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Abstract: A comprehensive understanding of soil salinity distribution in arid regions is essential for
making informed decisions regarding agricultural suitability, water resource management, and land
use planning. A methodology was developed to identify soil salinity in Sudan by utilizing optical and
radar-based satellite data as well as variables obtained from digital elevation models that are known
to indicate variations in soil salinity. The methodology includes the transfer of models to areas where
similar conditions prevail. A geographically coordinated database was established, incorporating a
variety of environmental variables based on Google Earth Engine (GEE) and Electrical Conductivity
(EC) measurements from the saturation extract of soil samples collected at three different depths (0–30,
30–60, and 60–90 cm). Thereafter, Multinomial Logistic Regression (MNLR) and Gradient Boosting
Algorithm (GBM), were utilized to spatially classify the salinity levels in the region. To determine the
applicability of the model trained at the reference site to the target area, a Multivariate Environmental
Similarity Surface (MESS) analysis was conducted. The producer’s accuracy, user’s accuracy, and
Tau index parameters were used to evaluate the model’s accuracy, and spatial confusion indices
were computed to assess uncertainty. At different soil depths, Tau index values for the reference
area ranged from 0.38 to 0.77, whereas values for target area samples ranged from 0.66 to 0.88,
decreasing as the depth increased. Clay normalized ratio (CLNR), Salinity Index 1, and SAR data
were important variables in the modeling. It was found that the subsoils in the middle and northwest
regions of both the reference and target areas had a higher salinity level compared to the topsoil.
This study highlighted the effectiveness of model transfer as a means of identifying and evaluating
the management of regions facing significant salinity-related challenges. This approach can be
instrumental in identifying alternative areas suitable for agricultural activities at a regional level.

Keywords: dryland; digital soil mapping; environmental similarity; Google Earth Engine; remote
sensing; SAR; Sentinel 2 MSI; salinization; transfer learning

1. Introduction

The majority of salt-affected soils globally are located in arid and semi-arid climate
zones [1]. Saline soils can be formed naturally by the effects of soil formation factors, and
their formation can be accelerated as a result of anthropogenic factors [2]. Specifically, soil
salinity is a major soil constraint that threatens soil fertility, agricultural sustainability, and
food security in arid and semi-arid regions [3–10]. The acceleration of the process of soil
salinization constitutes a significant threat to crop production and can reduce agricultural
productivity at regional, national, and even local scales [11].
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Since 2015, when the Sustainable Development Goals (SDGs) [12] were announced,
half of the time needed to achieve the 2030 SDGs has now passed. Food security and
sustainability of agriculture, especially in rain-fed or irrigated areas in arid regions, are
under significant pressure from soil constraints such as salinity [2,13–15]. To assess the
impact of salinization on agriculture, especially in the mentioned regions, there is a need
for useful spatial information on the salinity levels in the topsoil and effective root zone
that can be integrated into decision-support processes. As is well known, to achieve SDG′-2
and SDG′-15, it is essential to spatially accurately identify the variations of soil constraints
to allow for the best management of soils [16–18]. Rapid and reliable determination of
the current levels of soil salinity, its edaphological suitability for crop cultivation, or the
constraints it presents can help identify salinity management strategies to reduce the
vulnerability of crops to salt content.

Over the last quarter century, the science of pedometry has made significant advances
by combining remote sensing, geographic information systems, and advanced statistical
and mathematical spatial modeling applications for soil mapping [19,20]. Of course, this
branch of science has been supported by the increasing number of satellites and sensors
from public and private initiatives, as well as the increasingly open-access global availability
of Earth Observation (EO) data. Indeed, the increasing digital representation of the spatial
distribution of soil formation factors has led to initiatives that can be integrated into
policymaking and decision-support systems [21–23].

Machine learning algorithms (MLAs) have been effectively used in the spatial mapping
of a soil constraint such as soil salinity with a pedometric approach [24,25]. While salinity
indicators determined quantitatively in the laboratory can be modeled with regression-
based ML algorithms [26] in continuous data types, discrete data classified according to
certain criteria (salinity classes in our study) can be effectively spatially modeled with
classification-based ML algorithms. Kaplan et al. [27] emphasized that the European Space
Agency’s (ESA) optical Sentinel 2 remote sensing data and MLAs can effectively map EC
(dS/m) in hyper arid areas in continuous data types. ESA’s new generation Sentinel 1 synthetic
aperture radar (SAR) data, which has a higher capacity to penetrate the soil surface [5], is
emphasized as an important data source in determining the salinity level of soils [28–32].

Traditional approaches to the determination of soil salinity levels, especially field-
work, are costly and time-consuming. Nowadays, EO data have been robustly demon-
strated to be essential tools for accurately estimating soil salinity in different parts of the
world [33,34]. These developments have been widely used in studies, especially in vegeta-
tion, soil, and salinity indices, which are very different in their effectiveness while offering
great potential for regions of the world where vegetation cover is reduced or seasonally
absent [24,27,32,35]. Another important aspect concerns developments in processing al-
gorithms such as MLAs [5]. Supervised learning algorithms make it possible to model
the relationships and dependencies between the target prediction output [36] and input
data/features to predict salinity constraint output values in new areas by learning from the
data from areas where salinity threats exist.

The pedometric approach and digital soil mapping (DSM) have enabled regional [2],
continental [33], and global [1] applications of soil salinity mapping at various spatial and
temporal scales. However, most of the DSM research in the specific area of salinity threats
focuses on modeling soil properties at a specific site. Kaya et al. [2] spatially mapped
the threat of soil salinity in an area with complex land uses in the Mediterranean region
using a random forest (RF) and support vector regression (SVR) algorithm. Guo et al. [37]
presented an unsupervised approach to generating salinity management zones in coastal
Central China. Konyushkova et al. [38] successfully utilized remote sensing data to improve
assessment and decision support for sustainable management of soil and water resources
in salt-affected croplands. Golestani et al. [39] systematically compared decision tree
(DT), artificial neural network (ANN), RF, and SVR algorithms to spatially map salinity
during the winter and summer seasons in Sirjan Playa, Iran. Kabiraj et al. [40] used the
RF algorithm for spatial mapping of salinity classes in the Gulf of Mannar, India, and



Land 2023, 12, 1680 3 of 22

Lekka et al. [41] effectively used the logistic regression algorithm to assess spatial patterns
of soil salinity in agricultural fields in Lesvos Island, Greece.

The principle that similar soil-forming factors lead to similar soils has found an
important place in the DSM on a global scale [42]. Regionally, indeed, areas with similar
soil-forming factors develop similar soils over time [42]. In line with this assumption, there
may be a possibility that a categorical or continuous soil model learned in one area may
be transferable to a similar area. Of course, this possibility is based on the availability of
digital data on existing soil formation factors in the area where the model was learned and
in the transferred area. This application is organized in such a way that quantitative digital
data are similarly measured for the target and the reference area. In the specific case of our
study, this process is an opportunity to reduce the relatively high costs and time required
to produce soil salinity maps in an arid region by focusing the transfer of models learned
from a reference area to the target area.

Sudan is a country with agricultural areas, abundant water, two branches of the Nile
River, and high agricultural potential [43]. Sudan, one of the largest countries in Africa,
has over 80 million hectares of arable land, of which only 20 percent have been cultivated
so far [44]. With direct diversion from rivers and groundwater, many industrial crops can
be produced in Sudan [44]. However, it is necessary to manage the risk of soil salinization
during the first 10–15 years of irrigated agricultural production in arid areas. In addition, the
need to map existing saline areas and identify appropriate salinity management strategies
is necessary to develop methods and approaches to identify, monitor, and assess the extent
of salt-affected soils in Sudan, contributing to the development of strategies to help mitigate
climate change impacts.

Transfer learning is the process of applying the model learned from a reference area to
a target area [45]. The transfer learning approach has been demonstrated to be applicable in
pedometrics, especially in studies on the prediction of soil properties by creating and using
spectral reflectance libraries [45–47]. By integrating the transfer learning approach, relevant
DSM studies were conducted, such as the parent material [48], organic carbon at the local
scale [49], USDA Soil Taxonomy at the sub-group level [50], USDA Soil Taxonomy at the soil
great group level [51], soil organic carbon in cropland soils [52], and soil particle fractions [53].

The spatial variability of soil salinity constraints is one of the most important causes of
variability in crop production and is important information for spatial planning according
to the sensitivity and tolerance level of the plant to be grown. Although there have been
many field-based studies on the spatial prediction of salinity in drylands by integrating RS
and ML [2,27,35,39], no studies on the transferability of the models have been carried out.

This study was the first to integrate “transfer learning” into mapping soil salinity levels
in an arid region. Hence, we hypothesized that the utilization of transfer learning-based
MLAs in conjunction with open-access EO data within this study can offer opportunities
for mapping soil salinity within an arid region. The present research deals with the
transferability of salinity class models derived from a reference area to a target area whose
spatial similarity is quantified by a similarity index. In particular, the objectives of the study
were: (i) to develop a classification model for the salinity of soils at three different depths
in Eastern Sudan, (ii) to demonstrate the effectiveness of the Multivariate Environmental
Similarity Surface (MESS) technique in applying the model learned from the reference site
to the target site, and (iii) to evaluate the importance of the environmental variables used in
the modeling within the soil scientist framework and to identify environmental variables
that could be used in similar study areas.

2. Materials and Methods

Section 2.1 provided general information about the study area, and Section 2.2 pro-
vided detailed information about the soil sampling methodology and design. Section 2.3
presented information about the analyses performed on soil samples. Section 2.4 details the
various environmental variables produced by the Google Earth Engine. Section 2.5 explains
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the modeling process and the transfer learning process. Section 2.6 details the importance
of digital variables in modeling, accuracy, and uncertainty assessments of models.

2.1. Study Area

This study was conducted at the lower Atbara Nile, which extends about 270 km SE
of Atbara town in River Nile State and nearly 288 km from Khartoum, the capital of Sudan.
The study area is located between 16◦44′ N and 16◦55′ N Latitude and 34◦50′ E and 35◦2′ E
Longitude and covers a total area of about 7600 ha (distributed as 4200 ha for the reference
area and 3400 ha for the target area). The study area falls within the desert climatic zone
of the country, with an average annual precipitation of 63.2 mm (mainly between July and
August), an average annual temperature of 29.6 ◦C, and an average annual relative humidity
of 28.3%. The soil is characterized by hyper-thermic and aridic soil temperature and moisture
regimes, respectively. The soil is classified as Aridisols according to soil taxonomy [54,55].

2.2. Field Study and Sampling Strategy

A semi-detailed soil survey was used to perform this study using a scale of 1:45,000.
We used a grid design to determine the targeted sample locations. The total auger locations
for reference and target areas were 202 and 144 sites, respectively. We used a handheld GPS
(Garmin Montana 680t) to determine the precise sites of the auger samples. Figure 1A shows
the geographical location of the study area overlaid on the Sentinel 2 MSI natural color
band combination map. Figure 1B presents the field distribution of auger samples on the
DEM map. Soil samples were taken from a three-depth systematic sampling design [55] at
450 m intervals at both studied areas: 0–30 cm, 30–60 cm, and 60–90 cm, with approximately
0.5 to 1 kg of soil material gathered from each depth. The total number of samples collected
was 1041 (608 from the reference area and 432 from the target area).
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2.3. Sample Analysis

Soil samples were air dried at ambient room temperature (≈25 ◦C), ground, and passed
through a 2 mm sieve to isolate soil material from rock fragments. Electrical conductivity
(ECe) as an indicator of salinity was determined in the extracts of the soil paste [56] using a
digital EC meter (Jenway, 4510, UK). According to the FAO salinity classification [34,57]
electrical conductivity data (dS m−1) are classified into three classes: None (<2 dS m−1),
Moderate (between 2 and 4 dS m−1), and Strong (> 4 dS m−1).

2.4. Environmental Covariates via Google Earth Engine

To estimate salinity variations along the soil depth direction in the study area, relevant
environmental covariates were selected due to their influence on salinity levels. Salinity,
vegetation, and soil indices based on Sentinel 2 MSI [58], as well as horizontal transmit
and vertical receive (HV) and horizontal transmit and horizontal receive (HH) polarization
mode backscattering coefficient data from PALSAR-2 [59], along with derived digital
elevation model derivatives, were generated using the Google Earth Engine (GEE) data
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catalog and platform [60]. All digital covariates were extracted from GEE to be aligned on
a 10 × 10 m grid and subsequently utilized for mapping purposes.

2.4.1. Synthetic Aperture Radar Data

Since no available images could be obtained in the frames of the Sentinel 1 SAR
satellite for the study area, Global PALSAR-2/PALSAR Yearly Mosaic [61,62], version 2
data were transferred from the GEE data catalog to the GEE code editor section [60], taking
into account the years closest to the soil sampling dates. The PALSAR/PALSAR-2 mosaic
was acquired at 25 m resolution [61]. This dataset is a seamless global SAR image created
by mosaicking SAR images from PALSAR/PALSAR-2. In this study, 2018, 2019, and 2020
image collections in HH and HV polarization were then cropped according to the study
area scope using the “.filterBounds” script in the GEE code editor [60]. Finally, using the
“.mean” script, the mean of their collections was calculated for the study area to reduce
data volume and for faster analysis. Polarization data can be obtained as 16 bit digital
numbers (DN) and converted to backscatter coefficient values in decibel units (dB) using
the following equation [61,63]:

γ0 = 10log10(DN2) − 83 (1)

where −83.0 is the calibration factor (dB) for the PALSAR-2 mosaics.
This equation was executed in ArcGIS 10.8—Arctoolbox—Spatial Analyst Tools—Map

Algebra—Raster Calculator [64].

2.4.2. Multispectral Satellite Data

Sentinel-2 MSI: MultiSpectral Instrument, Level-2A product was called from the GEE
catalog, and 180 images were taken from the catalog by running the “.filter(‘CLOUDY_PIXEL
_PERCENTAGE < 5’)” script within 1 year close to the soil sampling date. Using the study
area shapefile and the “.filterBounds” script, the satellite image collection was clipped.
Again, using the “.mean” script to reduce data volume and for faster analysis, mean
synthesis images were calculated for Band 2, Band 3, Band 4, Band 8, Band 11, and Band 12
using all image collections among the respective dates. Salinity, vegetation, and soil indices
in Table 1 were generated and used as environmental covariates.

2.4.3. Digital Elevation Model Data

NASADEM Merged DEM Global 1 arc second V001 data [65] was called from the GEE
catalog and cut using the “.filterBounds” script according to the study area shapefile. In
addition to the elevation data, the slope in degrees was used as an environmental covariate
produced by the “ee.Terrain.slope” script.

Table 1. Environmental covariates are used for predicting soil salinity levels.

Remote Sensing (RS) (Sentinel 2) OPTICAL-Based Covariates Equations [27,32,35,58,66]

Band 2 Blue (Central Wavelength: 490 nm)
Band 3 Green (Central Wavelength: 560 nm)
Band 4 Red (Central Wavelength: 665 nm)
Band 8 NIR (Central Wavelength: 842 nm)
Band 11 SWIR1 (Central Wavelength: 1610 nm)
Band 12 SWIR1 (Central Wavelength: 2190 nm)
Normalized Difference Vegetation Index (NDVI) (NIR− Red /NIR + Red)
Carbonate Normalized Ratio (CNR) (Red− Green / Red + Green)
Clay Normalized Ratio (CLNR) (SWIR1− SWIR2 / SWIR1 + SWIR2)
Ferrous Normalized Ratio (FNR) (SWIR1− NIR / SWIR1 + NIR)
Iron Normalized Ratio (INR) (Red− SWIR2 / Red + SWIR2)
Normalized Difference Moisture Index (NDMI) (NIR− SWIR1/NIR + SWIR1)
Rock Outcrop Normalized Ratio (RONR) (SWIR1− Green / SWIR1 + Green)
Green-Red vegetation index (GRVI) (Green− Red /Green + Red)
Saturation index (SatInd) (Red− Blue / Red + Blue)
Green Normalized Difference Vegetation Index (GNDVI) (NIR− Green/NIR + Green)
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Table 1. Cont.

Remote Sensing (RS) (Sentinel 2) OPTICAL-Based Covariates Equations [27,32,35,58,66]

Salinity Index 1
√

Blue× Red
Salinity Index 2

√
Green× Red

Salinity Index 3 (Blue− Red/Blue + Red)
Salinity Index 4 (Green× Red)/(Blue)
Salinity Index 5 (Blue× Red)/(Green)
Salinity Index 6 (NIR× Red)/(Green)

Remote Sensing (RS) (PALSAR/PALSAR-2 mosaic) synthetic aperture RADAR-based covariates [59,61]

AVG_HH_dB-polarization backscattering coefficient For horizontal transmit and horizontal receive
AVG_HV_dB-polarization backscattering coefficient For horizontal transmit and vertical receive

DEM-based primary covariates at NASA JPL [65]

Elevation m unit
Slope Degree unit

NIR: Near infrared, SWIR: Shortwave infrared.
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2.5. Modelling Salinity Levels and Transferability of Models

This study followed the DSM framework and involved several steps in the modeling
process: (1) enabling and curating soil data; (2) obtaining environmental covariates from
open sources; (3) extracting georeferenced sample points from the digital covariate data
and preparing geodatabases [67]; (4) selecting environmental covariates through the use of
“findCorrelation” functions to identify and eliminate highly correlated covariates; (5) per-
forming classification-based modeling of salinity levels; and (6) transferring the models.
The flowchart of the study is depicted in Figure 2.

The “findCorrelation” function in the “caret” package [68] was run to identify highly
correlated covariates that could also compromise the performance of the model. Covariates
with Spearman correlation coefficients above 0.8 were removed (Figure A1) [69,70].

To build a statistical model between environmental covariates and the predicted
soil salinity classes, 2 different mathematically-based ML algorithms were systematically
compared: Multinomial Logistic Regression [71,72] and Gradient Boosting Machine [73,74].

In the study, soil salinity classes are the outcome variables. In the process of data
import in R core environment software [75], the categories of salinity classes were coded
alphabetically as 1 (None), 2 (Moderate), and 3 (Strong). Specifically, two logit functions
are needed in the three-outcome category model. The modeler can decide which outcome
category to use as the reference, for which the class “1 (None)” was chosen in numerical
order. Logit functions comparing the other 2 classes with the reference were created. All
these processes were carried out with the “multinom” function in the “caret” package [68].
Due to the nature of the multinomial logistic regression algorithm, a pixel can belong to all
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three different soil salinity classes with given probabilities [76]. However, the salinity class
with the highest probability is assigned to the pixel.

The Gradient Boosting Machine (GBM) is one of the most powerful MLAs for clas-
sification problems [77] involved in our study. Like tree-based learners in RF, GBM is an
ensemble method based on decision trees [78]. However, unlike RF, this method generates
trees serially, with each tree attempting to improve the prediction by correcting the errors
of the previous one.

The hyperparameters of each ML algorithm were set using their respective packages
“nnet” [72] and “gbm” [74] (Table 2). Using R Core Environment software (Version 4.2.1) [75]
and RStudio IDE [79], soil salinity classes at 3 different depths in the reference study area
and CLNR, FNR, NDVI, AVG_HH_dB, AVG_HV_dB, Elevation, Slope, and Salinity Index
1 were selected and estimated using these environmental covariates.

Table 2. Parameters for the machine learning algorithms used and final environmental covariates
included for predicting soil salinity levels.

Selected Covariates Target
Soil Variable Algorithm Tuning Hyperparameter

AVG_HH_dB, AVG_HV_dB,
CLNR, Salinity index 1, FNR,

NDVI, Slope, Elevation

0–30 cm EC class
MNLR decay = 0.0001

GBM shrinkage: 0.1, interaction.depth: 1,
n.minobsinnode: 10, n.trees: 50

30–60 cm EC class
MNLR decay = 0.1

GBM shrinkage: 0.1, interaction.depth: 1,
n.minobsinnode: 10, n.trees: 50

60–90 cm EC class
MNLR decay = 0.1

GBM shrinkage: 0.1, interaction.depth: 1,
n.minobsinnode: 10, n.trees: 50

Abbreviations. GBM: Gradient Boosting Machine, MNLR: Multinomial Logistic Regression, AVG_HH_dB: for
horizontal transmit and vertical receive, AVG_HV_dB: for horizontal transmit and horizontal receive, CLNR: Clay
Normalized Ratio, FNR: Ferrous Normalized Ratio, NDVI: Normalized Difference Vegetation Index.

Descriptive statistical parameters were computed for the values of the eight chosen
digital covariates within both the reference and target regions. Furthermore, Multivariate
Environmental Similarity Surfaces were calculated [80] to compare the compatibility of
the values of environmental variables in the dataset in the reference area with those in the
target area to be transferred. This method can be used to measure the similarity between
the selected covariates at the location of the training samples and the target area to be
transferred [81,82]. Values lower than zero indicate prediction locations in both feature and
geographic areas that are not explained by the training samples [82]. The MESS map for
the target region was generated using the “mess” function in the “dismo” package [80].

2.6. Importance of Used Covariates in Models, Accuracy, and Uncertainty Evaluations

The relative importance levels of different digital environmental variables in the
prediction models of salinity classes were calculated using the “varImp” function in the
caret package [68].

In digital soil mapping, user accuracy (UA) and producer accuracy (PA) are used to
validate the performance of different algorithms in both reference and target areas [66].
The “cvms” R package [83] was used to estimate the performance measures of the classi-
fication models through the confusion matrix, while the Tau index, whose performance
on unbalanced datasets is emphasized by Rossiter et al. [84], was calculated using the
“tauW” function in the “aqp” package [85]. When the value of the Tau index approaches 1,
it indicates a strong indication of perfect agreement. In the study, both algorithms calculate
probability values for each salinity class on a pixel basis, and for uncertainty evaluation,
the confusion index (CI) is calculated, which spatially measures the confusion between the
most probable salinity class and the second most probable class [86,87].
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3. Results

Section 3.1 provides descriptive statistics on continuous and categorical soil salinity
data. While Section 3.2 presents the performance measures of two different algorithms,
Section 3.3 contains findings on the transfer of models to the target area. Section 3.4
includes maps of soil salinity classes and confusion index maps produced by two different
algorithms at three depths. Section 3.5 contains information about the importance of
environmental variables used in models.

3.1. Results of Measured Electrical Conductivity and Assessment of Salinity Classes

Descriptive statistics and histograms of the reference area and target area sample sets
taken from three different depths are shown in Figure A2. The distribution of reference area
and target area samples according to salinity classes was relatively unbalanced (Figure 3a,b).
Both in the reference region and in the target region, the number of observations of the
“strong” salinity class increased with depth, while the “None” salinity class decreased
(Figure 3a,b).
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3.2. Performance of the Different Classification Algorithms

The validation statistics of soil salinity classes for each algorithm are presented in
Table 3. The results of the confusion matrix from which the table was generated are
presented in Figure A3. The highest Tau index values were obtained for both the reference
area and the target area in the 0–30 cm samples, which can be considered surface samples
(Table 3). The decrease in Tau index values followed a linear trend as the depth increased
(Table 3). MNLR and GBM algorithms indeed provided very close performance measures
when Tau index values were considered (Table 3).

In the surface samples (0–30 cm), the user’s accuracy values for the “none” class were
above 90% for the target area (Table 3). However, in both models, the remaining two classes
failed to be predicted. After a careful examination of the confusion matrix (Figure A3), the
models assigned the “strong” and “moderate” classes to the “none” classes.

Considering the distribution of the number of classes at different depths (Figure 3),
this may be due to the fact that these models do not have enough observations to learn the
classes. As a matter of fact, the user’s accuracy values for the “strong” class could compute
an increase in depth (30–60 cm and 60–90 cm). As the depth increased, the number of
observations of the “strong” class also increased.
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Table 3. Summary of machine learning algorithms performance criteria for reference area and
transferred area.

Depth (cm) Soil Salinity
Levels Model

Reference Area Target Area

Producer’s
Accuracy

User’s
Accuracy

Tau
Index

Producer’s
Accuracy

User’s
Accuracy

Tau
Index

0–30

None
MNLR 94 86

GBM: 0.75
MNLR: 0.77

100 92

GBM: 0.88
MNLR: 0.88

GBM 95 89 100 93

Moderate
MNLR 0 NaN * 0 NaN

GBM 0 NaN 0 NaN

Strong
MNLR 24 67 0 NaN

GBM 53 43 34 50

30–60

None
MNLR 98 75

GBM: 0.61
MNLR: 0.61

96 85

GBM: 0.72
MNLR: 0.72

GBM 97 76 96 85

Moderate
MNLR 5 100 0 NaN

GBM 0 NaN 0 NaN

Strong
MNLR 39 74 8 17

GBM 44 68 8 17

60–90

None
MNLR 90 67

GBM: 0.38
MNLR: 0.47

98 79

GBM: 0.66
MNLR: 0.66

GBM 100 59 100 78

Moderate
MNLR 0 NaN 0 NaN

GBM 0 NaN 0 NaN

Strong
MNLR 40 59 10 34

GBM 0 NaN 0 NaN

* NaN indicates unpredicted classes. GBM: Gradient Boosting Machine, MNLR: Multinomial Logistic Regression.

3.3. Transferability of Models according to Multivariate Environmental Similarity Surface

Since eight environmental variables were used in the modeling process, the selected
variables in Table 2 were used for similarity analysis during the transfer of the models.
Descriptive statistics of selected radar, optic-based, and terrain covariates at the sampling
locations in the reference and target areas are shown in Table 4. The minimum values of the
radar-based covariates are quite close for both areas (Table 4). A similar situation was found in
the optical-based FNR, NDVI, and CLNR covariates (Table 4). In particular, the distributions
of the land covariates are also basically similar across the regions, and the standard deviation
values are quite close to each other (Table 4).

Table 4. Descriptive statistics for environmental variables for both reference and target areas.

Covariate Area Minimum Mean Median Maximum Standard
Deviation

AVG_HH_dB
Reference −30.07 −26.35 −26.63 −18.31 1.97

Target −30.67 −25.47 −25.86 −12.27 3.02

AVG_HV_dB
Reference −39.77 −36.71 −36.92 −25.33 1.41

Target −38.86 −36.22 −36.27 −31.34 1.35

CLNR
Reference 0.005 0.015 0.016 0.023 0.004

Target 0.010 0.018 0.019 0.025 0.003

Salinity index 1 Reference 2555.61 2809.86 2823.33 3252.18 113.83
Target 2557.05 2874.53 2887.32 3237.19 102.14

FNR
Reference 0.037 0.061 0.060 0.085 0.006

Target 0.030 0.054 0.054 0.073 0.007
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Table 4. Cont.

Covariate Area Minimum Mean Median Maximum Standard
Deviation

NDVI
Reference 0.034 0.042 0.041 0.060 0.004

Target 0.033 0.041 0.040 0.057 0.005

Slope Reference 0.00 4.62 4.017 24.62 2.97
Target 0.00 4.45 4.016 12.52 2.53

Elevation
Reference 365.0 380.15 380.0 395.0 3.71

Target 375.0 384.24 384.0 398.0 3.74

According to the environmental variable values of the observations in the reference
area and the MESS results of the target region (Figure 4), the models can be effectively
transferred for regions with values above 0. However, MESS values below 0 in the southeast
of the target area are associated with the accumulation of wind-borne materials. Again, the
partial excavation of the surface soil in the central part of the study area proves that this area
does not have similar environmental variable values (smaller than 0) to the reference region.
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3.4. Spatial Prediction of Soil Salinity Levels in Reference and Target Areas

Digital maps of the salinity classes of the 0–30 cm samples are presented in Figure 5
for the reference and target areas by applying MNLR and GBM. The “strong” class was
mapped with high probability by the models in the reference area (Figure 5i,j). In the surface
samples, MNLR and GBM models produced maps with similar salinity class patterns for
both reference and target areas (Figure 5i,j).
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Figure 5. Digital maps of salinity classes (0–30 cm). Generated by applying the MNLR (a) and GBM
(b) models for the reference area as well as the MNLR (c) and GBM (d) models for the target area. For
the reference area, confusion index maps for MNLR (e) and GBM (f) as well as MNLR (g) and GBM
(h) for the target area. Probability map of the “Strong” salinity class in the reference area obtained by
applying the MNLR model (i) and the GBM model (j) as well as the MNLR model (k) and the GBM
model (l) for the target area.
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Digital maps of the salinity classes of the 30–60 cm samples are presented in Figure 6
for the reference and target areas by applying MNLR and GBM. Unlike the 0–30 cm maps,
the presence of the “strong” salinity class increased in the northwest of the reference area
(Figure 6a,b). The “strong” class was mapped with a higher probability by the GBM model in
the reference area (Figure 6j). In the 30–60 cm samples, the MNLR and GBM models do not
seem to be effective in spatially predicting the “strong” salinity class for the target area. The
CI values, which show the difference between the probability values of the most probable and
2nd most probable classes, are higher at 30–60 cm compared to the surface samples (0–30 cm)
(Figure 6e–h).
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Figure 6. Digital maps of salinity classes (30–60 cm). Generated by applying the MNLR (a) and GBM
(b) models for the reference area as well as the MNLR (c) and GBM (d) models for the target area. For
the reference area, confusion index maps for MNLR (e) and GBM (f) as well as MNLR (g) and GBM
(h) for the target area. Probability map of the “Strong” salinity class in the reference area obtained by
applying the MNLR model (i) and the GBM model (j) as well as the MNLR model (k) and the GBM
model (l) for the target area.
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Digital maps of the salinity classes of the 60–90 cm samples are presented in Figure 7
for the reference and target areas by applying MNLR and GBM. Unlike the previous
two depth maps, the presence of the “strong” salinity class increased northwest of the
reference area at 60–90 cm, where the deepest sampling occurred (Figure 7a,b). In the
60–90 cm samples, the MNLR and GBM models were not effective in spatially predicting
the “strong” salinity class for the target area. The CI values, which show the difference
between the probability values of the most probable and 2nd most probable classes, are
higher at 60–90 cm compared to the two depth maps (Figure 7e–h).
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Figure 7. Digital maps of salinity classes (60–90 cm). Generated by applying the MNLR (a) and GBM
(b) models for the reference area as well as the MNLR (c) and GBM (d) models for the target area. For
the reference area, confusion index maps for MNLR (e) and GBM (f) as well as MNLR (g) and GBM
(h) for the target area. Probability map of the “Strong” salinity class in the reference area obtained by
applying the MNLR model (i) and the GBM model (j) as well as the MNLR model (k) and the GBM
model (l) for the target area.
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Considering the three different depths of soil salinity classes in the digital maps
(Figures 5–7), the presence of a “strong” class increases with depth in the northwest of the
reference area, both in the samples taken and in the predicted maps. The current salinity
risk in the northwest region of the reference area was found to be high, and high-resolution
(10 m) digital maps can play an effective role in defining the management zones for salinity.

3.5. Importance of Environmental Variables

Figure 8 shows the relative importance of the environmental variables used in mod-
eling soil salinity classes at the three different depths. In both models, the salinity class
of surface soils is determined by the indices produced from optical-based satellite images
(Figure 8a,d). In the MNLR model, the relative importance of SAR data increased in the
modeling of 30–60 and 60–90 samples (Figure 8b,c). In the GBM model, the increase is not
as noticeable as in MNLR (Figure 8e,f). In arid areas, salinity and soil-based indices seem
to be relatively more important for the models than vegetation indices.
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Figure 8. Importance of environmental variables in predicting soil salinity classes using different
algorithms. 0–30 cm (a), 30–60 cm (b), and 60–90 cm (c) for MNLR (Multinomial Logistic Regression).
0–30 cm (d), 30–60 cm (e), and 60–90 cm (f) for GBM (Gradient Boosting Machine).

4. Discussion

The most accurate spatial determination and subsequent monitoring of soil salinity are
crucial for sustainable agriculture and food security [3,6]. Up-to-date, reliable, and accurate
assessments of soil salinity are important for land use planners and managers. In our
study, a three-class estimation process was carried out, and Tau index values were found
to be very similar to the Tau value of 0.74 reported by Omuto et al. [57] in Northwestern
Sudan. Differences in the relative overall accuracy or Tau index values in the literature
comparisons of classification results may be due to the number of salinity classes. For
example, Kumar et al. [88] mapped the salt-affected areas with the logistic regression model
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in their study in the part of the Indo–Gangetic plain affected by soil salinity, with an overall
accuracy of 81%.

Since soil salinity is a dynamic environmental problem, it is critical to monitor temporal
and spatial changes [57]. Considering the temporal variability of soil salinity, the use of
advanced sensor technologies for precision agriculture applications in the future [89], both
in the study area and in similar regions, can be used to optimize the growing conditions [90].
Especially in arid regions where irrigated agriculture is practiced, Zhu et al. [91] emphasized
the importance of creating soil salinity maps in terms of changes in soil salinity during the
irrigated or non-irrigated period to understand the main mechanisms causing soil salinity.

Two ML algorithms that make predictions based on relatively different mathematical
calculations presented the results of a comparative study in an arid region of Sudan to
assess the transferability of salinity classes using selected covariates. The majority of
misclassified and unpredicted cases were found within the moderate salinity class in
both the reference and target areas. However, the primary objective of this study is not
centered around maximizing the predictive accuracy of the models; rather, it aims to
provide initial insights into the transferability of soil salinity models with relevance to
agronomic applications. Although the reference and target areas are characterized by
very similar climates and topographies [92], there may be concerns about quantifying the
degree of similarity between them based on more quantitative results just before model
transfer. Therefore, it is recommended for future studies to present comparative results
of different mathematical bases such as the Gower similarity index [93] and dissimilarity
index [94]. Enhancing the predictive accuracy of transferability related to soil salinity can
involve the exploration of specific geographical stratifications [53], such as physiography
or topography (slope-aspect categories), as well as the consideration of land use factors.

The low variation in elevation and the homogeneity of the climate in the study area
may have caused the elevation digital covariate to be ineffective in the modeling. The
effectiveness of optical satellite-based salinity indices [27,32,35,95] and SAR data are consis-
tent with the literature [5,29]. Nevertheless, our effort has been to leverage remote sensing
data for the purpose of transferring salinity class models to research areas characterized by
quantified similarity analysis. The study outcomes have revealed the substantial transfer-
ability of satellite-based radar and optical environmental variables within an arid region,
substantiating their potential for generating beneficial outputs. For transferability of soil
salinity levels in arid regions using ML algorithms, the PlanetScope satellite [96] can offer
important opportunities to capture the spatial variability of salinity [97].

The ultimate aim is to produce useful insights as a result of the models. Among
the salinity class maps resulting from the study, special attention should be paid to the
spatial distribution of the “strong” class. Our study includes not only defining the problem
but also searching for solutions. In this regard, Soil-Improving Cropping Systems, which
aim to prevent, mitigate, or ameliorate the adverse effects of soil salinity and improve
associated soil functions and ecosystem services related to agricultural production, should
be given importance [98]. Sugarcane, which is an important crop in Sudan [44,99], is a very
sensitive plant to salinity in terms of cultivation [8,100]. In this study, the cultivation of
this deep-rooted plant in areas with increasing “strong” class probability and especially in
areas where the danger of salinity increases with depth may experience negative effects. It
is important to select plants with relatively high resistance in saline environments [101,102].
As a matter of fact, the study area right next to the Atbara River should be subjected to
evaluations such as irrigated land classification [103,104] in a wider perspective for its
effective use in irrigated agriculture activities.

Future work should center on assessing the temporal and spatial transferability of
remote sensing, including its capability to detect fluctuations within soil salinity classes.
While the determination of large-scale soil limitations with DSM methodology is an impor-
tant objective, ML models are increasingly being used for this purpose. However, it is well
known that tree-based algorithms are sensitive to extrapolation, i.e., transferability [105].
In tree-based learners (GBM in our study), any split threshold within the nodes for the
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“y” (dependent) variable is limited by the minimum and maximum value range of the
particular feature in the training dataset [105]. Therefore, when the algorithm encounters
a value of “y” that is outside the bounds of the training dataset, it applies the closest
corresponding dependent variable value from the training dataset in the mathematical pre-
diction process. Therefore, it will be more difficult to extrapolate regression-based estimates
of transferability for tree-based learners. Soil scientists skilled in the mathematics of the
models are important at the point of applicability of ML to soil data [106]. It enables more
applicable methodologies for transferability by harmonizing the EC values into salinity
classes (categorical data) that adhere to international standards for continuous data types.

Furthermore, future studies should focus on measuring the transferability risk associ-
ated with MLAs for soil salinity prediction while also focusing on research that will help
assess the reliability of their predictions [107]. These studies can reveal valuable information
regarding the integration of ML model predictions into the decision/support system [108].
It can be recommended in research for predictive models to provide information at the
reconnaissance scale [109].

5. Conclusions

In this study, we integrated indices generated from long-term optical Sentinel data
and PALSAR-2 radar imagery through GEE for digital mapping of high-resolution regional-
scale soil salinity classes in Sudan. We also addressed the transferability of ML-based soil
salinity classes in arid areas and used MESS before transferring from the reference area to
the target area. This paper presents transfer learning techniques for fast and accurate soil
salinity mapping using open-access digital data and machine learning algorithms. In this
process, soil scientists should be well-skilled in the mathematical basis of algorithms for
integrating soil data to be transferred by modeling into the ML. The spatial information
on soil salinity generated in this study can provide remarkable insights into decision-
making processes that are compatible with the growing need for soil information for future
sustainable development goals.
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