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Abstract: As an important part of soil and water conservation, ecological stability, and climate
regulation, vegetation is sensitive to climate change and human disturbance. At present, there is a
lack of research on the dynamic changes to vegetation in river basins and sub-basins from a holistic
and partial perspective, which limits our ability to understand the spatial heterogeneity of vegetation
changes and their influencing factors. In this study, the spatial and temporal variations of vegetation
and their influencing factors in the Songliao River Basin (SLB) from 2000 to 2020 were analyzed using
Sen’s trend method, the Mann–Kendall test, the coefficient of variation method, and the Geodetector
method. The results showed that the NDVI (normalized difference vegetation index) in the SLB
exhibited an increasing trend of 0.003 yr−1, indicating that the vegetation was greening. In general,
climatic factors and soil type were the dominant factors affecting the spatial differentiation of the
NDVI in the SLB and sub-basin units. The interactions between the influencing factors were all
enhanced, and the population density highlighted its influence on reflected vegetation changes. We
also focused on analyzing the spatial differentiation of vegetation changes and influencing factors
in the sub-basins. The research results provide a basis for the ecological restoration and stability of
the basin.

Keywords: vegetation spatial–temporal variation; NDVI; Geodetector; Songliao River Basin

1. Introduction

Vegetation is an indicator of climate change and anthropogenic disturbances, and
it plays an important role in regulating the climate, protecting water sources, as well as
maintaining ecological balance and stability [1–3]. Research on vegetation change can
help us understand the human–nature interaction mechanism, thus providing a basis
for ecosystem protection, which has become a hot topic in current academic circles [4–6].
The normalized difference vegetation index (NDVI), as an indicator of surface vegetation
coverage and growth status [7], has been widely used in the study of dynamic changes
in vegetation. The normalized NDVI values range from −1 to +1, and negative values
correspond to the absence of vegetation [8]. When the NDVI trend value is less than 0, it
indicates vegetation degradation; otherwise, it indicates vegetation greening. The NDVI
is a valuable vegetation measurement method because it is reliable enough to allow for
meaningful comparisons of seasonal and interannual variations in vegetation growth and
activity [9].

Based on the global NDVI dataset, many scholars have undertaken detailed studies
on vegetation change and its influencing factors in both China [10,11] and at the regional
scale. These have included studies of the Loess Plateau [12–14], southwest China [15], the
Qinghai–Tibet Plateau [16], Inner Mongolia [17], and the North China Plain [18]. These
studies were conducted over the past 30 years and considered precipitation, temperature,
altitude, drought, CO2, nitrogen deposition, population density, as well as social and
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economic factors. Over the past three decades, the most likely reason for the greening trend
in China is the increase in atmospheric CO2 concentration and nitrogen deposition [10].
Wang et al. (2021) found that precipitation explained 85% of the change in the NDVI [11],
while land use type had the greatest impact on the NDVI in the Poyang Lake Basin [19].
The above results clearly illustrate the spatial heterogeneity of vegetation changes.

In recent years, scholars have attached great importance to determining the influence
of human activities on vegetation change. Zheng et al. (2021) found that, in their study
of typical regions in China, forestry investment was the main driving force for vegetation
change in most of the study areas [20]. Qu et al. (2020) found that the average contribution
of human factors to the interannual variation in the Enhanced Vegetation Index (EVI) in
the Yangtze River Basin was 0.0019/yr, and this accounted for 29.63% of the total EVI
variation [21]. According to Zhu et al. (2020)’s report on the Heihe River Basin, among
human factors, land use conversion type has the greatest impact on NDVI change [22].
Using the GA-SVM model, Huang et al. (2020) found that the influence of human activities
on the NDVI in the Weihe River Basin was about 40.7% [23]. Studies on the Loess Plateau
showed that human activities have a great impact on NDVI changes [13,14]. All the above
reports consider that, of human activities, ecological restoration and afforestation projects
can make important contributions to vegetation change.

However, there has been limited research into the vegetation change in river basins,
especially comparative studies on basins as a whole and sub-basin components. The
Songliao River Basin (SLB) is China’s largest commercial grain base, so its ecological stability
is an important guarantee of China’s food security. More than 85% of its land belongs to
black soil areas [24], and black soil protection is currently an important project that is being
implemented in China (Implementation Plan of the National Black Soil Protection Project
(2021–2025)). Therefore, exploring the vegetation changes and associated driving factors in
the SLB is one way through which to examine the effectiveness of ecological protection in
recent decades and to provide a basis for further ecological protection and planning. Since
vegetation change is characterized by spatial heterogeneity [16], we included 14 sub-basin
units within the SLB in the current study to gain a more comprehensive and in-depth
understanding of the spatial heterogeneity of vegetation changes and their responses to
influencing factors.

Using the NDVI dataset for the period of 2000 to 2020 and the Geodetector model, this
study aimed (1) to clarify the temporal and spatial variation in the NDVI within the SLB
and its basin units, and (2) to quantify the driving factors of the spatial differentiation of the
NDVI in the SLB. The research conclusions can provide a basis for vegetation restoration
and ecosystem protection in the basin.

2. Materials and Methods
2.1. Study Area

The SLB generally refers to an area in Northeast China, located 115◦32′ E to 135◦06′ E
and 38◦43′ N to 53◦43′ N, with a total extent of 1.25 million square kilometers, including
fourteen sub-basin units (see Figure 1). The land use types are mainly woodland (41%), dry
land (27%), and grassland (19%) according to the land use data for 2020. It is prevailingly
located in the westerly belt, with high altitude areas in the north exhibiting weather and
climate characteristics typical of the westerly belt. The northeast region has obvious
continental climate characteristics and is in a temperate continental monsoon climate zone.
The southwest is an area of severe sandstorms and drought in the SLB, with few forests,
serious soil erosion, and a poor ecological environment.
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Figure 1. Geographical location map of the Songliao River Basin and its sub-basin units. The sub-
basin units including the Songhua River Basin (SHB), the Second Songhua River Basin (SSB), the 
Liao River Main Basin (LMB), the East Liao River Basin (ELB), the West Liao River Basin (WLB), the 
Northeast Yellow and Bohai River Basin (NYB), the Yalu River Basin (YLB), the Nen River Basin 
(NRB), the Tumen River Basin (TMB), the Suifen River Basin (SFB), the Heilong Main Stream Basin 
(HLB), the Huntai River Basin (HTB), the Erguna River Basin (ERB), and the Ussuri River Basin 
(URB). 

2.2. Data Resources 
The original NDVI data were obtained from MOD13A3 (https://lad-

sweb.modaps.eosdis.nasa.gov accessed on 5 December 2021), using the time series for 
2000 to 2020 at a time resolution of one month and spatial resolution of 1 km. The maxi-
mum value composite method (MVC) was used to convert the monthly data into annual 
data. The Songliao River Basin boundary dataset was derived from the National Earth 
System Science Data Center, National Science & Technology Infrastructure of China 
(http://www.geodata.cn accessed on 3 January 2022). Climate data were downloaded from 
The China Meteorological Data Service Center (http://data.cma.cn/ accessed on 8 Decem-
ber 2021), and then interpolated through Anusplin 3.1 software to obtain meteorological 
raster data. 

Since vegetation growth and its change are comprehensively affected by climate, soil, 
terrain, as well as water and human disturbance [7,12,13,16,25,26], we selected 17 factors 
from these aspects, as shown in Table 1. For example, soil type and texture are closely 
related to soil nutrients, pore ratio, and soil moisture, thus affecting vegetation growth. 
Average temperature, precipitation, and average relative humidity affect the photosyn-
thesis and autotrophic respiration of vegetation, and the maximum and minimum tem-
perature have an effect on the growth period of vegetation. Topographic factors affect 
vegetation type and light, while land use type, population density, and road distance re-
flect the influence of human disturbance on vegetation change; in addition, river distance 
represents a surface water source. The digital elevation model data, soil type, soil erosion 
intensity, soil texture (sand content, silt content, and clay content), land use type, and 
population density data were obtained from the Resource and Environmental Science and 
Data Center, Institute of Geographical Sciences and Natural Resources Research, Chinese 
Academy of Sciences (https://www.resdc.cn accessed on 20 October 2021). Then, ArcGIS 
10.5 software was used to process the DEM dataset to obtain the altitude, slope, and aspect 

Figure 1. Geographical location map of the Songliao River Basin and its sub-basin units. The sub-
basin units including the Songhua River Basin (SHB), the Second Songhua River Basin (SSB), the
Liao River Main Basin (LMB), the East Liao River Basin (ELB), the West Liao River Basin (WLB), the
Northeast Yellow and Bohai River Basin (NYB), the Yalu River Basin (YLB), the Nen River Basin
(NRB), the Tumen River Basin (TMB), the Suifen River Basin (SFB), the Heilong Main Stream Basin
(HLB), the Huntai River Basin (HTB), the Erguna River Basin (ERB), and the Ussuri River Basin (URB).

2.2. Data Resources

The original NDVI data were obtained from MOD13A3 (https://ladsweb.modaps.
eosdis.nasa.gov accessed on 5 December 2021), using the time series for 2000 to 2020 at a
time resolution of one month and spatial resolution of 1 km. The maximum value composite
method (MVC) was used to convert the monthly data into annual data. The Songliao River
Basin boundary dataset was derived from the National Earth System Science Data Center,
National Science & Technology Infrastructure of China (http://www.geodata.cn accessed
on 3 January 2022). Climate data were downloaded from The China Meteorological Data
Service Center (http://data.cma.cn/ accessed on 8 December 2021), and then interpolated
through Anusplin 3.1 software to obtain meteorological raster data.

Since vegetation growth and its change are comprehensively affected by climate, soil,
terrain, as well as water and human disturbance [7,12,13,16,25,26], we selected 17 factors
from these aspects, as shown in Table 1. For example, soil type and texture are closely
related to soil nutrients, pore ratio, and soil moisture, thus affecting vegetation growth.
Average temperature, precipitation, and average relative humidity affect the photosynthesis
and autotrophic respiration of vegetation, and the maximum and minimum temperature
have an effect on the growth period of vegetation. Topographic factors affect vegetation
type and light, while land use type, population density, and road distance reflect the
influence of human disturbance on vegetation change; in addition, river distance represents
a surface water source. The digital elevation model data, soil type, soil erosion intensity,
soil texture (sand content, silt content, and clay content), land use type, and population
density data were obtained from the Resource and Environmental Science and Data Center,
Institute of Geographical Sciences and Natural Resources Research, Chinese Academy
of Sciences (https://www.resdc.cn accessed on 20 October 2021). Then, ArcGIS 10.5
software was used to process the DEM dataset to obtain the altitude, slope, and aspect
data. Road data and river data were derived from the official website of Open Street
Map (http://www.overpass-api.de/query_form.html accessed on 10 December 2021), then
we used the Euclidean distance tool in ArcGIS 10.5 to obtain the river distance and road
distance data.

https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
http://www.geodata.cn
http://data.cma.cn/
https://www.resdc.cn
http://www.overpass-api.de/query_form.html
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Table 1. Influencing factors of the spatial differentiation in the NDVI. Note: Tmax represents
mean annual maximum temperature, Tmin represents mean annual minimum temperature, Tmean
represents mean annual temperature, PRE represents mean annual precipitation, and ARH represents
annual average relative humidity.

Category Factor Code Unit

Climate

Tmax X1 ◦C
Tmin X2 ◦C
Tmean X3 ◦C
PRE X4 mm
ARH X5 %

Soil

Soil type X6 /
Soil erosion intensity X7 /
Sand content X8 %
Silt content X9 %
Clay content X10 %

Terrain
Altitude X11 m
Slope X12 ◦

Aspect X13 ◦

Water River distance X15 km

Human activity
disturbance

Land use type X14 /
Population density X16 person/km2

Road distance X17 km

2.3. Methods

Detailed descriptions of Sen’s trend method, the Mann–Kendall test, the coefficient
of variation method, and the Geodetector method can be found in previously published
research [27–32]. Thus, only a brief summary is presented here; for detailed calculation
methods and steps, see the Supplementary Material (Table S1).

2.3.1. Temporal and Spatial Variation in the NDVI

First, we used Sen’s trend method to analyze the interannual variation in the NDVI [27].
Then, the Mann–Kendall test was used to quantify the significance of the trend in the
NDVI [29,30]. Finally, the coefficient of variation (CV) method was used as a measure of
NDVI variability [28,32]. We define a CV ≤ 0.05 as slight fluctuation, a 0.05 < CV ≤ 0.15
as moderate fluctuation, at 0.15 < CV ≤ 0.3 as strong fluctuation, and a 0.3 < CV as severe
fluctuation. The long winters and short summers in the study area resulted in shorter
periods of dense vegetation, and—based on a review of the relevant literature—we believe
that the NDVI is better identified on an interannual scale. Therefore, the saturation effect of
the NDVI is not considered separately in this study [14,19,33].

2.3.2. Detection of Driving Factors and the MAUP Test

We used the Geodetector method to identify and quantify the degree to which the
covariates explained the spatial heterogeneity in the NDVI. Geodetector (in Excel) is a
software written in Excel, and it can be downloaded for free from http://www.geodetector.
org/ (accessed on 10 October 2021). Geodetector is a set of statistical methods that detect
spatial heterogeneity and reveal the driving forces behind it [31]. Geodetector is built on
the assumption that if an independent variable has a significant effect on a dependent
variable, then the spatial distributions of the independent and dependent variables should
be similar [31,34]. Collinearity between independent variables usually requires complex
and cumbersome processing, but Geodetector avoids this issue. At present, many studies
have confirmed that Geodetector is a scientific approach that can quantify the influence of
independent variables on dependent variables [22,35–37], and it has been widely used in
studies of vegetation change, climate change, geological disasters, health care, and social
sciences [35,36,38–40].

http://www.geodetector.org/
http://www.geodetector.org/
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The modifiable area unit problem (MAUP) is a pervasive problem in geographic
and spatial analysis that stems from the fact that the area units of geographic objects are
arbitrary and modifiable; as such, different aggregate sizes or spatial arrangements can
produce different results [41]. MAUP has two aspects: the scale effect and zoning effect.
Before using the geographic detector to process and analyze the data, we have to test
the MAUP effect to find the optimal spatial scale and discretization method in order to
maximize the q value (q value represents the degree to which the selected factors explain the
spatial differentiation of the NDVI, and the higher the q value, the higher the explanation
degree) [42,43]. Generally, the discretization scheme with the largest q value is selected.

To test the scale effect, we set the random sampling point grid to 10 different scales from
1 km × 1 km, 2 km × 2 km. . . to 10 km × 10 km. Then, the data extracted at different scales
through the Geodetector were processed, and the mean q value was compared. We found
that at all 10 scales, the q-mean values were all approximately 0.20. Therefore, in order
to be consistent with the resolution of the NDVI dataset, we set the final grid of random
sampling points to 1 km × 1 km. Meanwhile, the total number of random sampling points
was set to 30,000 according to the maximum processing sample capacity of the Geodetector.
For the zoning effect, we used five common discretization methods, the natural breakpoint
method (NB), the equal interval method (EI), the geometric interval method (GI), the
quantile method (QU), and the standard deviation method (SD) to discretize the continuous
data into 5 to 12 categories or classifications. Then, we compared the q values obtained
at different scales and determined the optimal discretization scheme for the continuous
data based on the maximum q value. It should be noted that soil type, soil erosion
intensity, and land use type are discontinuous variables, so we used a supervised method
for discretization. The soil types were classified into 17 categories according to the Chinese
soil system classification, soil erosion intensity was divided into 5 categories according to
the Chinese soil erosion classification system, and the land use types were divided into
10 categories (Table 2).

Table 2. Selection and criteria of the discretization methods for continuous, independent variables.

Factor Method Level q Value Factor Method Level q Value

X1 NB 10 0.47 X10 GI 11 0.39
X2 NB 10 0.26 X11 QU 11 0.53
X3 NB 10 0.19 X12 QU 12 0.14
X4 NB 10 0.57 X13 EI 12 0.01
X5 NB 10 0.59 X15 NB 5 0.01
X8 GI 12 0.48 X16 GI 12 0.02
X9 GI 12 0.44 X17 GI 8 0.01

3. Results
3.1. Temporal and Spatial Variation in the NDVI
3.1.1. Annual Variation in the NDVI

The NDVI for the period 2000–2020 ranged from 0.72 to 0.80 (mean value 0.77), with
the lowest value of 0.72 in 2000 and the highest value of 0.80 in 2019 and 2020 (Figure 2).
The NDVI remained at a high level and showed an increasing trend (slope = 0.003) with
smaller interannual fluctuations (R2 = 0.71), indicating that the vegetation coverage in the
SLB was good and that the vegetation continued to green. On the sub-basin unit scale,
the NDVI fluctuated most in the WLB, followed by the ERB, the LMB, and the HTB. The
NDVI slope was highest in the WLB, where the NDVI increased from the lowest value of
0.48 in 2000 to 0.64 in 2020, thus increasing by 33.33%. This indicated that the WLB was
the one with the largest fluctuation and the largest increase in the NDVI. The basin units
with the areas that had minimum NDVI values that were greater than 0.8 and with small
interannual variation were the SFB, TMB, YLB, HLB, SHB, SSB, and URB. These figures
show that the vegetation cover in these basin units is at a high level and can be considered
as maintaining a stable growth trend according to the growth trend curves. On the annual
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scale, the mean NDVI of the sub-basin units reached a maximum value of 0.82 in 2019 and
2020, indicating that the vegetation cover of each sub-basin unit is getting better and better.
The highest NDVI value of 0.90 was in the SFB in 2017, while the lowest NDVI value of
0.48 was in the WLB in 2000.
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3.1.2. Spatial Variation and Fluctuation in the NDVI

As shown in Figure 3a, in terms of spatial variation, the mean NDVI ranged from
0.0041 to 0.9281, and the vegetation cover was generally good. The zones with low NDVI
values were mainly distributed in the southwest of the ERB, the southeast of the NRB,
and most of the WLB. When combining Figure 3b and Table 3, for the period 2000 to 2020,
the NDVI in 93.02% of the SLB showed an increasing trend, of which 45.37% of the area
showed a remarkable increase and 24.83% showed a significant increase. Among the basin
units, the YLB had the largest proportion of increasing the NDVI while the ERB had the
smallest proportion. As shown in Figure 3c and Table 4, the zone with slight and moderate
fluctuation accounted for 90.42%, thus showing that the growth of vegetation remains
stable. The main area with strong fluctuation was consistent with low NDVI values, i.e., in
the WLB and the ERB.
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ELB  64.12  32.71  1.74  1.01  0.41 

WLB  5.96  27.08  39.09  27.44  0.43 

NYB  32.94  53.34  11.11  2.33  0.28 

YLB  95.83  3.42  0.48  0.26  0.01 

NRB  45.76  29.95  14.56  9.22  0.52 

Figure 3. The spatial distribution of the mean NDVI, the significance in NDVI variation, and the NDVI
coefficient of variation in the study area for the period 2000 to 2020. (a) Mean NDVI; (b) significance
of NDVI variation; (c) and the NDVI coefficient of variation.
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Table 3. The area proportion statistics area ratio on the significance of interannual variation trends of
the NDVI in the SLB and sub-watershed units.

Basin Unit

Remarkable
(p-Value < 0.01

and β > 0)

Significant
(p-Value < 0.05

and β > 0)

Insignificant
(p-Value > 0.1

and β > 0)

Remarkable
(p-Value < 0.01

and β < 0)

Significant
(p-Value < 0.05

and β < 0)

Insignificant
(p-Value > 0.1

and β < 0)
Increase (%) Decrease (%)

SLB 45.37 24.83 22.82 0.42 0.87 5.68
SHB 59.55 20.88 15.29 0.37 0.54 3.37
SSB 55.40 24.61 15.27 0.67 0.88 3.17

LMB 35.01 27.72 28.01 0.92 1.3 7.03
ELB 46.15 31.37 19.31 0.24 0.47 2.46
WLB 37.35 22.39 27.49 0.43 1.54 10.81
NYB 42.57 21.29 22.81 1.17 2.24 9.92
YLB 61.88 21.66 12.38 0.35 0.57 3.18
NRB 49.11 28.26 19.05 0.13 0.38 3.07
TMB 43.65 30.83 20.48 0.37 0.64 4.03
SFB 53.70 25.91 15.57 0.46 0.78 3.58
HLB 56.86 23.84 15.35 0.17 0.45 3.33
HTB 36.69 21.81 24.41 2.94 3.24 10.91
ERB 17.98 26.68 45.03 0.17 0.83 9.32
URB 41.26 24.64 24.98 0.55 1.25 7.32

Table 4. The area proportion statistics on the NDVI coefficient of variation in the SLB and sub-
watershed units from 2000 to 2020. Unit: %.

Basin Unit CV ≤ 0.05 0.05 < CV ≤ 0.1 0.1 < CV ≤ 0.15 0.15 < CV ≤ 0.3 CV > 0.3

SLB 58.68 20.95 10.79 8.96 0.62
SHB 82.28 14.05 2.09 1.36 0.22
SSB 84.19 12.67 1.77 1.15 0.21

LMB 39.22 43.84 13.74 3.04 0.15
ELB 64.12 32.71 1.74 1.01 0.41
WLB 5.96 27.08 39.09 27.44 0.43
NYB 32.94 53.34 11.11 2.33 0.28
YLB 95.83 3.42 0.48 0.26 0.01
NRB 45.76 29.95 14.56 9.22 0.52
TMB 96.80 2.48 0.46 0.26 0.00
SFB 96.94 2.52 0.35 0.17 0.02
HLB 92.50 6.39 0.65 0.38 0.08
HTB 76.06 17.12 4.07 2.52 0.24
ERB 48.99 12.66 10.56 24.95 2.85
URB 84.11 14.33 0.94 0.44 0.18

3.2. Drivers of the Spatial Variation in the NDVI
3.2.1. Factor Detection

As can be seen from Table 5, climate, soil type, and land use type are the main factors
affecting the spatial variation in the NDVI in the SLB, and their contribution rates are all
more than 40%. Among all factors, soil type had the largest q value of 0.60, followed by
PRE (0.59) and ARH (0.57). In contrast, the q values for altitude, aspect, river distance,
road distance, and population density were all less than 0.05, indicating their contributions
to the spatial variation in the NDVI were limited. In the sub-basin units, climate factors
are dominant in affecting the spatial differentiation of the NDVI, while human activities
have less effect, with the exception of land use type. We also calculated the q values of the
influencing factors for each sub-basin unit in 2000, 2005, 2010, 2015, and 2020, and found
that the spatial differentiation of the NDVI in the SLB and each basin unit was mainly
controlled by ARH and altitude (Tables S2 and S3).
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Table 5. The q value of the influencing factors in the study area for the period 2000 to 2020.

Factor SLB SHB SSB LMB ELB WLB NYB YLB NRB TMB SFB HLB HTB ERB URB

X1 0.47 0.36 0.35 0.24 0.09 0.25 0.39 0.26 0.17 0.29 0.46 0.02 0.35 0.81 0.09
X2 0.26 0.26 0.30 0.36 0.12 0.17 0.03 0.21 0.31 0.23 0.40 0.11 0.32 0.79 0.10
X3 0.19 0.24 0.35 0.29 0.08 0.13 0.05 0.28 0.29 0.47 0.23 0.04 0.39 0.84 0.06
X4 0.57 0.32 0.07 0.36 0.14 0.26 0.42 0.16 0.34 0.12 0.43 0.11 0.34 0.90 0.08
X5 0.59 0.29 0.26 0.54 0.15 0.25 0.47 0.28 0.21 0.23 0.33 0.09 0.39 0.81 0.07
X6 0.60 0.23 0.14 0.49 0.08 0.35 0.24 0.10 0.20 0.19 0.13 0.13 0.14 0.74 0.18
X7 0.15 0.02 0.05 0.23 0.01 0.17 0.02 0.10 0.01 0.21 0.15 0.01 0.01 0.22 0.01
X8 0.51 0.17 0.13 0.37 0.08 0.26 0.24 0.12 0.19 0.17 0.15 0.11 0.14 0.68 0.11
X9 0.47 0.18 0.14 0.40 0.10 0.19 0.12 0.11 0.20 0.15 0.10 0.06 0.13 0.68 0.12

X10 0.42 0.15 0.13 0.37 0.08 0.25 0.18 0.12 0.12 0.17 0.13 0.12 0.13 0.66 0.12
X11 0.05 0.30 0.28 0.14 0.06 0.16 0.03 0.26 0.26 0.29 0.39 0.14 0.39 0.46 0.16
X12 0.14 0.26 0.13 0.11 0.02 0.11 0.07 0.10 0.08 0.09 0.00 0.08 0.20 0.48 0.17
X13 0.00 0.01 0.02 0.04 0.01 0.00 0.00 0.01 0.00 0.01 0.02 0.01 0.01 0.00 0.00
X14 0.43 0.29 0.20 0.38 0.05 0.27 0.21 0.19 0.25 0.31 0.28 0.13 0.22 0.59 0.27
X15 0.01 0.04 0.06 0.00 0.02 0.01 0.01 0.11 0.01 0.12 0.16 0.02 0.03 0.01 0.08
X16 0.01 0.24 0.38 0.46 0.09 0.17 0.08 0.26 0.06 0.39 0.46 0.08 0.45 0.01 0.10
X17 0.00 0.13 0.13 0.04 0.03 0.02 0.01 0.13 0.01 0.20 0.13 0.07 0.17 0.02 0.08

3.2.2. Interaction Detection

Overall, the q value of the interaction detection between two factors was larger than for
a single factor, and the interactions all manifested as two-factor enhancement or nonlinear
enhancement. Among them, X1∩X5, X2∩X4, X3∩X4, X4∩X6, X5∩X6, and X6∩X14 had
strong interactions, and the q values of their interaction detection were all greater than 0.70,
indicating that the interaction between these factors dominated the spatial differentiation of
the NDVI in the SLB (Table 6). The main controlling factors for the spatial differentiation of
the NDVI in each sub-basin unit remained stable, including the interaction between climatic
factors and land use type, as well as the interaction between altitude and population density
(Table S4).

Table 6. The q value of the influencing factor interactions in the SLB from 2000 to 2020.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17

X1 0.47
X2 0.65 0.26
X3 0.60 0.32 0.19
X4 0.65 0.76 0.76 0.57
X5 0.73 0.68 0.68 0.72 0.59
X6 0.71 0.67 0.67 0.74 0.75 0.60
X7 0.54 0.38 0.33 0.61 0.63 0.64 0.15
X8 0.66 0.64 0.60 0.70 0.73 0.64 0.56 0.51
X9 0.66 0.59 0.57 0.71 0.69 0.64 0.53 0.58 0.47

X10 0.65 0.53 0.50 0.69 0.70 0.64 0.47 0.58 0.60 0.42
X11 0.57 0.48 0.41 0.68 0.69 0.68 0.25 0.60 0.57 0.48 0.05
X12 0.50 0.38 0.30 0.64 0.65 0.63 0.29 0.57 0.52 0.48 0.29 0.14
X13 0.48 0.27 0.21 0.57 0.59 0.61 0.16 0.52 0.48 0.43 0.06 0.15 0.00
X14 0.62 0.65 0.63 0.69 0.74 0.72 0.50 0.66 0.66 0.64 0.50 0.50 0.44 0.43
X15 0.48 0.27 0.20 0.57 0.59 0.61 0.16 0.52 0.48 0.43 0.07 0.14 0.01 0.43 0.01
X16 0.49 0.31 0.26 0.59 0.63 0.63 0.18 0.55 0.52 0.44 0.08 0.18 0.01 0.45 0.01 0.01
X17 0.48 0.30 0.23 0.59 0.61 0.61 0.17 0.52 0.49 0.43 0.07 0.17 0.01 0.44 0.01 0.01 0.00

3.2.3. Ecological Detection

The ecological detector was used to determine whether the influence of two factors
on the spatial differentiation of the NDVI was significantly different. Climate, soil type,
and land use type were mainly significantly different from those of other factors. For
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climate factors, there was no significant difference between Tmax, Tmin, and Tmean, but
these factors were significantly different when combined with ARH, PRE, and soil type.
Meanwhile, land use type was significantly different when combined with terrain factors.
In general, there were significant differences, with respect to the spatial differentiation of
the NDVI in the SLB, between climate factors and soil type, soil texture, and land use type,
as well as between land use type and altitude, slope, and aspect (Table 7). The effects of
river distance, population density, and road distance on the spatial differentiation of the
NDVI in the SLB were not, however, significantly different from other factors.

Table 7. Detection of whether there were significant differences in the influence of various factors on
the spatial differentiation of the NDVI in the SLB from 2000 to 2020. N means no significant difference;
Y means significant difference.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17

X1
X2 N
X3 N N
X4 Y Y Y
X5 Y Y Y Y
X6 Y Y Y Y Y
X7 N N N N N N
X8 Y Y Y N N N Y
X9 N Y Y N N N Y N

X10 N Y Y N N N Y N N
X11 N N N N N N N N N N
X12 N N N N N N N N N N Y
X13 N N N N N N N N N N N N
X14 N Y Y N N N Y N N Y Y Y Y
X15 N N N N N N N N N N N N N N
X16 N N N N N N N N N N N N N N N
X17 N N N N N N N N N N N N N N N N

3.2.4. Risk Detection

A risk detector was used to judge whether there was a significant difference in the
NDVI means between the different factor types or ranges. We consider that a factor type
or range with higher NDVI means is more suitable for vegetation growth. In the SLB, the
NDVI increased with an increase in PRE and ARH, reaching a maximum value of 0.88
in the range 854.65–1023.66 mm and 70.23–80.60%. The NDVI decreased with increasing
Tmax, Tmin, Tmean, soil erosion intensity, and population density in the respective ranges
of 30.41~31.67 ◦C, −40.97~−38.22 ◦C, −4.42~−2.83 ◦C, a slight soil erosion intensity, and
183~213 person/km2; these reached maximum values of 0.89, 0.86, 0.85, 0.81, and 0.80,
respectively. Meanwhile, high NDVI values were mainly found in areas with woodlands on
low mountains or hilly terrain; moderate distances from rivers and roads; and those with
balanced sand, silt, and clay content. In the discretization influencing factor stratification,
the influencing factors with significant differences in the mean NDVI values were climate
factors, soil factors, land use types, altitude, and slope; in addition, the proportions of the
significant differences were all greater than 90%. Our data show that the attribute size or
type of these factors has a great effect on the mean NDVI value in the SLB (Table 8). On the
sub-basin unit scale, woodland is the land use type with the largest mean NDVI. Although
there are differences in the suitable environments for vegetation growth among the basin
units, there are general similarities, as described above.
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Table 8. The types or value ranges of the influence factors with the largest mean NDVI in the SLB
from 2000 to 2020, and the proportion of the mean NDVI that was significantly different in the
discretization influencing factor stratification.

Factor Zones with High
NDVI Values Mean NDVI Significant

Proportion

X1 30.41~31.67 ◦C 0.89 97.78%
X2 −40.97~−38.22 ◦C 0.86 97.78%
X3 −4.42~−2.83 ◦C 0.85 97.78%
X4 854.65~1023.66 mm 0.88 97.78%
X5 70.23~80.60% 0.88 97.78%
X6 Purplish soil 0.88 23.33%
X7 Slight 0.81 100%
X8 23.72~36.45% 0.83 95.45%
X9 24.51~27.55% 0.86 97.78%

X10 18.89~19.49% 0.84 97.78%
X11 459.07~650.93 m 0.81 90.90%
X12 5.68~26.27 0.85 95.45%
X13 239.64~269.71 0.79 60.60%
X14 Woodland 0.86 95.56%
X15 9.33~18.85 km 0.79 50%
X16 183~213 people/km2 0.8 82.22%
X17 4.56~8.09 km 0.79 61.90%

4. Discussion
4.1. NDVI Changes

Vegetation change exhibits strong spatial and temporal heterogeneity, as confirmed
by our work. First, our study shows that the NDVI in the SLB was on the rise from 2000
to 2020, with an increasing trend of 0.003/yr, and that the vegetation keeps greening.
Existing studies have confirmed that most regions of the world have an increasing trend of
vegetation coverage. For example, Piao et al. (2015) believe that China has been greening
continuously for the past 30 years, and that the average Leaf Area Index (LAI) trend during
the growing season reaches 0.007/yr [10]. Studies on the regional scale in China support
this conclusion. Qu et al. (2020) showed an overall upward trend of EVI in the Yangtze
River Basin, with an increase rate of 0.0027/a [21]. Zheng et al. (2019) has reported that
the mean NDVI in the Loess Plateau region during 2009–2016 was 14.46% higher than
that during 2000–2007 [14]. Huo and Sun (2021), however, reported an overall negative
trend in vegetation cover in the northwest of the Yunnan Plateau in China, with a rate of
−0.0031/yr [25]. Afforestation projects, the conversion of farmland to forest, the Three
North Shelterbelt program, forestry investment, the atmospheric CO2 concentration, and
nitrogen deposition are considered to be possible explanations for the vegetation greening
in China.

Although vegetation has been restored on the whole, it has also degraded in some
areas. In the SLB, the NDVI decreased mainly in the WLB and the ERB, which is consistent
with the conclusions of previous studies [17]. The WLB and ERB are located in semi-arid
and sub-humid areas, where vegetation is more sensitive to precipitation than other natural
factors [22,44]. Soil water stress and grazing activities may be the causes of vegetation
degradation. Jiang et al. (2017) found that vegetation pixel values for shrubs and sparse
vegetation in Central Asia decreased significantly, and that sparse vegetation was seriously
degraded, which may be caused by the over-exploitation of water resources, as well as by
oil and gas extraction [45]. Zheng et al. (2021) reported that developed areas in eastern
China, such as the Beijing–Tianjin–Hebei region and the Yangtze River Delta region, showed
a downward trend due to rapid urbanization [20]. Wang et al. (2021) found that vegetation
had declined significantly in the humid/sub-humid areas in the middle temperate zone of
China, as well as in the arid areas in the northwest of the country; one possible reason for
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this was that the control effects of temperature and water on the NDVI were weakened,
while the spatial correlation between human factors and the NDVI was strengthened [11].

The coefficient of variation was correlated with vegetation change [46,47]. For example,
a region with a large coefficient of variation usually exhibits vegetation degradation, while a
region with a small coefficient of variation has a stable growth of vegetation cover [48]. The
large variation coefficient of the NDVI, that is, the area of large fluctuation, mainly occurs
in the hinterland of the SLB. The main reason for this is that it is a farming area with a high
level of urbanization, and the main land use type is dry land, which is affected by human
activities and limited by natural conditions such as meteorological disasters. Particularly in
the WLB and ERB, the NDVI fluctuates greatly because of grazing and urban expansion.
The vegetation in the SFB, TMB, YLB, HLB, SHB, SSB, and URB, however, exhibited a stable
improving trend, mainly due to the series of water and soil conservation measures, basin
management, ecological forest protection, and ecological monitoring projects that were
implemented by the government in recent years.

4.2. Influencing Factors

The complexity of the terrestrial ecosystem explains the difficulty in understanding
the driving factors of vegetation change. The influences of climate, terrain, soil disturbance,
and human disturbance on vegetation change were considered comprehensively as far
as possible in this study. We found that soil type was the dominant factor linked to
vegetation change in the SLB, and its contribution to the spatial differentiation of the NDVI
was up to 60%. Meanwhile, the contribution of sand, silt, and clay in the soil., i.e., the
texture, was explained 51%, 47%, and 42%, respectively. These results reflect the strong
correlation between soil factors and vegetation growth and vegetation change, and have
been supported in studies on vegetation change in the Heihe River Basin [22,49], Northwest
Yunnan Plateau [25], and Inner Mongolia [17]. We believe that the possible reason for this
is that soil type represents the level of soil nutrients. For example, the large amount of
humus in black soil and the high content of soil organic matter create favorable conditions
for vegetation growth. The texture of soil is closely related to soil ventilation, fertilizer
retention, water retention, heat preservation, and cultivation. Sandy soil has weak water
storage capacity, little nutrient content, poor fertilizer retention ability, and relatively poor
nutrient content, which is unfavorable for plant growth generally. Clay soil has good water
retention and fertility, and is rich in nutrients, which is conducive to plant growth.

Among the climatic factors, Tmax, Tmin, Tem, PRE, and ARH played a major con-
trolling role in the spatial differentiation of the NDVI in the SLB and in most sub-basin
units. Previous studies have shown that temperature is positively correlated with the end
of the growing season for the biological community [26]. Plant photosynthesis exhibits a
nonlinear response to temperature, and the minimum temperature affects the beginning of
the growth period of vegetation, while drought induced by high temperature inhibits the
greening of plants in early spring [18,50]. However, a rise in temperature in spring would
lead to recovery period of vegetation advancing [16]. In terms of precipitation, studies
have shown that vegetation growth in most temperate regions is significantly affected by
water [51]. In tropical regions, plants will “die of thirst” if there is a lack of water, and high
temperatures lead to vigorous transpiration. Hilker et al. (2014) reported that a decrease in
rainfall reduces the vegetation greening rate in most areas of the Amazon rainforest. The El
Niño Oscillation event and the continued drought caused by reduced rainfall in the future
will lead to the degradation of the Amazon forest canopy [1]. The study by Piao et al. (2011)
showed that a significant decrease in summer precipitation was the main reason for the
decline of the NDVI in northern Eurasia [52], and a study on the semi-arid regions of the
world also confirmed that precipitation was the main limiting factor for plant growth [53].

Land use type, as the most direct reflection of the impact of human activities on
vegetation [54], shows the importance of the spatial differentiation of the NDVI in sub-
basin units such as the HLB and URB. A possible reason for this is that these two watersheds
are located in the Greater Khingan Mountains and Changbai Mountains. Woodland, as
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the main land use type, is mostly within a nature reserve, with stable vegetation growth
and good coverage. This is consistent with the results of Wang et al. (2021)’s study on
the Poyang Lake Basin in China. They found that land use type had the greatest impact
on vegetation change, and the interaction between land use type and population density
explained 45.6% of vegetation change [19]. On the other hand, it is generally known that
the NDVI is determined by the pigment absorption rate of chlorophyll in the red band
and the high reflectivity of plants in the near-infrared band [55]. The land use type itself
determines the intensity of photosynthesis to a certain extent, which in turn affects the
NDVI value.

Interestingly, although altitude and population density have low q values, they show
a prominent effect on the spatial differentiation of the NDVI in their interaction with other
factors. We speculate a possible reason for this is that altitude will affect temperature,
precipitation, humidity, vegetation type, and even soil. For example, temperature decreases
with increasing altitude, and there is more precipitation on windward slopes. Undoubtedly,
high population density is not conducive to vegetation growth [56,57]. In addition, popula-
tion density has an impact on climate, such as the heat island effect in cities. It should be
noted that the specific interaction mechanism is still unclear and deserves future research.

4.3. Limitations and Future Perspectives

The data used in this study were all derived from remote sensing or interpolation,
thus were obtained with their associated errors. Data acquired from field sampling may
be beneficial for improving the accuracy of research conclusions. Due to the limited scope
of this study, there is lack of research on the time-lag effect of vegetation response to
climate factors. However, a large number of studies have confirmed that time lag plays
an important role in vegetation–climate interaction [58–61]. For example, Wu et al. (2015)
found that climate factors explained 64% of the global vegetation growth change, which
was 11% higher than that found in a model that ignored the time-lag effect [62]. Richard
et al. (2008) found a “negative” time-lag effect due to rainfall that was detected at a lag
of 7 to 10 months in the semi-arid region of South Africa [63]. In addition, snow cover in
winter and early spring can cause errors in NDVI values [26,64]. Therefore, it is necessary
to incorporate time-lag effects and eliminate the interference of snow, clouds, and other
factors on the NDVI in future studies.

5. Conclusions

In general, the NDVI showed an increasing trend with small inter-annual fluctuations.
Soil type was the main factor affecting the spatial differentiation of the NDVI in the SLB.
Influencing factor interactions were all shown to be enhanced, and population density
exacerbates the effect. Within the basin unit, the NDVI in the West Liao River Basin
exhibited the largest increase and the largest interannual fluctuation. The factors, mainly
including ARH and altitude, influencing the spatial differentiation of the NDVI between
basins were different. Furthermore, we derived the range and type of vegetation suitable
for growth through risk detection. The research results reflect the spatial heterogeneity of
vegetation changes in the basin, as well as provide a basis for ecological protection and
restoration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land12091692/s1, Table S1: Types of interaction between two
covariates; Table S2: Maximum mean q value of influencing factors in different basins. Mean q value
is the mean of q-values in 2000, 2005, 2010, 2015 and 2020; Table S3: The q value of influencing factors
in different basins in 2000, 2005, 2010, 2015 and 2020; Table S4: Maximum q value of influencing
factor interaction and its interaction type in Songliao River Basin and sub-basin units in 2000-2020,
2000, 2005, 2010, 2015, and 2020.
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