adopted by the regional Aosta Valley Autonomous offices to assess the municipality
contributions according to the financial budget foreseen annually.

v = o + r + u (12)

where,
v = sum of all sub-conventional weighted parameters,

z = v × η (13)

where,
η = a financial weight in this case 11.50%.

2.3. Sen4MUN

The Sen4MUN approach is based on remote sensing and, in particular, yearly land
cover, GIS-updated geodatabases, and deep learning to assess the parameters necessary as
input in the OW.

2.3.1. Earth Observation Data and Processing

In this regard, urban and anthropic areas, semi-anthropic areas, and sterile areas are
computed from Aosta Valley yearly land cover classes aggregation available at SCT regional
geoportal and eoVdA webpages. Road lengths are obtained by the GIS viability monthly
update geodatabase, as well as real estate units also including deep learning (this part will
be further discussed). The reference year 2020 was considered. Land cover (LC) complies
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with EAGLE guidelines and is realized according to the following methods [30] and it is
based on Sentinels missions (S1–S2) [31–34] adopting Aosta Valley land cover [25,30]. It
is worth to note that, to assist the semantic and technological foundation of a European
harmonized information management capability for land monitoring, the EAGLE Group
has been working on a solution and proof of concept since 2008. Mostly, but not only,
in their capacities as Eionet members, land monitoring specialists from many European
Environment Agency (EEA) member nations have formed the self-initiated and public
EAGLE Group. As a result, the EAGLE Group uses a bottom-up methodology to compile
information and experiences from current land cover (LC) and land use (LU) categorization
methodologies and projects. The Copernicus Land Monitoring Service recognizes EAGLE
as a key and necessary element to facilitate a broad change in emphasis from categorization
to characterization. This has resulted in the enforcement of EAGLE compliance in new
CLMS products. The EAGLE guidelines envisage dividing the land cover components
according to a pyramidal hierarchical approach, starting from macro classes to reach
detailed components.

Since LC classes are more detailed than those reported in the Cerutti’s approach (which
are the same at EAGLE at macro-level), they were aggregated according to the Cerutti’s
description to integrate the Sen4MUN approach into the OW as follows in Table 2.

Table 2. Comparison between Land Cover EAGLE and Cerutti’s classes.

Land Cover EAGLE Class Cerutti Class

Urban and anthropic areas urban and anthropic area
Shrubland and transitional woods semi-anthropic areas
Woody crops semi-anthropic areas
Water surfaces sterile areas
Water courses sterile areas
Needle-leaved forests semi-anthropic areas
Broad-leaved forests semi-anthropic areas
Mixed forests and moors semi-anthropic areas
Permanent snow and ice sterile areas
Natural grasslands and alpine pastures semi-anthropic areas
Lawn pastures semi-anthropic areas
Bare rocks sterile areas
Discontinuous herbaceous vegetation of medium-low altitude semi-anthropic areas
Sparse herbaceous vegetation at high altitudes semi-anthropic areas
Alpine wetlands sterile areas

2.3.2. Geospatial Deep Learning Data and Processing

Roads and real estate units were extracted both from cadastral maps and deep learning
adopting open-source libraries and Python scripts integrated with ESRI ArcGIS Pro v.2.9
for object detection and classification [35–38]. Roads and building footprints [39–43] were
extracted using Convolutional Neural Network (CNN) techniques [44–47] onto the AGEA
(Agency for Disbursements in Agriculture) 2020 ortho-rectified imagery, yearly available at
the national level. In particular, ArcGIS pretrained deep learning models were adopted
to extract roads and real estate units (that has been assigned from cadastre and municipal
declaration of habitability to building footprint extracted using these models). Concerning
road extraction, the deep learning model to extract roads from high resolution satellite
imagery named: Road Extraction—Global in ESRI ArcGIS Pro v.2.9 was adopted. The
implementation is based on the Sat2Graph model by [48]. Sat2Graph relies on a novel
encoding scheme. It is capable of creating a three-dimensional tensor from the road network
graph. This capability is named as Graph Tensor Encoding (GTE). By combining the benefits
of segmentation-based and graph-based techniques, this graph-tensor encoding scheme
enables the training of a basic, non-recurrent neural network model to directly translate
the input satellite/aerial images into the road network graph (i.e., edges and vertices). In
the case of a road network graph G = {V, E} covering a region measuring W meters by
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H meters, GTE employs a W−λ × H−λ × (1 + 3 · Dmax) 3D-tensor (represented as T) to
hold the graph’s encoding. In this case, Dmax is the maximum number of edges that can
be encoded at each λ × λ grid, and λ is the spatial resolution, which limits the encoded
graph so that no two vertices can be co-located within a λ × λ grid. The two spatial axes
in the two-dimensional plane are represented by the first two dimensions of T. To encode
the graph information, we utilize the vector at each spatial point, ux,y = [Tx,y,1, Tx,y,2,...,
Tx,y, (1 + 3·Dmax)]T. Its first element (vertexness), pv ∈ [0, 1], specifies the likelihood that
a vertex would exist at point (x, y). Dmax 3-element groups, which encode the data of
a possible outgoing edge from location (x, y), come after the initial element. The first
element pei ∈ [0, 1] (edgeness) of the i-th 3-element group encodes the likelihood of having
an outgoing edge toward (dxi, dyi), that is, an edge pointing from (x, y) to (x + dxi, y +
dyi). Since vertices with degrees greater than six are extremely uncommon in road network
graphs, we have set Dmax to six in this instance. GTE only use the i-th 3-element group to
encode edges pointing toward a 360 Dmax-degree sector from (i − 1) · 360 Dmax degrees
to i · 360 Dmax degrees in order to minimize the number of possible distinct isomorphic
encodings of the same input graph. It is simple to encode a road network graph into GTE.
The encoding algorithm first interpolates the straight road segment in the road network
graph for the purpose of road network extraction. To keep the distance between consecutive
points under d meters, it chooses the bare minimum of equally spaced intermediate spots.
By controlling the edge vector’s length in GTE, this interpolation technique stabilizes the
training process.

Interpolation for stacked roads may result in vertices from two overlapped road
segments at the same location. When this occurs, the pre-trained model in ArcGIS permits
to move the endpoint vectors of the two edges using an iterative conflict-resolution process.
The objective is to ensure that the separation between any two vertices (derived from
the two edges that overlap). The GTE decoding technique returns a graph’s anticipated
GTE, which is frequently noisy, to the standard graph format (G = {V,E}). There are two
steps in the decoding algorithm: (1) vertex extraction and (2) edge connection. It has been
considered vertices and edges with a probability larger than a threshold (referred to as pthr),
since both the edgeness and verticeness predictions are real numbers between 0 and 1.

During the vertex extraction phase, the decoding algorithm locates the local maxima of
the vertexness map in order to extract possible vertices. The algorithm takes into considera-
tion just those local maxima whose vertexness exceeds pthr. The decoding algorithm joins
the outgoing edges of each candidate vertex v ∈ V to other vertices in the edge connection
stage. The following distance function (reported in Equation (14)) is used by the algorithm
to calculate the distance of the i-th edge of vertex v ∈ V to all other neighboring vertices u.

d(v, i, u) =
∣∣∣∣(vx + dxi, vx + dyi)−

(
ux, uy

)∣∣∣∣+
+w·cosdist

(
(dxi, dyi),

(
ux − vx, vy − vy

)) (14)

where w is the weight of the cosine distance in the distance function and cosdist(v1, v2)
is the cosine distance of the two vectors. In this case, we set w to a high value, like 100,
to prevent erroneous connections. Once this distance has been calculated, the decoding
algorithm inserts an edge between v and u 0 and selects a vertex, u 0, that minimizes the
distance function d(v, i, u). In order to prevent false edges from being added to the graph
when there are no suitable candidate vertices nearby, we specified a maximum distance
criterion of 15 m. Finally, Sat2Graph uses cross-entropy loss (denoted as LCE) and L2-loss.
The vertexness channel (pv) and edgeness channels are subjected to the cross-entropy loss.

pei i ∈ {1, 2,..., Dmax}), and the edge vector channels ((dxi, dyi) i ∈ {1, 2,..., Dmax}) get
the L2-loss. GTE varies across extended road sections.

In this instance, distinct ground truth labels in the GTE format can be mapped to the
same road structure. We only calculate the losses for edgeness and edge vectors at position
(x, y) when there is a vertex at that location in the ground truth due to this discrepancy. The
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overall loss function is displayed below in Equation (15) (ground truth is represented by
T̂ p̂v, p̂ei, d̂xi, and d̂yi).

L
(
T, T̂

)
= ∑

(x,y)∈[1..W]×[1..H]
(LCE(pv, p̂v)+

+T̂x,y,1 ×
(

Dmax
∑

i=1
(LCE

(
pei, p̂ei

)
+ L2

(
(dxi, dyi),

(
d̂xi, d̂yi

))
)

)
)

(15)

Concerning building footprints, these were obtained using the deep learning model
to extract building footprints from high-resolution aerial and satellite imagery named:
Building Footprint Extraction—New Zealand. In this last case, real estate extraction is based
on the Mask R-CNN model architecture implemented using ArcGIS API for Python [49].

Developed on top of Faster R-CNN, Mask R-CNN is a state-of-the-art model for
instance segmentation. A region-based convolutional neural network called Faster R-
CNN [50] provides bounding boxes together with a confidence score for each object’s
class identification. Mask R-CNN works on two-stage mainly based on Faster R-CNN
architecture: (a) (phase 1): there are two networks in the first stage; a region proposal
network and a backbone network (ResNet, VGG, Inception, etc.) to provide a collection of
region suggestions, these networks execute once for each image. The feature map’s regions
that contain the object are called region proposals; (b) (phase 2): The network predicts object
classes and bounding boxes for every suggested region that was acquired in phase one.
While fully linked layers in the networks always need a constant size vector to produce
predictions, each proposed region might have a variable size. The RoIAlign technique or
RoI pool, which is quite similar to MaxPooling, are used to fix the size of these proposed
regions. When segmenting scenes or objects with irregular borders, segmentation models
may produce boundaries that are too smooth and may not be accurate. A point-based
rendering neural network module named PointRend has been included as an upgrade into
the pre-trained model in order to obtain a clear segmentation border. This module provides
the segmentation problem with a rendering perspective, utilizing techniques from classical
computer graphics. Labels are frequently predicted by image segmentation models on
a regular grid with low resolution, such as 1/8th of the input. To upscale the forecasts
to the original resolution in these models, interpolation is used. PointRend, on the other
hand, upscales the predictions using an iterative subdivision technique by having a trained
tiny neural network predict the labels of points at certain places. This technique efficiently
produces output with great resolution [51].

In this work, in order to improve the quality of the results obtained and, in particular,
the extraction of a building footprint to get real estate units, PointRend has been adopted
into the pre-trained model. To enable PointRend within Mask R-CNN in the ESRI Ar-
cGIS front-end or scripting console, the following parameters has been set as reported in
Equation (16):

model = MaskRCNN(data = data, pointrend = True) (16)

An 8-bit, 4-band high resolution (0.20 m GSD) aerial AGEA imagery of 2020 of the
whole Aosta Valley was adopted. Due to the high computation necessary to extract the
features in the whole region, the processing was conducted in a workstation with the
following main characteristics: 64 GB CPU memory; 2 TB SSD storage and with a graphic
card Nvidia RTX A4000 16 GB GDDR6.

Then, from the roads extracted, they were checked with the viability geodatabase, and
only municipality roads and areas were considered (as specifically reported in the regional
laws) for the road length computation. Then, the land cover areas and roads were buffered
20 m for the following reasons: some sparse urban areas are difficult to map due to the GSD
limits of Sentinels [52–59], then this threshold is adopted both in OW procedure and ISPRA
Land Units in the case of soil consumption estimation [29]. Finally, the areas obtained were
used as inputs in the OW equations reported in Table 1.
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2.4. Validation

The validation of the Sen4MUN approach and in particular of the surface estimated
adopting GIS [60–64] and earth observation data to retrieve the parameters adopted in the
OW was realized by computing the Mean Absolute Error (MAE) according to Equation (17)
here reported:

MAE =
∑n

i=1|pi − oi|
n

(17)

where pi is the prediction (Sen4MUN component area), oi is the OW component areas
estimated without remote sensing methods, and n is the number of municipalities in the
Aosta Valley autonomous area equal to 74).

It is worth noting that the EAGLE classification starts from the same macro-classes
identified by Cerutti’s. The unique difference in the two approaches is represented by
the names adopted (despite the description is perfectly the same). Therefore, the EAGLE
approach starts from macro to arrive to detail with sub-classes while Cerutti’s stops to
macro-level.

This is a key point because it permits comparability between the two methods even if
different technical approaches are followed.

In order to sum up the suggested newer approach, a workflow of the Sen4MUN
approach is provided in Figure 2.Land 2024, 13, 80  11  of  21 
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3. Results

The Sen4MUN approach was validated by computing the MAE compared to the
surfaces calculated with the traditional method from statistical surveys. It is worth noting
that, for the reference year 2020, the main surfaces and inputs were computed both with
OW and Sen4MUN for each municipality within the Aosta Valley. Furthermore, also deep
learning pre-trained models concerning on roads and real estate units have been evaluated.
The pre-trained ESRI ArcGIS model Building Footprint Extraction—New Zealand has
produced an F1 score of 86.20 all over the region, with an overall precision of 0.885 and
a recall of 0.861. Despite many building footprints being available in ArcGIS, this is one
that works better in geomorphological complex areas, while the pre-trained ESRI ArcGIS
model Road Extraction—Global showed a precision score of 0.804 in the area of study.
However, including results without PointRend as reported in Equation (16), it had a score
of 0.873. Excluding false positives due to rocks artifacts and after a manual refining due
to photointerpretation, the final layer had an overall accuracy of 0.961. It is worth noting
that a 4-bands aerial imagery was adopted to perform the extraction. In particular, to
refine the accuracy of the models in ArcGIS Pro in order to reach a threshold score of 0.80,
hyperparameter optimization has been performed, fine-tuning the hyperparameters of the
model, such as learning rate, batch size, and optimizer settings, to improve the training
process and enhance the model’s performance. Moreover, a repeat cycle approach has been
followed by iteration through the training, evaluation, and refinement steps multiple times
until the model’s performance reaches an acceptable level. Finally, MAEs were computed
for land cover components, road length and real estate units.

Since urban areas play a major role in the present regional regulation in terms of
township incomes, MAEs involving each municipality were computed also considering
their road length and real estate units. The results obtained are reported in Table 3 and a
general Table A1 in Appendix A and in the graphs concerning on the MAEs reported in
Figure 3.

Table 3. Overall MAEs and areas computed with both OW and Sen4MUN.

Urban & Anthropic Areas (km2) Road Length (km) Real Estate Units

Sen4MUN OW MAE Sen4MUN OW MAE Sen4MUN OW MAE

103.9 92.1 0.16 1686.7 1626.4 0.81 303,049 293,214 133

Table 3 reports the overall MAE computed considering the same component retrieved
with OW and Sen4MUN.

Figure 3 shows the MAEs for the three territorial components used for the calculation
of municipal contributions by the Valle d’Aosta Autonomous Region. In particular, the
following are reported in the section: (A) the MAEs for urban and anthropic areas expressed
in square km; (B) the MAEs for the length of municipal roads expressed in km; (C) the
MAEs for real estate units expressed in units. In all three sections of Figure 3, it is interesting
to note that the largest MAEs generally occur in municipalities with fragmented urban
areas with scattered villages and houses and roads in steep areas due to the limitations of
the sensor and processing techniques or errors inherent in the traditional method, such as
to cause the imbalances as illustrated below.

As reported in Table 3, an overall MAE of 0.16 km2 was obtained involving urban and
anthropic areas, while 0.81 km was obtained for road length and 11 units in the case of real
estate units. An overall MAE of 0.82 km2 was computed involving all EAGLE Land cover
classes, respecting those computed with Cerutti’s approach. All the values obtained are
significant and seem to suggest a validity of Sen4MUN. The values obtained in Table 3 for
the two approaches are not very distant as indicated by the MAEs. It should be highlighted
that the standard for assigning contributions is currently OW because it is regulated at
a legislative level. It is worth noting that the errors came from Cerutti’s approach which
overestimate some areas due to limits in this approach itself. Furthermore, it is interesting
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to note that in all the components, for example urbanized areas, road lengths and real
estate units, MAEs are associated with municipalities that underwent more changes in at
least one of the components in the reference year and with sparse villages. Unlike what
can be derived from the MAEs here computed, the Sen4MUN system is more effective in
monitoring territorial changes because it is based on satellite and GIS data updated at a high
temporal frequency than the ordinary system. The MAEs obtained allow the transferability
of the new approach and possible replacement of the ordinary one even in an Alpine reality
such as the one investigated. In fact, MAEs are generally higher in mountainous areas than
those obtainable in lowland areas due to the limiting factors affecting some remote sensing
applications (land cover mapping in particular).
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4. Discussions

The results show the consistency of the methods. Furthermore, the procedure adopts
free worldwide coverage data. The creation of land covers on an annual, biennial, or
monthly basis or even on a time scale of Sentinels (potentially every 5 days) allows the
continuous monitoring of territorial dynamics. Moreover, this activity is part of the actions
that each European country carries out for the monitoring of soil consumption and that
the regions or provinces carry out to offer detailed products according to the guidelines of
the European Environmental Agency. Furthermore, the availability for the administration
of a regional air flight with very high resolution imagery (like an AGEA flight), albeit for
agricultural purposes, allows this type of data to be integrated into other service chains.
Such as in the case of Sen4MUN, to extract the footprint of buildings and roads thus makes
public spending more efficient through the expansion of derivable products and services.
Certainly, it is complex to create universally valid models, and locally suitable models are
always preferable. But it must also be said that to create standards such as the Sen4CAP
adopted by the European Union, compromises must be reached. Sen4MUN was specifically
developed in a complex area such as to make it scalable in a much simpler way to plain
and hilly areas which are the majority at a European level. The fact that the approach
returns interesting results in an alpine and geomorphologically complex context is certainly
encouraged from a scalability perspective. It should be remembered that the largest MAEs
occur in municipalities that have more scattered settlements with isolated houses mixed
with woods. Areas by which their nature are complex to map at Sentinel scale are not so
numerous. Finally, it should also be remembered that many of the differences are linked not
to a lack of accuracy and precision of Sen4MUN, which from a purely photo-interpretative
analysis proved to be more performing than the traditional OW approach, but precisely as
a result of errors in the dataset from statistical investigations of OW. This dataset, despite
the errors it suffers from, was taken as a reference base as current regulations require this to
be the data collection tool for the purposes of assigning contributions. During the analyses
in some municipalities with high MAEs, it was found that Sen4MUN, on the contrary,
mapped components that had escaped OW.

Naturally, the critical points in the Sen4MUN approach result in a correct mapping
and knowledge of geomatics and remote sensing and their limits, such as the most suitable
approach (hierarchical, single-directed, data fusion, etc.), the classification algorithms, as
well as the input data that best respond to the components to be mapped, etc. Furthermore,
the definition of the optimal number of training areas validation sets according to the
area to be mapped is crucial [65–76] in obtaining high accuracies and minimization of
errors [77–87]. Despite this work, a ready land cover has been adopted with an overall
accuracy upper than 0.94, the whole procedure considering all these issues has been tackled
in previous scientific literature involving the Aosta Valley territory [88]. In fact, in the case
of a stand-alone and not prototype of this service at an application level not only on a
regional or national scale, but on a European scale given the characteristics of the continent,
the optimal solution would be to implement a regulated procedure, but which gives a
certain degree of freedom in the algorithms and training sets (providing only thresholds) so
that chains capable of responding best according to the area to be mapped are developed.
Sen4CAP has been excessively standardized also in the algorithms making it underperform
in the mountain areas [89]. The need to standardize as much as possible a procedure
that moves economic contributions is crucial for large-scale regulation [47], but this is
performed with the support of researchers, technicians, and academic experts and after
several experiments in UE, to better define the operational leans and freedoms useful for
developing consistent products and services for each European reality without creating
disparities and differences. As far as the authors are aware, there are no applications in
scientific literature for the monetarization of land cover and usage or AI geospatial deep
learning at a national, regional, or local contribution scale for services provided by the
public administration, therefore a comparison of the results obtained to date is extremely
difficult. At the same time, fewer are scientific works on monetary attribution to the



Land 2024, 13, 80 14 of 20

components of the coverage for the estimation of ecosystem services and nature based
solutions [90,91], but with the intent of estimates of mere research and not of actual transfer
of technological application to the public sector. Furthermore, the works themselves are
on a large and non-municipal scale and involve geographical areas different from those
under study. Therefore, we hope that this work will stimulate the Italian, European and
international scientific and technical community to deepen and explore the application
potential of geomatics in the operational workflows of public administration by offering
new services and comparing the results and approaches obtained for the purpose of
continuous improvement.

The use of the prototypal Sen4MUN Aosta Valley has made it possible to make the
procedure for assigning contributions to municipalities more objective through the use
of Sentinel data and updated GIS geodatabases, favoring technology transfer and the
implementation of a possible new service within the Copernicus program and other future
programs, such as an IRIDE capable of offering increasingly high spatial and temporal
resolution data [37] useful for direct applications to the public sector [92–96].

5. Conclusions

Sen4MUN can be used as a standard procedure for assigning contributions to munic-
ipalities. The procedure is consistent and in line with the ordinary territorial workflow
based on statistical surveys without the use of earth observation data, deep learning, and
geodatabase. Although the system has been tested and used on a prototype level in the
Aosta Valley, it can be scaled up to other Italian and European regions. The hope is that this
service will become operational and spread to all member countries of the European Union
as well as other national realities. Sen4MUN could join other services; coming from various
Earth observation programs such as Copernicus, favoring an ever more massive technology
transfer to the public sector by rationalizing activities and processes with plural activities
with a view to the ever-increasing importance of geomatics in management flows and
implementation planners of local, national and European policies. Finally, Sen4MUN seems
to be capable of providing useful data for contribution purposes to public administration.
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Appendix A

The data used to realize the histogram available in Figure 3 are reported here below in
Table A1.
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Table A1. MAEs and areas computed with both OW and Sen4MUN (S4M).

Aosta Valley
Municipalities

Urban Areas (km2) Roads Length (km) Real Estate Units

S4M OW MAE S4M OW MAE S4M OW MAE

Allein 0.28 0.33 0.05 16.37 15.32 1.05 643 638 5
Antey-Saint-André 1.04 1.00 0.04 17.98 15.67 2.31 3250 3208 42
Aosta 9.58 9.57 0.01 106.26 104.55 1.71 65,073 65,050 23
Arnad 1.68 1.41 0.27 29.34 26.73 2.61 2614 2601 13
Arvier 0.87 0.66 0.21 22.73 22.02 0.71 1970 1971 1
Avise 0.45 0.50 0.05 12.59 11.58 1.00 899 890 9
Ayas 2.84 2.85 0.01 21.28 19.04 2.24 10,022 10,021 1
Aymavilles 1.37 1.39 0.01 31.05 30.03 1.02 3349 3346 3
Bard 0.26 0.20 0.06 3.04 2.56 0.49 320 315 5
Bionaz 0.55 0.58 0.03 15.22 13.95 1.26 626 622 4
Brissogne 2.11 0.79 1.32 19.78 18.46 1.32 1510 1499 11
Brusson 1.55 1.86 0.31 28.91 28.75 0.16 5229 5222 7
Challand-Saint-Anselme 0.85 0.93 0.08 19.30 15.49 3.81 3231 3230 1
Challand-Saint-Victor 0.63 0.70 0.07 16.93 15.66 1.27 1776 1770 6
Chambave 1.39 0.88 0.52 24.36 25.13 0.77 1804 1799 5
Chamois 0.17 0.33 0.16 3.15 3.15 0.00 568 562 6
Champdepraz 0.94 0.65 0.29 17.60 15.78 1.81 1411 1412 1
Champorcher 0.69 1.00 0.31 22.97 21.72 1.25 2355 2351 4
Charvensod 1.55 1.42 0.13 9.95 9.90 0.05 3897 3890 7
Châtillon 2.97 2.28 0.69 47.63 43.32 4.31 7515 7510 5
Cogne 2.10 1.72 0.38 25.21 22.44 2.78 5528 5527 1
Courmayeur 3.37 2.90 0.47 53.52 52.90 0.62 15,334 15,301 33
Donnas 1.90 1.72 0.18 26.89 28.21 1.32 4069 4048 21
Doues 0.60 0.70 0.10 24.41 27.03 2.62 1329 1317 12
Emarèse 0.29 0.34 0.06 13.57 12.85 0.72 984 977 7
Etroubles 0.70 0.57 0.13 18.90 14.89 4.01 1314 1302 12
Fénis 1.47 1.28 0.18 27.13 26.30 0.83 3409 3405 4
Fontainemore 0.66 1.47 0.81 26.91 26.74 0.16 1560 1535 25
Gaby 0.61 0.80 0.19 9.51 9.25 0.26 1394 1337 57
Gignod 1.37 1.23 0.15 30.44 30.14 0.30 2692 2673 19
Gressan 2.84 2.52 0.32 27.43 26.26 1.17 8330 8313 17
Gressoney-La-Trinité 0.82 0.88 0.06 4.18 3.80 0.38 1944 1912 32
Gressoney-Saint-Jean 1.86 1.97 0.10 18.56 16.32 2.25 5350 5347 3
Hône 1.16 0.89 0.27 13.00 14.51 1.52 2226 2226 0
Introd 0.56 0.53 0.03 13.87 13.33 0.54 1444 1435 9
Issime 0.77 1.02 0.25 10.47 9.56 0.91 1263 1260 3
Issogne 1.50 1.08 0.42 26.35 30.83 4.48 2305 2291 14
Jovençan 0.72 0.43 0.28 10.45 13.32 2.87 974 959 15
La Magdeleine 0.28 0.36 0.08 5.46 5.62 0.16 1157 1101 56
La Salle 2.25 1.95 0.29 42.81 36.21 6.59 7445 7419 26
La Thuile 1.77 1.44 0.33 27.23 24.94 2.28 7223 7205 18
Lillianes 0.52 0.98 0.46 19.48 22.28 2.80 1160 1147 13
Montjovet 1.62 1.42 0.21 39.41 38.81 0.60 3271 3262 9
Morgex 2.33 1.66 0.67 22.97 19.41 3.57 6982 6973 9
Nus 2.44 1.88 0.56 54.40 51.67 2.73 5125 5125 0
Ollomont 0.42 0.55 0.13 8.80 7.68 1.12 965 960 5
Oyace 0.27 0.26 0.01 3.50 1.93 1.57 475 473 2
Perloz 0.46 0.91 0.45 19.45 21.95 2.51 1248 1237 11
Pollein 2.11 1.16 0.95 10.27 14.13 3.86 2217 2206 11
Pontboset 0.33 0.47 0.14 10.31 11.32 1.01 809 791 18
Pontey 1.17 0.50 0.67 6.80 4.72 2.07 1296 1294 2
Pont-Saint-Martin 2.00 1.61 0.39 21.39 21.49 0.10 5165 5160 5
Pré-Saint-Didier 1.10 0.91 0.19 20.58 19.46 1.13 5925 5917 8
Quart 3.90 2.56 1.34 59.69 58.83 0.86 6495 6489 6
Rhêmes-Notre-Dame 0.31 0.39 0.08 6.28 5.58 0.70 719 707 12
Rhêmes-Saint-Georges 0.31 0.39 0.08 6.19 5.57 0.62 820 808 12
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Table A1. Cont.

Aosta Valley
Municipalities

Urban Areas (km2) Roads Length (km) Real Estate Units

S4M OW MAE S4M OW MAE S4M OW MAE

Roisan 0.66 0.66 0.01 13.44 12.45 0.99 1455 1447 8
Saint-Christophe 2.98 1.93 1.04 44.18 44.32 0.15 5519 5511 8
Saint-Denis 0.49 0.53 0.04 9.98 6.92 3.06 1163 1161 2
Saint-Marcel 1.46 1.19 0.27 34.99 34.13 0.86 2308 2299 9
Saint-Nicolas 0.46 0.48 0.02 19.19 17.17 2.02 1184 1175 9
Saint-Oyen 0.35 0.22 0.14 7.68 5.72 1.96 556 555 1
Saint-Pierre 2.22 1.82 0.41 40.67 37.22 3.45 5225 5222 3
Saint-Rhémy-en-Bosses 0.88 0.73 0.15 19.48 18.51 0.98 1274 1266 8
Saint-Vincent 2.32 2.13 0.20 40.48 39.29 1.19 8956 8943 13
Sarre 2.74 2.18 0.56 41.53 40.33 1.21 6616 6591 25
Torgnon 1.10 1.10 0.00 21.17 19.56 1.61 4332 4313 19
Valgrisenche 0.36 0.54 0.17 14.00 13.78 0.22 859 851 8
Valpelline 0.60 0.62 0.02 13.58 14.25 0.67 1322 1300 22
Valsavarenche 0.48 0.66 0.18 8.46 9.29 0.83 1036 1023 13
Valtournenche 2.76 2.66 0.10 37.56 37.51 0.05 13,870 13,861 9
Verrayes 1.76 1.59 0.17 26.29 26.12 0.17 3218 3210 8
Verrès 2.14 1.27 0.87 13.50 10.74 2.77 3956 3953 3
Villeneuve 1.43 1.01 0.42 28.31 30.04 1.73 2192 2187 5
TOTAL 103.9 92.1 0.16 1686.7 1626.4 0.81 303,049 293,214 11
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