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Abstract: The low-carbon development of the transportation sector is crucial for China to achieve its
national goals of carbon peaking and carbon neutrality. Since China is a vast country with unbalanced
regional development, there are considerable differences in the levels of carbon dioxide emissions
from the transportation sector across regions. Therefore, revealing the influencing factors that shape
the characteristics of transportation carbon dioxide emissions (TCO2) can inform tailored sub-national
carbon reduction strategies based on local conditions, which is an important technical approach for
achieving national goals. Based on an extended Kaya identity, we derived indicators of the impacts
on provincial TCO2 from factors such as economic development, population density, energy structure,
transportation efficiency, technology research and development (R&D), infrastructure construction,
transportation operation conditions, and residents’ transportation behavior. Using a multi-indicator
joint characterization method, we explored the characteristics of provincial TCO2 in China in 2019.
By applying Ward’s method to hierarchical clustering, the thirty provinces of China were classified
into six characteristic types (Types I to VI). Based on the total TCO2 (TC), the intensity of TCO2 (TI),
and the per capita TCO2 (TP) calculated for each province in 2019, the priority control directions
and indicators for carbon reduction in each type were obtained through relative relationships with
provincial averages and correlation analysis with the indicators. Specifically, Type I and Type IV
can be categorized as TP-controlled, Type II and Type III as TC-controlled, and Type V and Type VI
as TI-controlled. Finally, we provided typological strategies and key performance indicators (KPIs)
relevant to local governments to better achieve carbon reduction goals in each provincial type. It can
promote cooperative development and collaborative governance in carbon reduction across regions
and the unified implementation of China’s dual-carbon goals.

Keywords: transportation carbon dioxide emissions; extended kaya identity; carbon emissions
characteristics; inter-provincial difference; low-carbon development; influencing factors; typological
strategies

1. Introduction

Practicing low-carbon development to mitigate increasingly severe global climate change
has become an important international consensus. The transportation sector is a major con-
tributor to global CO2 emissions. In 2021, CO2 emissions from the transportation sector
reached 7.7 billion metric tons, which accounted for 25% of the total global CO2 emissions [1].
Therefore, the transportation sector is a key industry for achieving global carbon reduction
goals [2–5]. As the world’s largest greenhouse gas emitting country [5–7], China’s transporta-
tion carbon dioxide emissions (TCO2) rank third nationally across all sectors [7–10]. According
to International Energy Agency predictions, China’s TCO2 is predicted to account for more
than one-third of global transportation emissions by 2035 [11]. Meanwhile, as the largest
developing country, China’s TCO2 is expected to continue growing rapidly, making it a key
sector for achieving the goals of carbon peaking and carbon neutrality [5,7].
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As subordinate units tasked with achieving China’s national low-carbon goals, provin-
cial administrations play an overarching institutional role in planning and coordination.
China’s vast geographic expanse has resulted in significant objective differences across
provinces in factors like economic development, population distribution, resource endow-
ments, and urbanization levels. This has led to considerable variability in CO2 emission
levels across provincial transportation sectors [12]. Therefore, an in-depth analysis of
inter-provincial differences in the transportation sector, using scientific and rational meth-
ods to reveal characteristics of provincial TCO2, followed by tailored carbon reduction
strategies for different characteristic regions, is the basic premise and important guarantee
for effectively achieving low-carbon transportation development goals.

The provincial TCO2 characteristics described in this study refer to the combination of
multiple influencing factors affecting the direct quantity of TCO2, including influencing factors
affecting the total TCO2 (TC), the intensity of TCO2 (TI), the per capita TCO2 (TP), etc., which
can effectively reflect the systematic characteristics of inter-provincial transportation sectors
in aspects such as economy, energy, efficiency, technology, infrastructure, operation, and so
on. Due to the necessity and urgency of understanding inter-provincial TCO2 characteristics,
scholars have conducted extensive research on this topic in recent years, which can be sum-
marized into three aspects: direct quantity characteristics, correlated quantity characteristics,
and influencing factor characteristics. (1) Direct quantity characteristics refer to revealing
spatial distribution characteristics of the direct quantity of TCO2 [13–15], spatial correlation
characteristics [16], and their evolutionary patterns [17], based on provincial TCO2 accounting.
(2) Correlated quantity characteristics refer to characteristics reflecting specific aspects that
influence the direct quantity of TCO2, such as transportation CO2 emission efficiency [18–21],
TCO2 reduction potential [7], inter-provincial intelligent transportation characteristics [22],
and carbon reduction effects of transportation structure adjustments [23]. (3) Influencing factor
characteristics involve a more comprehensive and detailed description of inter-provincial
TCO2 characteristics by exploring the factors that influence the direct quantity of TCO2. Exist-
ing studies mainly adopt econometric models like multivariate regression, panel data models,
and extended models based on factors such as Kaya identity, IPAT, and STIRPAT to reveal the
influencing factors of the direct quantity of TCO2. Furthermore, factor decomposition models
(e.g., Laspeyres index decomposition, Divisia index decomposition, LMDI, generalized fisher
index decomposition) are also applied to study the impacts of influencing factors on the direct
quantity of TCO2.

Existing studies have explored the macro-level influencing factors of TCO2 charac-
teristics, including economic development level, population size, transportation energy
intensity, transportation energy structure, transportation intensity, and industrial struc-
ture [5,24–26]. Additionally, studies have examined the impacts of transportation infrastruc-
ture development, such as urbanization rate, fixed asset investment in the transportation
industry [27,28], length of road network [29–31], level of public transportation develop-
ment [32,33], per capita private car ownership, passenger and freight turnover [34,35],
average transportation distance [36], logistics scale, and express delivery industry develop-
ment [37,38]. Furthermore, the impacts of transportation technology level and new energy
industry planning have been investigated, such as R&D investment [39,40], level of digital
innovation [41], and new energy vehicle industry [42], etc.

In summary, although existing studies on inter-provincial TCO2 characteristics have
gradually become more comprehensive in coverage, more detailed in evaluation indica-
tors, and clearer in understanding the relationships, this study of CO2 emissions in the
transportation sector is a complex system with numerous influencing factors. The selec-
tion of evaluation indicators needs to balance comprehensiveness and feasibility, and the
classification of characteristics needs to assist in coordinating the advantages and disad-
vantages of provinces in low-carbon transportation development. Otherwise, only broad
and general conclusions can be drawn, which is not conducive to the implementation of
carbon reduction actions by provinces or regional cooperation and coordinated governance.
Moreover, macro-level indicators used in existing research, in order to have a strong mathe-
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matical relationship with TCO2, tend to be broader and more general in terms of coverage
(i.e., evaluation indicators have macroscopic and comprehensive characteristics), which
correspondingly may sacrifice the coverage of indicator content and the directedness of
regulatory mechanisms.

Compared to existing research, this study makes the following contributions: (1) A
multi-indicator joint characterization method is proposed to reveal provincial TCO2 charac-
teristics comprehensively. (2) The coverage of provincial TCO2 characteristics is expanded
by adding indicators for urban and county population density levels (UPL), transportation
operation pressure (TOP), and resident living consumption levels (RLC). (3) The hierarchi-
cal clustering categorization effectively reveals provincial advantages and disadvantages
in TCO2 characteristics, which facilitates cooperation and coordinated governance across
Chinese regions. (4) Characteristic indicators have an important integrating function,
combining to reflect the inter-provincial TCO2 characteristics, the evaluation criteria for
the classification of characteristic types, and directly corresponding to typological carbon
reduction measures and key performance indicators (KPIs).

2. Materials and Methods

This study proposes a multi-indicator joint characterization method to construct eval-
uation indicators and typological categorization of inter-provincial TCO2 characteristics in
China, aiming to establish carbon reduction strategies supporting provincial differentiation
and regional collaboration. The methods used in this study can be divided into five steps:
(1) a multi-indicator joint characterization method; (2) hierarchical cluster analysis follow-
ing Ward’s method; (3) analysis of provincial type characteristics; (4) TCO2 accounting
and their correlation analysis with indicators; (5) carbon reduction strategies and KPIs for
provincial types. Figure 1 illustrates the procedures, methods, and contents for achieving
the research objectives. The overall research framework adopted this approach to measure
sub-national TCO2 characteristics, categorize types, and formulate carbon reduction strate-
gies, which is applicable to studies of other countries and regions with similar needs and
data sources for carbon reduction.

2.1. Data Sources

As China was affected by the COVID pandemic, the data from 2020 to 2022 are
expected to be less representative, so this study uses the data from 2019 for the calculation
of the indicators. Among them, TES, TEE, and RDL are from the China Transport Statistical
Yearbook 2019 and China Energy Statistical Yearbook 2020. The other six indicators are from
the China Statistical Yearbook 2020. Due to missing energy data or statistical calibration
differences, Tibet, Hong Kong, Macau, and Taiwan are excluded from the study sample.

It is worth noting that in China, the transportation, storage, and postal sectors are
commonly perceived as a unified industrial entity due to historical continuity, functional
interconnections, management efficiency, and industry characteristics. This integration is
aimed at enhancing regulatory oversight and operational coordination. Therefore, in this
study, when referring to the transportation sector, we specifically denote transportation,
storage, and postal services. This approach is adopted to comprehensively consider the
impact and role of these sectors in carbon emissions.



Land 2024, 13, 15 4 of 24
Land 2024, 13, x FOR PEER REVIEW 4 of 27 
 

 

 
Figure 1. Framework of the research process workflow. 

2.1. Data Sources 
As China was affected by the COVID pandemic, the data from 2020 to 2022 are ex-

pected to be less representative, so this study uses the data from 2019 for the calculation 
of the indicators. Among them, TES, TEE, and RDL are from the China Transport Statistical 
Yearbook 2019 and China Energy Statistical Yearbook 2020. The other six indicators are from 
the China Statistical Yearbook 2020. Due to missing energy data or statistical calibration dif-
ferences, Tibet, Hong Kong, Macau, and Taiwan are excluded from the study sample. 

It is worth noting that in China, the transportation, storage, and postal sectors are 
commonly perceived as a unified industrial entity due to historical continuity, functional 
interconnections, management efficiency, and industry characteristics. This integration is 
aimed at enhancing regulatory oversight and operational coordination. Therefore, in this 
study, when referring to the transportation sector, we specifically denote transportation, 
storage, and postal services. This approach is adopted to comprehensively consider the 
impact and role of these sectors in carbon emissions. 

2.2. Multi-Indicator Joint Characterization Method for Provincial TCO2 Characteristics 
2.2.1. Construction Process of Characteristic Indicators 

The Kaya identity establishes mathematical relationships among factors like popula-
tion, energy, economy, and CO2 emissions [43]. Due to its simple structure and convenient 

Figure 1. Framework of the research process workflow.

2.2. Multi-Indicator Joint Characterization Method for Provincial TCO2 Characteristics
2.2.1. Construction Process of Characteristic Indicators

The Kaya identity establishes mathematical relationships among factors like popula-
tion, energy, economy, and CO2 emissions [43]. Due to its simple structure and convenient
operation, it can fully decompose CO2 emissions structurally and is often used to build re-
lationships between CO2 emissions and influencing factors. The equation can be expressed
as follows:

C =
C

PE
× PE

GDP
× GDP

P
× P (1)

where C represents total CO2 emissions, PE represents total energy consumption, GDP
represents gross domestic product, and P represents total population. In this study, CO2
emissions from transportation sector energy consumption are determined by extending the
Kaya equation to identify influencing factors. Then Formula (1) can be expanded as:

Ci =
n

∑
k=1

Cik
Eik

× Eik
Ei

× Ei
GDPi

× GDPi
TSi

× TSi
SBi

× SBi
Wi

× Wi
Pi

× Pi (2)

where i represents the thirty provinces in China, k represents the n types of energy con-
sumed in the transportation sector, Cik represents the CO2 emissions of energy type k in
province i, Eik represents the consumption of energy type k in province i, Cik/Eik represents
the CO2 emission coefficient of energy type k, Ei represents the total energy consumption of
the transportation sector in province i, Eik/Ei represents the energy structure of the trans-
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portation sector in province i, GDPi represents the added value of transportation, storage
and post in province i, Ei/GDPi represents the energy consumption per unit added value of
the transportation sector in province i (i.e., transportation energy intensity), TSi represents
the area of transportation infrastructure in province i, GDPi/TSi represents the economic
returns per unit area of transportation infrastructure (i.e., transportation economic output
intensity), SBi represents the built-up area in province i, TSi/SBi is the proportion of
transportation infrastructure area to built-up area, representing the level of transportation
infrastructure construction in province i, Wi represents the total transportation pollutants
in province i, SBi/Wi is the reciprocal of built-up area per unit transportation pollutants,
with the ratio relationship reflecting transportation pollution intensity in province i, and Pi
represents the year-end population in province i, Wi/Pi represents per capita transporta-
tion pollutants, indicating the pollution intensity of resident transportation behaviors in
province i.

2.2.2. Definition of Characteristic Indicators

Based on the identified influencing factors of TCO2 described above and referring to
evaluation indicators corresponding to influencing factors in existing studies [5,9,17,24–27,32,33,
39,44,45], this study adopts a multi-indicator joint characterization method and constructs nine
characteristic indicators to reveal provincial TCO2 characteristics (Table 1).

Table 1. Expressions and parameter definitions of characteristic indicators.

Influence Factors Indicator Name
and Abbreviation Indicator Description Indicator Expression and

Parameter Definition

Transportation economic
output intensity

Transportation economic
structure (TEC)

Reflects the level of economic
structure share of the

transportation sec tor in province i
compared to the

provincial average.

TEC = ECi/GDPi
TEC′

ECi is the added value of the
transportation sector in province i,

GDPi is the gross domestic product of
province i, TEC′ is the provincial
average value of the numerator.

Transportation energy structure Transportation energy structure
(TES)

Reflects the level of clean energy
structure share in the
transportation energy

consumption of province i
compared to the

provincial average.

TES = REi/TEi+HEi
TES′

REi is the consumption of clean
energies such as electricity and

natural gas in the transportation
sector of province i, TEi is the total

energy consumption of transportation
in province i, HEi is the consumption

of “gasoline” and “diesel oil” in
“residential life” of province i, TES′ is

the provincial average value of
the numerator.

transportation energy intensity

Transportation energy
consumption efficiency (TEE)

Reflects the level of energy
consumption per unit of

transportation turnover in
province i compared to the

provincial average.

TEF =
(TE i+HEi)/TTi

TEF′
TTi is the total transportation turnover

(including passenger and
freight turnover), TEF′ is the
provincial average value of

the numerator.

R&D level of transportation
technology (RDL)

Reflects the level of
technological R&D capability in

the transportation sec tor of
province i compared to the

provincial average.

RDL = RDi/POi
RDL′

RDi is the internal expenditure on
R&D funds for the transportation

sector in province i, POi is the
year-end population of province i,

RDL′ is the provincial average value
of the numerator.

Population factor Urban population density level
(UPL)

Reflects the level of the gap
between the population density of

urban and county in province i
compared to the provincial

average (lower values indicate
higher urban population density).

UPL = CPi/UPi
UPL′

CPi is the county population density
of province i, UPi is the urban

population density of province i,
UPL′ is the provincial average value

of the numerator.
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Table 1. Cont.

Influence Factors Indicator Name
and Abbreviation Indicator Description Indicator Expression and

Parameter Definition

Transportation infrastructure
construction

Road construction level (RCL)

Reflects the level of intensity
of urban road and highway
construction in province i

compared to the
provincial average.

RCL = 0.5 × URi/UPi
R1′

+ 0.5 × HMi/POi
R2′

URi is the actual urban road length by
year-end of province i, UPi is the
urban population by year-end of
province i, HMi is the highway

mileage of province i, R1′ and R2′ are
the provincial average values of

each numerator.

Public transportation
construction level (PTL)

Reflects the level of intensity of
urban public transportation
construction in province i

compared to the
provincial average.

PTL = 0.5 × BTi/UPi
P1′

+ 0.3 × RTi/UPi
P2′

+

0.2 × TXi/UPi
P3′

BTi is the number of operating buses
and trolley buses in cities of province

i, RTi is the number of rail transit
vehicles assigned in province i, TXi is
the number of taxis in province i, P1′,

P2′, and P3′ are the provincial
average values of each numerator.

Transportation pollution
intensity Traffic operation pressure (TOP)

Reflects the level of potential and
current pressure from road

traffic operation in province i
compared to the

provincial average.

TOP = 0.5 × PCi/POi
T1′

+ 0.5 × TCi
T2′

PCi is the private car ownership in
province i, TCi is the sum of road

traffic congestion in province i. T1′,
and T2′ are the provincial average

values of each numerator.

Pollution intensity of resident
transportation behaviors

Residents’ living consumption
level (RLC)

Reflects the level of consumption
and travel frequency of residents

in province i compared to the
provincial average.

RLC = 0.5 × TRi/POi
C1′

+ 0.5 × TPi/POi
C2′

TRi is the total resident consumption
expenditure of province i, TPi is the
passenger volume of province i. C1′,
and C2′ are the provincial average

values of each numerator.

Note: (1) The indicators are dimensionless, and no unit description is provided. (2) The total transportation
turnover in the TEE indicator includes both passenger turnover and freight turnover. Following existing research
[46], passenger turnover was converted to freight turnover using a conversion coefficient of 1 t·km = 7.1 person·km,
and then summed up. (3) For UPL, since Beijing, Shanghai, and Tianjin are cities in the later stages of urbanization,
county population statistics are not available (values are 0) in the China Statistical Yearbook 2020. Therefore, county
population was used as the numerator for calculation.

To eliminate unfairness caused by inter-provincial differences as well as dimensional
and quantitative differences among indicators, indicator values are quantified by the
ratio of provincial value to provincial average. Indicator values less than or equal to
1 indicate the provincial characteristic is below or equal to the national average, and vice
versa. This method of index construction enables the monitoring of current deficiencies
in governmental low-carbon actions and the identification of existing measures with poor
implementation effectiveness.

For indicators involving multiple sub-contents, weights are assigned for definition.
The two sub-contents of RCL, TOP, and RLC are assigned equal importance weights of 0.5.
For the three sub-contents of PTL, weights are assigned based on generality and relative
importance (Table 1).

2.3. Hierarchical Cluster Analysis following Ward’s Method

Cluster analysis provides means of data dimensionality reduction and visualization,
representative sample screening, and enables scientific classification and grouping of data,
thus revealing similarities and differences among provinces and promoting cooperation
and coordinated governance across regions. Before cluster analysis, this study standardized
the indicators. The value range of the constructed characteristic indicators is [0, ∞]. To
eliminate the negative effects of excessive outliers and facilitate effective interpretation
of indicator meanings, this study assigned a value of 2 to all indicators greater than 2.
Thus, the indicator value range is [0, 2]. An indicator value of 2 indicates the provincial
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characteristic is far above the provincial average level. Based on validation with our existing
study [47], the maximum value control approach has good effects on the stability of type
division and eliminates potential unfairness in inter-provincial policy allocation.

Hierarchical clustering is the most widely used clustering method [48]. Each sample
starts as its own cluster, and at each iteration of the algorithm, clusters with high similarity
are merged. This process repeats until a preset number of clusters is reached or only one
cluster remains. Since this method does not require pre-classification, it is suitable for
classification decisions combining subjective and objective factors. In hierarchical cluster
analysis, Ward’s method [49] uses squared Euclidean distance as the distance between
categories, emphasizing smaller internal differences within the same category and greater
differences between different categories. Therefore, this study applies Ward’s method to
the nine characteristic indicators across thirty Chinese provinces, which can effectively
reveal similarities and differences in provincial TCO2 characteristics.

2.4. Transportation CO2 Emissions Calculation Methods

To ensure the convenience and accuracy of calculations, this study is based on the
IPCC guidelines [50] and the research of Shan et al. [51] for TCO2 calculations. TC from the
transportation sector is the sum of direct CO2 emissions from fossil energy consumption in
the transportation sector (not including indirect emissions from electricity consumption)
and CO2 emissions from gasoline and diesel consumption related to residential life. TI is
the ratio of TC to the value-added of the transportation sector. TP is the ratio of TC to the
year-end population of the province.

Total CO2 emissions from the transportation sector are calculated as follows:

C = CFtr + CFli (3)

where C represents total CO2 emissions from the transportation sector, CFtr represents CO2
emissions from fossil fuel consumption in the transportation sector, and CFli represents
CO2 emissions from fossil fuel consumption in transportation activities in residential life.

The CO2 emissions from fossil energy consumption in the transportation sector are
calculated as follows:

CF =
n

∑
j

Ej × NCV j × CCj × Oj (4)

In the CFtr CO2 emission calculations, Ej represents the total consumption of fossil
fuel type j, involving raw coal, cleaned coal, other washed coal, briquettes, coke oven gas,
gasoline, kerosene, diesel oil, fuel oil, lubricants, liquefied petroleum gas, natural gas, and
other energy sources. NCV j represents the net calorific value of different energy types, i.e.,
the heat value generated per physical unit of fuel combusted. CCj (carbon content) is the
CO2 emissions per unit of net calorific value generated by fuel j. Oj represents the oxidation
rate during fuel combustion. For CFli, only CO2 emissions from transportation-related
gasoline and diesel oil consumption are calculated for urban and rural residents.

2.5. Correlation Analysis between Characterization Indicators and the Direct Quantity of TCO2

Correlation analysis is a commonly used method for discovering associations between
things. Among them, the Pearson correlation coefficient method [52] can examine the
linear correlation between variables, measured on a scale from −1 to +1. It reflects both
the directionality of the co-variation between two variables as well as the extent of it. A
value of 0 indicates no correlation; positive values denote positive correlation; and negative
values mean negative correlation. The larger the absolute value, the stronger the correlation.
This method has been widely applied across numerous fields and disciplines. In this study,
the Pearson correlation coefficient method was used to analyze the correlations between
the direct quantity of TCO2 (TI and TP) in thirty provinces of China and the original values
of nine selected feature indicators (i.e., values greater than two were retained). The aim



Land 2024, 13, 15 8 of 24

was to determine the degree of correlation between variables and provide more accurate
references for implementing carbon reduction measures.

3. Results and Discussion
3.1. Results of Characteristic Indicator Calculation and Cluster Analysis

After calculating the nine characteristic indicators across thirty Chinese provinces
in 2019, this study conducted standardization processing on the indicator values (i.e.,
defining maximum indicator values), so the value range of the characteristic indicators is
[0, 2]. See Appendix A, Table A1. This study performed hierarchical cluster analysis with
Ward’s method on the characteristic indicators across thirty provinces using SPSS Statistics
25 software to obtain the classification dendrogram of provinces and divided the thirty
Chinese provinces into six types by the vertical line segmentation method (Figure 2).
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3.2. Analysis of Provincial Type Characteristics

The geographic distribution and TCO2 characteristics of the six types and their member
provinces are shown in Figure 3. Except for a few individual provinces, the member
provinces of each type generally have distinct geographical adjacencies. The average value
of each indicator across the member provinces in each type was used as the characteristic
indicator for types I to VI (Table 2). Comparing with the provincial average (i.e., average
value of 1) helps identify the advantageous and disadvantageous characteristics of each
type for more effective indicator feature analysis.
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Table 2. Numerical values of characteristic indicators for Types I–VI.

Type TEC TES TEE RDL UPL RCL PTL TOP RLC

Type I 0.91 0.65 0.99 1.87 0.00 0.54 2.00 1.39 1.73
Type II 0.91 0.68 0.55 0.35 0.97 0.88 0.80 1.08 0.72
Type III 0.96 1.29 0.86 2.00 1.11 1.05 0.85 0.82 0.92
Type IV 1.51 1.77 0.45 0.21 0.94 1.05 0.59 1.10 0.53
Type V 0.96 0.78 1.77 0.34 1.06 1.08 0.64 0.81 0.76
Type VI 0.98 1.38 0.86 0.18 1.47 1.30 0.86 0.87 1.50

For indicator value interpretation, this study divided the [0, 2] interval of the indicator
range into different levels: [0, 0.5] indicates a low level, (0.5, 0.95) indicates a relatively
low level, [0.95, 1.05] indicates reaching the provincial average level, (1.05, 1.5) indicates a
relatively high level, [1.5, 2) indicates a high level, and 2 represents far above the provincial
average and is the maximum value in the indicators. What is worth noting is that due to
the special construction of the UPL, its values exhibit the opposite levels, i.e., lower values
indicate higher urban population density. The TES is similar, with higher values indicating
lighter energy structures characterized by degrees of light and heavy.

(1) Type I includes Beijing, Tianjin, and Shanghai, which are municipalities directly
under the central government in China. They have high levels of economic development
and urbanization, comprehensive infrastructure construction, and are the most densely
populated areas in China. As shown in Figure 4, the advantageous characteristics of Type
I are as follows: a high level of transportation technology R&D (RDL), which ranks the
second highest among all types; the highest level of public transportation construction (PTL)
among all types; and transportation energy consumption efficiency (TEE) reaching the
provincial average. The disadvantageous characteristics are as follows: a relatively heavy
transportation energy structure (TES), characterized by a lower share of clean transportation
energy (ranked lowest among all types); high urban population density level (UPL), which
is the highest among all types; high traffic operation pressure (TOP), which refers to the
number of private cars and the degree of road congestion (ranked the highest among the
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types); high residents’ living consumption level (RLC), which is the highest among the
types; relatively low road construction level (RCL), which is the lowest among the types;
and low transportation economic structure (TEC), which ranks lowest among the types.
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(2) Type II includes Liaoning, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong,
Henan, Guangdong, and Guangxi, mostly located in economically vibrant eastern coastal
regions and adjacent coastal provinces in central China, with good geographical adjacency,
high economic development, high urbanization levels, high population density, and com-
plex and developed transportation networks. As shown in Figure 5, the advantageous
characteristics are as follows: relatively low TEE indicator (2nd lowest among the types),
UPL indicator reaching provincial average, and relatively low RLC indicator (2nd lowest
among the types). The disadvantageous characteristics are as follows: low RDL indicator,
relatively heavy TES indicator (2nd highest among the types), relatively low PTL indicator,
high TOP indicator, relatively low RCL indicator (2nd lowest among the types), and the
lowest TEC indicator among the types.
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(3) Type III includes Hubei and Shaanxi, adjacent provinces in central China with
medium levels of economic development and urbanization. They are important industrial
bases with relatively complete industrial systems and also play important transportation
hub roles in their regions. As shown in Figure 6, the advantageous characteristics are as
follows: relatively low UPL and TOP indicators (2nd lowest among the types), relatively
low TEE and RLC indicators, relatively light TES indicators, and the highest RDL indicators
among the types. Additionally, the RCL indicator and TEC indicators reach provincial
averages. The disadvantageous characteristic is the relatively low PTL indicator. Type III is
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the type with the most advantages for low-carbon transportation development among the
six types.
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(4) Type IV includes Hebei, Shanxi, and Inner Mongolia, all located in northern China
with good geographical adjacency. They are focused on heavy industry and energy produc-
tion, have relatively lower economic development, abundant natural mineral resources,
and are important coal production bases in China. As shown in Figure 7, the advantageous
characteristics are as follows: the highest TEC indicator, the lightest TES indicator, and the
lowest TEE indicator among the types. Additionally, there is a relatively low RLC indicator
(ranked 1st among the types), and the RCL indicator reaches the provincial average. The
disadvantageous characteristics are as follows: relatively low PTL indicator (ranked the
lowest among the types), low RDL indicator (2nd lowest among the types), relatively high
TOP and UPL indicators (2nd highest among the types).
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(5) Type V includes Heilongjiang, Hunan, Sichuan, Guizhou, Yunnan, and Xinjiang,
mainly located in northern and southwestern China. Their economic development levels
vary, but they are overall relatively low. They are undergoing rapid urbanization, possess
abundant natural resources, and are important energy bases in China, with vast territories
and complex terrains. As shown in Figure 8, the advantageous characteristics are as follows:
relatively high RCL indicator (2nd highest among the types), relatively low RLC and UPL
indicators, relatively light TES indicator, TEC indicator reaching provincial average, and
the lowest TOP indicator among the types. The disadvantageous characteristics are as
follows: the highest TEE indicator among the types, a low RDL indicator, and a relatively
low PTL indicator (2nd lowest among the types).
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(6) Type VI includes Jilin, Hainan, Chongqing, Gansu, Qinghai, and Ningxia, primarily
located in the western region of China, with the inclusion of provinces situated in specific
geographical locations in the northeastern region (e.g., Jilin) and the eastern region (e.g.,
Hainan). These provinces have a large spatial span and poor geographical adjacency,
varying levels of economic development and urbanization, relatively low economic output
and growth rate, and are in the stage of actively promoting new urbanization. They possess
abundant natural and cultural tourism resources, with Gansu and Qinghai being important
new energy bases in China. As shown in Figure 9, the advantageous characteristics are as
follows: the highest RCL indicator and the lowest UPL indicators among the types; the TEC
indicator reaches the provincial average, ranking as the second highest among the types.
Additionally, it exhibits a relatively light TES indicator, which is also the second highest
among the types. Moreover, this type shows relatively low TEE and TOP indicators. The
disadvantageous characteristics are as follows: the lowest RDL indicator among the types,
a relatively low PTL indicator, and a high RLC indicator (2nd highest among the types).
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3.3. Calculation Results of Provincial TCO2

By applying Formulas (3) and (4) to calculate the TCO2 for each province, TC, TI, and
TP for each province and Types I–VI are obtained, as shown in Appendix A, Table A2.
For the TC of provinces in China, regions with relatively high TC (≥24.29 Mt, where
Mt represents 106 tons), excepting Jiangxi Province, are mainly eastern coastal provinces
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and adjacent provinces, while western regions are mainly the two adjacent provinces
of Sichuan and Yunnan. The provinces with the highest TC are Guangdong (93.34 Mt),
Jiangsu (60.4 Mt), Shanghai (58.56 Mt), and Shandong (56.77 Mt), all located in eastern
coastal regions. Furthermore, provinces with relatively low TC (<24.8 Mt) exhibit an
approximately “Y-shaped” spatial distribution pattern. For the TI of provinces in China,
regions with relatively high TI (≥2.44 t/104 CNY) are mainly clustered in western regions,
with sporadic distributions in central, eastern, and northeastern regions. The provinces
with the highest TI are Qinghai (4.56 t/104 CNY), Heilongjiang (3.82 t/104 CNY), Beijing
(3.69 t/104 CNY), Liaoning (3.62 t/104 CNY), and Shanghai (3.55 t/104 CNY). For the TP of
provinces in China, areas with relatively high TP (≥0.65 t/person) mainly exhibit sporadic
spatial distributions, with Shanghai (2.41 t/person) and Beijing (1.76 t/person) having the
highest values. See Figures 10 and 11, and Table 3 for details.

Table 3. Numerical values of TC, TI, and TP for Types I–VI.

Type TC (Mt) TI (t/104 CNY) TP (t/Person)

Type I 37.15 3.05 1.71
Type II 43.47 2.07 0.63
Type III 33.06 1.91 0.64
Type IV 22.41 1.53 0.56
Type V 29.89 2.88 0.63
Type VI 10.49 2.76 0.64

Provincial average 30.73 2.40 0.73
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For TC of the types, Type I accounted for 37.15 Mt, Type II accounted for 43.47 Mt,
Type III accounted for 33.06 Mt, Type IV accounted for 22.41 Mt, Type V accounted for
29.89 Mt, and Type VI accounted for 10.49 Mt, with a provincial average of 30.73 Mt. For TI
of the types, Type I accounted for 3.05 t/104 CNY, Type II accounted for 2.07 t/104 CNY,
Type III accounted for 1.91 t/104 CNY, Type IV accounted for 1.53 t/104 CNY, Type V
accounted for 2.88 t/104 CNY, and Type VI accounted for 2.76 t/104 CNY, with a provincial
average of 2.41 t/104 CNY. For TP of the types, Type I accounted for 1.71 t/person, Type
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II accounted for 0.63 t/person, Type III accounted for 0.64 t/person, Type IV accounted
for 0.56 t/person, Type V accounted for 0.63 t/person, and Type VI accounted for 0.64
t/person, with a provincial average of 0.73 t/person. See Figures 10 and 11 and Table 3
for details.

Land 2024, 13, x FOR PEER REVIEW 15 of 27 
 

 
Figure 11. Comparison of the numerical values of TC, TI, and TP among the six feature types. 

Table 3. Numerical values of TC, TI, and TP for Types I–VI. 

Type TC (Mt) TI (t/104CNY) TP (t/person) 
Type I 37.15 3.05 1.71 
Type II 43.47 2.07 0.63 
Type III 33.06 1.91 0.64 
Type IV 22.41 1.53 0.56 
Type V 29.89 2.88 0.63 
Type VI 10.49 2.76 0.64 

Provincial average 30.73 2.40 0.73 

We further determined the priority control directions for carbon reduction in each 
type based on the ratio relationships of TC, TI, and TP with provincial averages (Table 4). 
Types I and VI were determined as per capita transportation CO2 control (i.e., TP control). 
Types II and III were determined as total transportation CO2 control (i.e., TC control). 
Types V and VI were determined as transportation CO2 intensity control (i.e., TI control). 

Table 4. The ratios of TC, TI, and TP values to their averages and directions of priority control for 
carbon reduction for Types I–VI. 

Province TC/TC Average TI/TI Average TP/TP Average 
Priority Control Direc-

tions for Carbon Reduc-
tion 

Type I 1.21 1.27 2.33 TP control 
Type II 1.41 0.86 0.86 TC control 
Type III 1.08 0.79 0.87 TC control 
Type IV 0.73 0.63 0.77 TP control 
Type V 0.97 1.20 0.85 TI control 
Type VI 0.34 1.15 0.87 TI control 

3.4. Correlation Analysis Results of Characterization Indicators with the per Capita TCO2 and 
the Intensity of TCO2 

To identify priority control indicators for carbon reduction in the six types, this study 
further conducted correlation analysis between TI and TP and the original values of the 

Figure 11. Comparison of the numerical values of TC, TI, and TP among the six feature types.

We further determined the priority control directions for carbon reduction in each type
based on the ratio relationships of TC, TI, and TP with provincial averages (Table 4). Types
I and VI were determined as per capita transportation CO2 control (i.e., TP control). Types
II and III were determined as total transportation CO2 control (i.e., TC control). Types V
and VI were determined as transportation CO2 intensity control (i.e., TI control).

Table 4. The ratios of TC, TI, and TP values to their averages and directions of priority control for
carbon reduction for Types I–VI.

Province TC/TC
Average TI/TI Average TP/TP Average

Priority Control
Directions for

Carbon Reduction

Type I 1.21 1.27 2.33 TP control
Type II 1.41 0.86 0.86 TC control
Type III 1.08 0.79 0.87 TC control
Type IV 0.73 0.63 0.77 TP control
Type V 0.97 1.20 0.85 TI control
Type VI 0.34 1.15 0.87 TI control

3.4. Correlation Analysis Results of Characterization Indicators with the per Capita TCO2 and the
Intensity of TCO2

To identify priority control indicators for carbon reduction in the six types, this study
further conducted correlation analysis between TI and TP and the original values of the
nine characteristic indicators. Since the nine characteristic indicators are derived from TC
through the extended Kaya identity, we believe these indicators can indirectly reflect the
impacts on TC. Further correlation analysis with TC may cause redundant information or
repeated analysis. Therefore, TC id not included in the correlation analysis.

3.4.1. The Correlation Analysis Results between TP and Characteristic Indicators

The correlation analysis results between TP and characteristic indicators show that TP
is extremely strongly correlated with RDL (r = 0.857) and PTL (r = 0.842), moderately nega-
tively correlated with UPL (r = −0.567), and moderately positively correlated with RLC
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(r = 0.498) and TOP (r = 0.485) at the 1% significant level (Table 5). Among them, the im-
pacts of road congestion in TOP and travel frequency in RLC on generating TC are obvious
conclusions. (1) The number of private cars corresponding to TOP and the consumption
level of residents (which can also reflect income level to some extent) corresponding to RLC
can directly or indirectly generate additional TCO2 through resident behaviors, which is
consistent with the research conclusions [24,25,34,35,53]. (2) The extremely strong corre-
lation between PTL and TP indicates that improving public transportation construction
can attract more resident trips, thus causing more TCO2. However, Yang et al. (2015,
2019) [30,53] found PTL has significantly negative impacts on TP, suggesting a non-linear
relationship between the two. This is consistent with the “inverted U-shaped” relation-
ship between public transportation and CO2 emissions [32,33]. Public transportation can
increase TCO2 during initial construction, but complete systems can reduce TCO2 in the
long run. Moreover, it should be noted that the carbon reduction effect of public transporta-
tion infrastructure reaches a certain threshold level, beyond which its impact gradually
decreases [33]. (3) The moderately negative correlation between the UPL (lower values
indicate higher urban population density) and TP shows that higher urban population
density significantly increases TCO2 [5,24,26,34,54,55]. However, Kenworthy and Laube
(1996) [56], Ewing (1997) [57], and Newman (2006) [58] proposed that TCO2 is negatively
correlated with population density and that compact, high-density urban forms result
in lower TCO2. This again suggests a non-linear relationship between UPL and TCO2.
Since urban population density in China is already very high, overly high density may not
effectively decrease TCO2 [30,53,59]. Therefore, population scales should be reasonably
controlled for different cities based on specific urbanization conditions.

Table 5. Correlation analysis results of TP with RDL, UPL, PTL, TOP, and RLC.

RDL UPL PTL TOP RLC

TP
Pearson correlation 0.857 ** −0.567 ** 0.842 ** 0.485 ** 0.498 **

Sig. (2-tailed) 0.000 0.001 0.000 0.007 0.005
N 30 30 30 30 30

Note: ** indicates a significant level of correlation of 1%.

(4) Technological progress can effectively reduce transportation energy consump-
tion efficiency through indigenous innovation and technology spillover, thus reducing
TCO2 [27,44,60]. Typically, RDL should show a negative correlation with TP; however, our
results show an extremely strong positive correlation, consistent with Shao et al. (2021) [4]
and Yang et al. (2021) [39]. This indicates that RDL and TP do not exhibit a simple lin-
ear relationship, with RDL having both positive and negative externalities [40]. Shi et al.
(2021) [27] pointed out an “inverted U-shaped” relationship between RDL and TCO2,
suggesting long-term research investment is needed to overcome the slow initial impact
of transportation technology development on TCO2 [61] or introduce advanced energy
conservation and carbon reduction technologies [62]. Further analysis in Table 6 shows
RDL has an extremely strong positive correlation between PTL (r = 0.880), moderately
positive correlation with TOP (r = 0.498), and moderately negative correlation with UPL
(r = −0.569) at the 1% significant level, and moderately positive correlation with RLC
(r = 0.437) at the 5% significant level. This indicates that the R&D direction of transportation
technology may primarily revolve around the planning and construction of transportation
infrastructure. There is a certain degree of inadequacy in the development of carbon reduc-
tion technologies, as well as shortcomings in practical application and technology transfer
in the transformation of scientific achievements in transportation technology. Furthermore,
RDL mainly reflects the potential magnitude of technological carbon reduction rather than
its practical implementation. Based on the above analysis, RDL, PTL, UPL, RLC, and TOP
are important indicators for priority control of TP.
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Table 6. Correlation analysis results of RDL with UPL, PTL, TOP, and RLC.

UPL PTL TOP RLC

RDL
Pearson correlation −0.569 ** 0.880 ** 0.498 ** 0.437 *

Sig. (2-tailed) 0.001 0.000 0.005 0.016
N 30 30 30 30

Note: ** indicates a significant level of correlation of 1%, and * indicates a significant level of correlation of 5%.

3.4.2. The Correlation Analysis Results between TI and Characteristic Indicators

The correlation analysis results between TI and characteristic indicators reveal that
TI has a moderately positive correlation with TEE (r = 0.528) and RLC (r = 0.501) at the
1% significant level, a moderately negative correlation with TEC (r = −0.415), and a slight
positive correlation with PTL (r = 0.386) at the 5% significant level (Table 7). Among them,
the quantity and efficiency of passenger and freight turnover corresponding to TEE are key
factors causing TCO2, consistent with previous studies [24,34,35]. Furthermore, Xie et al.
(2017) [54], Yang et al. (2019) [30], and Wang (2021) [29] also found RLC promotes both TC
and TI. The moderately negative correlation between TEC and TI indicates that increasing
transportation economic share in provincial GDP facilitates accelerated commodity and
population flow, improving transportation efficiency, and thus reducing TI. With regard to
the slight positive correlation between PTL and TI, as mentioned previously, PTL exhibits a
non-linear relationship with TCO2 and TP. Further correlation analysis reveals that PTL has
a moderately negative correlation between UPL (r = −0.625) and positive correlations with
TOP (r = 0.607) and RLC (r = 0.573) at the 1% significant level. Additionally, PTL exhibits
a moderately positive correlation with TEE (r = 0.439) and a slight negative correlation
with RCL (r = −0.384) at the 5% significant level (Table 8). These findings highlight the
existence of certain negative impacts associated with public transportation construction,
including increased energy consumption in transportation efficiency, exacerbated road
congestion, and an increased frequency of resident travel. Moreover, these results validate
the threshold effect and negative consequences of PTL and TCO2 [33]. This suggests that
in densely populated areas, excessive allocation of public transportation resources can, to
some extent, increase residents’ frequency of consumption and travel, exacerbate traffic
congestion pressure, and lead to an unreasonable growth in TI. Based on the above analysis,
TEE, RLC, TEC, and PTL can be identified as important indicators for prioritizing TI control.

Table 7. Correlation analysis results of TI with TEC, TEE, PTL, and RLC.

TEC TEE PTL RLC

TI
Pearson correlation −0.415 * 0.528 ** 0.386 * 0.501 **

Sig. (2-tailed) 0.023 0.003 0.035 0.005
N 30 30 30 30

Note: ** indicates a significant level of correlation of 1%, and * indicates a significant level of correlation of 5%.

Table 8. Correlation analysis results of PTL with TEE, UPL, RCL, TOP, and RLC.

TEE UPL RCL TOP RLC

PTL
Pearson correlation 0.439 * −0.625 ** −0.384 * 0.607 ** 0.573 **

Sig. (2-tailed) 0.015 0.000 0.036 0.000 0.001
N 30 30 30 30 30

Note: ** indicates a significant level of correlation of 1%, and * indicates a significant level of correlation of 5%.

3.5. Carbon Reduction Strategies and KPIs for Provincial Types
3.5.1. Carbon Reduction Strategies for Provincial Types

(1) Types I and IV are the TP control and the direction for carbon reduction. Based
on the above analysis, the strategies for Type I should focus on: strengthening R&D in-
vestment and application of technological achievements in carbon reductions; strictly
controlling urban population scales and effectively guiding spatial layout adjustments
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for over-concentrated urban areas; paying attention to the problem of excessive configu-
ration of urban public transportation; effectively alleviating road congestion and strictly
controlling the number of fuel-powered private vehicles; significantly promoting effective
guidance of low-carbon residents’ behaviors, including consumption and travel. Secondary
focus should be placed on: rationally increasing the share of transportation economy and
promoting low-carbon transformation of transportation economic structure; significantly
increasing the utilization of renewable energy in transportation energy structure, such as
strictly requiring motor vehicle emission standards, promoting new energy transportation
tools, and rationally deploying new energy transportation infrastructure; further reduc-
ing transportation energy consumption efficiency by promoting combined transportation
modes and intelligent transportation to improve efficiency; significantly improving road
construction by promoting sustainable urban-rural planning to optimize existing road
networks and expanding high-quality highways and rapid urban road systems.

Strategies for Type IV should be focused on: strengthening R&D investment in car-
bon reductions and introducing advanced energy conservation and carbon reduction
technologies; promoting urban-rural integrated development to prevent excessive urban
concentration; significantly improving public transportation service level and quality; ef-
fectively alleviating road congestion; and strictly controlling the number of fuel-powered
private vehicles. A secondary focus should be placed on maintaining the level of renewable
energy utilization in the transportation sector.

(2) Type II and Type III use TC control as the direction for carbon reduction. Based
on the above analysis, strategies for Type II should focus on: leveraging locational and
industrial advantages to drive economic development in surrounding provinces, thus pro-
moting low-carbon transformation of the transportation economic structure; significantly
increasing renewable energy utilization in the transportation energy structure (same mea-
sures as Type I); maintaining transportation energy consumption efficiency; strengthening
R&D investment in carbon reductions and introducing advanced energy conservation and
carbon reduction technologies; promoting urban-rural integrated development and reason-
ably controlling urban population scales; effectively improving road construction (same
measures as Type I); reasonably improving the level and quality of public transportation
services; effectively alleviating road congestion and reasonably controlling the number of
fuel-powered private vehicles.

Strategies for Type III should be focused on: maintaining the utilization of renewable
energy; effectively reducing transportation energy consumption efficiency; strengthen-
ing R&D investment and application of technological achievements in carbon reduction;
reasonably improving the level and quality of public transportation services; effectively
guiding low-carbon residents’ behaviors, including consumption and travel.

(3) Type V and Type VI are TI-controlled in the direction of carbon reduction. Based on
the above analysis, strategies for Type V should focus on: maintaining the transportation
economic structure and further promoting its low-carbon transformation; significantly
reducing transportation energy consumption efficiency; further improving road construc-
tion effectively; and significantly improving public transportation service level and quality.
Secondary focus should be placed on: significantly increasing renewable energy utilization
in the transportation energy structure (same measures as Type I); strengthening R&D in-
vestment in carbon reductions; and introducing advanced energy conservation and carbon
reduction technologies.

Strategies for Type VI should be focused on: maintaining the transportation economic
structure and further promoting its low-carbon transformation; reasonably improving the
level and quality of public transportation services. Secondary focus should be placed on:
maintaining the utilization of renewable energy; strengthening R&D investment in carbon
reductions and introducing advanced energy conservation and carbon reduction technolo-
gies; and significantly promoting effective guidance of low-carbon residents’ behaviors,
including consumption and travel.
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3.5.2. Carbon Reduction KPIs for Provincial Types

Based on the above-proposed carbon reduction measures for each type, this study
further developed different KPIs related to local government for better achieving carbon
reduction goals in each of the six types, aiming to promote effective implementation and
supervision of the carbon reduction measures.

Figure 12 provides the corresponding KPIs for each type, respectively. Specifically,
(1) For Type I, the primary focus should be on: increasing the TEC indicator, greatly
increasing the TES indicator, decreasing the TEE indicator, maintaining the UPL indicator,
and greatly decreasing both the TOP and RLC indicators. (2) For Type II, particular attention
needs to be paid to: increasing the TEC, RCL, and PTL indicators, greatly increasing the
TES and RDL indicators, maintaining the TEE and UPL indicators, and decreasing the TOP
indicator. (3) For Type III, the primary focus should be on maintaining the TES indicator,
decreasing the TEE and RLC indicators, and increasing the PTL indicator. (4) For Type
IV, particular attention needs to be paid to: maintaining the TES and UPL indicators,
greatly increasing the RDL and PTL indicators, greatly decreasing the TOP indicator, and
decreasing the RLC indicator. (5) In the context of Type V, emphasis should be placed
on increasing the TEC and RCL indicators, greatly increasing the TES, RDL, and PTL
indicators, and greatly decreasing the TEE indicator. (6) Lastly, for Type VI, the primary
focus should be on increasing the TEC and PTL indicators, maintaining the TES indicator,
greatly increasing the RDL indicator, and greatly decreasing the RLC indicator.
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4. Conclusions and Policy Implications

The exploration of similarities and differences in provincial TCO2 characteristics in
China using the multi-indicator joint characterization method and type categorization
through clustering analysis is novel in our research. Firstly, influencing factors such as
economic development, population density, energy structure, transportation efficiency,
R&D, infrastructure construction, transportation operation conditions, and residents’ trans-
portation behavior were derived by effectively extending the Kaya identity, based on which
a joint characterization method using nine evaluation indicators (TEC, TES, TEE, RDL,
UPL, RCL, PTL, TOP, and RLC) was constructed. Secondly, Ward’s method was used in the
hierarchical clustering of the characteristic indicators to categorize thirty Chinese provinces
in 2019 into six types (types I to VI). Thirdly, based on the calculation of TC, TI, and TP
for each province, the priority control directions and indicators for carbon reduction were
obtained through relative relationships with provincial averages and correlation analysis
with the indicators, i.e., Type I and Type IV can be categorized as TP-controlled, Type
II and Type III as TC-controlled, and Type V and Type VI as TI-controlled. The priority
control indicators were RDL, PTL, UPL, RLC, and TOP for TP, and TEE, RCL, TEC, and
PTL for TI. Furthermore, UPL, RDL, and PTL have non-linear effects and threshold effects
on TP, and PTL exhibits threshold effects and a certain degree of negative impacts on
TCO2. Finally, typological carbon reduction strategies and KPIs related to carbon reduction
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efforts by local governments were provided for each provincial type. When it comes to
carbon emission reduction measures, special attention should be given to the importance
of R&D in transportation technologies, transitioning from the planning and construction
of transportation infrastructure to the development of carbon reduction technologies. Ad-
ditionally, in densely populated cities, it is crucial to address issues related to excessive
population density and overallocation of public transportation resources in order to curb
the unreasonable increase in transportation carbon emissions.

Policy makers should pay special attention to:

(1) Optimizing traffic congestion, controlling the number of fuel-powered private ve-
hicles, and advocating low-carbon residents’ behaviors are important measures to
effectively control the direct quantity of TCO2 (TC, TI, and TP). Provinces categorized
as Type I, Type II, and Type IV should primarily optimize urban vehicle restriction
policies and conduct reasonable adjustments in urban spatial planning (such as indus-
trial layout, development of industrial parks, establishment of employment centers,
educational layout, and planning multifunctional community areas) to fundamentally
address urban traffic congestion issues. Provinces identified as Type IV and Type V
should enhance the coverage and service efficiency of public transportation systems
(such as bus rapid transit and dedicated bus lanes). Provinces classified as Type I and
Type II, benefiting from comprehensive road monitoring facilities, need to reinforce
the sharing of information on road traffic operations to alleviate traffic congestion.
Provinces in China should continue to strengthen promotion efforts and policy sup-
port for new energy vehicles, expanding the deployment of new energy transportation
infrastructure (e.g., charging stations, wireless charging, etc.). They should encour-
age low-carbon lifestyles, advocate for energy conservation and emissions reduction
through various channels, and incentivize the use of public transportation and shared
mobility practices (particularly among Type I, Type III, and Type IV provinces).

(2) Improving transportation energy efficiency and reducing passenger and freight
turnover energy consumption through technology are necessary to reduce TC, TI, and
TP. The government should fully recognize the initial slow impacts of carbon reduc-
tion technologies and persist in long-term support for domestic industry-academia-
research cooperation in R&D and promotion of technologies related to carbon reduc-
tion in transportation, as well as introducing advanced international technologies.
Provinces categorized as Type I and Type III should shift transportation R&D focus
from infrastructure construction to carbon reduction technologies. The other types
of provinces should increase investments in carbon reduction technologies for trans-
portation or introduce advanced carbon reduction technologies. Provinces in China
should promote transportation electrification and combined transportation modes to
improve efficiency and achieve the goal of low-carbon development in transportation.

(3) For provinces with high levels of urbanization (such as Type I and Type II), attention
should be given to the issues of excessive population density and over-configuration
of public transportation in urban areas to curb the unreasonable increase in TCO2.
In contrast, for provinces with lower levels of urbanization (such as Types III to VI),
the population aggregation effect should be fully utilized. It is important to focus on
constructing intensive and efficient urban spatial patterns, improving the utilization
and sharing rates of public transportation, and scientifically expanding urban road
infrastructure to achieve long-term carbon reduction.

(4) Since provinces have different advantages and disadvantages in their TCO2 char-
acteristics for low-carbon development, the Chinese government should promote
cooperative development and collaborative governance mechanisms across regions to
achieve win-win carbon reduction and economic growth in provincial transportation
sectors. Regarding regional energy-economy cooperation, resource-rich provinces
(such as Type V and Type VI) can provide clean energy like natural gas and elec-
tricity to provinces with energy-intensification structures through national projects
like “West-to-East Gas Transmission” and “West-to-East Power Transmission”, trans-
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forming regional resource advantages into economic benefits while also promoting
low-carbon transitions in these energy-intensification provinces (such as Type I and
Type II). For collaborative development of advanced technologies across regions, de-
veloped provinces (like eastern coastal type I and type II) should give full play to their
advantages in transportation technology R&D funding, talent pool, and exemplary
leadership, strengthening interactive exchanges of technological and economic ties
across regions through spillover and learning effects, to achieve collaborative regional
carbon reductions through technology. For collaborative governance across regions,
differentiated carbon reduction policies and measures should be implemented with
a collaborative assessment system incorporating rewards and punishments estab-
lished to reinforce the responsibilities and consciousness of all parties, thus achieving
collaborative governance on carbon reduction in provincial transportation sectors.
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Appendix A

Table A1. Characteristic indicator values of provinces in each type.

Type Province TEC TES TEE RDL UPL RCL PTL TOP RLC

I

Beijing 0.62 0.63 2.00 2.00 0.00 0.55 2.00 1.47 2.00
Tianjin 1.19 1.07 0.73 1.62 0.00 0.77 2.00 1.25 1.74

Shanghai 0.92 0.24 0.23 2.00 0.00 0.31 2.00 1.45 1.45
Type

average 0.91 0.65 0.99 1.87 0.00 0.54 2.00 1.39 1.73

II

Liaoning 1.13 0.62 0.65 0.39 1.11 0.97 1.20 0.98 0.97
Jiangsu 0.68 1.03 0.75 0.49 1.15 1.05 1.14 1.27 0.80

Zhejiang 0.67 0.49 0.34 0.54 0.54 0.84 1.09 1.52 1.04
Anhui 1.14 0.75 0.36 0.08 0.80 0.85 0.53 0.95 0.56
Fujian 0.75 0.45 0.44 0.14 0.94 0.83 0.78 0.80 0.86
Jiangxi 0.93 0.47 0.70 0.20 1.49 0.96 0.38 0.69 0.74

Shandong 1.09 0.72 0.69 0.39 1.00 1.07 0.82 1.36 0.40
Henan 1.17 0.89 0.57 0.24 0.68 0.63 0.50 1.00 0.56

Guangdong 0.69 0.36 0.41 0.74 0.51 0.80 1.16 1.31 0.65
Guangxi 0.91 1.03 0.62 0.28 1.53 0.79 0.39 0.90 0.59

Type
average 0.91 0.68 0.55 0.35 0.97 0.88 0.80 1.08 0.72

III

Hubei 1.04 0.59 0.95 2.00 1.31 1.16 0.87 0.86 0.82
Shaanxi 0.88 2.00 0.76 2.00 0.91 0.94 0.83 0.79 1.01

Type
average 0.96 1.29 0.86 2.00 1.11 1.05 0.85 0.82 0.92
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Table A1. Cont.

Type Province TEC TES TEE RDL UPL RCL PTL TOP RLC

IV

Hebei 1.77 1.73 0.27 0.11 1.11 0.70 0.51 1.25 0.39
Shanxi 1.26 1.77 0.48 0.25 1.10 0.86 0.52 1.07 0.51
Inner

Mongolia 1.49 1.81 0.59 0.26 0.61 1.58 0.75 0.98 0.71

Type
average 1.51 1.77 0.45 0.21 0.94 1.05 0.59 1.10 0.53

V

Heilongjiang 0.84 0.76 1.57 0.27 0.63 1.10 0.90 0.67 0.62
Hunan 0.84 0.46 1.94 0.35 1.30 0.73 0.55 0.82 0.77
Sichuan 0.67 0.99 2.00 0.78 0.45 0.92 0.76 0.98 0.58
Guizhou 0.90 0.92 1.60 0.38 1.28 0.97 0.43 0.82 1.29
Yunnan 1.02 0.28 2.00 0.18 1.63 0.97 0.45 0.74 0.52
Xinjiang 1.50 1.28 1.52 0.06 1.08 1.79 0.73 0.85 0.76

Type
average 0.96 0.78 1.77 0.34 1.06 1.08 0.64 0.81 0.76

VI

Jilin 1.05 1.52 0.86 0.07 1.75 1.05 1.16 0.81 0.89
Hainan 0.99 0.52 0.51 0.00 1.51 1.26 0.64 0.91 1.90

Chongqing 0.88 1.04 0.78 0.49 1.69 1.13 1.19 0.87 1.19
Gansu 1.07 1.69 0.61 0.08 1.83 1.10 0.55 0.78 1.01

Qinghai 0.89 1.53 1.68 0.21 0.79 2.00 0.74 0.87 2.00
Ningxia 1.02 2.00 0.73 0.23 1.27 1.24 0.87 0.97 1.99

Type
average 0.98 1.38 0.86 0.18 1.47 1.30 0.86 0.87 1.50

Table A2. The total TCO2 (TC), the intensity of TCO2 (TI) and the per capita TCO2 (TP) of the
provinces in each type.

Type Province TC
(Mt)

TI
(t/104 CNY)

TP
(t/person)

I

Beijing 37.84 3.69 1.76
Tianjin 15.06 1.91 0.96

Shanghai 58.56 3.55 2.41
Type average 37.15 3.05 1.71

II

Liaoning 47.57 3.62 1.09
Jiangsu 60.40 1.91 0.75

Zhejiang 33.40 1.70 0.57
Anhui 30.68 1.55 0.48
Fujian 29.85 2.01 0.75
Jiangxi 22.49 2.08 0.48

Shandong 56.77 1.56 0.56
Henan 40.15 1.35 0.42

Guangdong 93.34 2.69 0.81
Guangxi 20.07 2.22 0.40

Type average 43.47 2.07 0.63

III
Hubei 48.77 2.18 0.82

Shaanxi 17.36 1.64 0.45
Type average 33.06 1.91 0.64

IV

Hebei 27.20 0.93 0.36
Shanxi 19.37 1.92 0.52

Inner Mongolia 20.66 1.72 0.81
Type average 22.41 1.53 0.56
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Table A2. Cont.

Type Province TC
(Mt)

TI
(t/104 CNY)

TP
(t/person)

V

Heilongjiang 20.38 3.82 0.54
Hunan 43.06 2.77 0.62
Sichuan 43.27 2.95 0.52
Guizhou 17.24 2.43 0.48
Yunnan 31.12 2.80 0.64
Xinjiang 24.28 2.55 0.96

Type average 29.89 2.88 0.63

VI

Jilin 11.95 2.08 0.44
Hainan 6.97 2.82 0.74

Chongqing 23.11 2.37 0.74
Gansu 11.50 2.62 0.43

Qinghai 5.62 4.56 0.92
Ningxia 3.78 2.12 0.54

Type average 10.49 2.76 0.64

Provincial average 30.73 2.40 0.73
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