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Abstract: As the world’s largest developing country, China has played an important role in the
achievement of the global CO2 emissions mitigation goal. The monitoring and analysis of CO2

emissions in the Yangtze River Economic Belt (YREB) urban agglomerations is strategic to the
carbon peak and carbon neutrality in China. In this paper, we revealed the spatial and temporal
variations of CO2 emissions in Cheng-Yu urban agglomeration (CY-UA), Yangtze River Middle-
Reach urban agglomeration (YRMR-UA), and Yangtze River Delta urban agglomeration (YRD-UA)
in YREB and investigated the carbon emission development stage of YREB urban agglomerations.
Particularly, a carbon emission development stage framework that considered the relationship
between economic growth and carbon emissions was built based on Environmental Kuznets Curves
(EKCs). Meanwhile, multiscale geographically weighted regression (MGWR) was used to analyze
the impact of different influencing factors, including population (POP), GDP per capita (GDPPC),
the proportion of secondary industry (SI), carbon emission intensity (CI), and urbanization (UR),
on the CO2 emissions of three urban agglomerations. The results illustrate the following: (1) The
CO2 emissions of YREB urban agglomerations decreased, with YRD-UA having the highest CO2

emissions among the three urban agglomerations and contributing 41.87% of YREB CO2 emissions in
2017. (2) CY-UA, YRMR-UA, and YRD-UA reached the CO2 emissions peak in 2012, 2011, and 2020,
respectively, all of which are at the low-carbon stage. (3) POP and GDPPC show the greatest impact
on the CO2 emissions of the three YREB urban agglomerations.

Keywords: carbon emission; Yangtze River Economic Belt; urban agglomeration; influencing factor;
multiscale geographically weighted regression

1. Introduction

The 21st century is the fastest-growing period of CO2 emissions in human history [1].
CO2 accounts for more than 70% of greenhouse gases, which enhance the trend of global
warming [2]. The current global temperature has increased by 0.86 ◦C compared to the
average temperature of the 20th century, which was 13.9 ◦C [3]. According to the Inter-
governmental Panel on Climate Change (IPCC) projections, CO2 emissions in 2030 will
be 30% higher than those in 2010 [4]. Global sustainable development will be threatened
by increasing temperatures and unstable climate change. Global warming has become an
important environmental issue around the world [5], which has caused widespread and
rapid changes in human society. Over the past decades, the international community has
signed the United Nations Framework Convention on Climate Change, the Kyoto Protocol,
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the Copenhagen Accord, the Glasgow Climate Agreement, etc., to enable global sustainable
development [6]. Nowadays, more than 130 countries have proposed carbon neutrality
targets, which is one of the most important issues in the world [7].

To achieve the carbon neutrality target, it is necessary to monitor and analyze the spa-
tial distribution and temporal patterns of CO2 emissions. In recent years, numerous studies
have been proposed to investigate the spatiotemporal variation of CO2 emissions as well
as the influencing factors. Xiao et al. examined the spatiotemporal characteristics of carbon
emission efficiency in 136 countries and analyzed the influencing factors of carbon emission
efficiency using the Tobit model [8]. Andreoni et al. conducted a decomposition analysis of
energy-related CO2 emissions in 33 countries worldwide using the index decomposition
method in order to explore the drivers of CO2 emissions variation [9]. Grodzicki et al.
assessed the impact of renewable energy usage and urbanization levels on CO2 emissions
in Europe from 1995 to 2018 using a spatiotemporal approach [10]. Namahoro et al. an-
alyzed the long-term impacts of energy intensity, renewable energy consumption, and
economic growth on CO2 emissions across regions and income levels in over 50 African
countries [11]. Fragkias examined the relationship between urban scale and CO2 emissions
for metropolitan and micropolitan areas in the United States [12]. Wen and Shao used a
nonparametric additive regression approach to explore the spatial and temporal variations
of CO2 emissions in China and analyze the main influencing factors [13].

As a developing country, China has set a goal and committed to achieving a carbon
peak in 2030 and carbon neutrality in 2060 [14,15]. The Chinese government has allocated
emission reduction targets to different regions [16]. YREB in China is a globally influential
inland economic region and a pioneering demonstration belt for the construction of ecolog-
ical civilization [17]. Together with the Belt and Road and the coordinated development of
the Beijing–Tianjin–Hebei region, YREB is one of China’s major regional economic develop-
ment strategies [18]. With the rapid economic growth of cities in YREB, a large number of
major projects have been concentrated, which are the main sources of CO2 emissions [19].
In 2017, YREB contributed 40.8% of China’s GDP and 43.6% of China’s CO2 emissions [20].
Specifically, there are three national urban agglomerations in YREB, namely, the Cheng-
Yu urban agglomeration (CY-UA), the Yangtze River Middle-Reach urban agglomeration
(YRMR-UA), and the Yangtze River Delta urban agglomeration (YRD-UA). Urban agglom-
eration is the manifestation of urban spatial clustering [21], and its development is always
guided by regional integration policies [22]. As an important part of the national economy
as well as the most concentrated areas of industrialization and urbanization [23], urban
agglomerations are important areas for achieving carbon neutrality in China [24]. In the
YREB urban agglomerations, a lot of heavy industrial projects are concentrated, and the
massive consumption of fossil energy contributed to the high CO2 emissions [25]. In 2017,
the three urban agglomerations contributed 65.31% of the GDP as well as 78.39% of the
CO2 emissions of YREB. Particularly, the resource endowment and economic development
of the upper, middle, and lower reaches of YREB are unbalanced where the cities show
different CO2 emissions patterns [26].

As a pivotal economic region, YREB plays an important role in implementing a carbon
neutrality strategy. Hence, studying the CO2 emissions of YREB urban agglomerations is
conducive to revealing the interaction between economic development and carbon emis-
sions, which provides insights for urban planning and regional sustainable development.
The goal of this study was to explore the spatiotemporal variation and development stage
of CO2 emissions in YREB urban agglomerations. Specifically, this study focused on the
CO2 emissions patterns of urban agglomerations in YREB, China, and developed a carbon
emission development stage framework that takes economic development and carbon
emissions into account. The main contributions are summarized as follows: (1) The spatial
and temporal variations of CO2 emissions in urban agglomerations in YREB were revealed.
(2) The carbon emission development stages of CY-UA, YRMR-UA, and YRD-UA were
analyzed on the basis of EKCs. (3) The influencing factors of CO2 emissions in three ur-
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ban agglomerations were discussed using the multiscale geographic weighted regression
(MGWR) model.

The rest of this paper is as follows: In Section 2, the datasets and methods are intro-
duced. Section 3 shows the results. In Section 4, the discussions are presented. In Section 5,
the conclusion is presented.

2. Datasets and Methods
2.1. Study Area

YREB covers an area of about 205.23 × 104 km2 with 11 provinces and municipalities,
with the population and GDP accounting for over 40% of China [27]. Since the release of the
Outline of the Yangtze River Economic Belt Development Plan in September 2016, YREB has
formed a development pattern of “one axis, two wings, three poles, and multiple points”.
As shown in Figure 1, CY-UA, YRMR-UA, and YRD-UA are the three poles of YREB. The
administrative boundary data were obtained from the Resource and Environment Science
and Data Center (https://www.resdc.cn/, accessed on 2 January 2023). Table 1 lists the
cities contained in three urban agglomerations.
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Figure 1. Locations of (a) YREB, (b) CY-UA, (c) YRMR-UA, and (d) YRD-UA.

Table 1. Cities in three YREB urban agglomerations.

Cities

CY-UA
Chongqing, Chengdu, Dazhou, Deyang, Guangan, Leshan,

Luzhou, Meishan, Mianyang, Nanchong, Neijiang, Suining, Yaan,
Yibin, Ziyang, Zigong

YRMR-UA

Wuhan, Changsha, Nanchang, Changde, Ezhou, Fuzhou,
Hengyang, Huanggang, Huangshi, Ji’an, Jingdezhen, Jingmen,

Jingzhou, Jiujiang, Loudi, Pingxiang, Qianjiang, Shangrao,
Tianmen, Xiantao, Xianning, Xiangtan, Xiangyang, Xiaogan,
Xinyu, Yichang, Yichun, Yingtan, Yiyang, Yueyang, Zhuzhou

YRD-UA

Shanghai, Nanjing, Hangzhou, Anqing, Changzhou, Chizhou,
Chuzhou, Hefei, Huzhou, Jiaxing, Jinhua, Ma’anshan, Nantong,
Ningbo, Shaoxing, Suzhou, Taizhou, Taizhou, Tongling, Wuhu,
Wuxi, Xuancheng, Yancheng, Yangzhou, Zhenjiang, Zhoushan

2.2. Datasets
2.2.1. CO2 Emissions Data

CO2 emissions data were obtained from the Multi-resolution Emission Inventory
model for Climate and air pollution research (MEIC), which is a bottom-up multi-scale

https://www.resdc.cn/
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emission inventory model developed by Tsinghua University [28,29]. MEIC aims to build
a high-resolution global-scale, multi-scale anthropogenic source greenhouse gas and air
pollutant emission inventory model. The MEIC CO2 emissions data at a 0.25-degree grid
resolution contains industry sources, power sources, residential sources, and transportation
sources (http://meicmodel.org.cn/, accessed on 29 May 2023). Based on China’s measured
emission factors, MEIC is more suitable than the IPCC method for the assessment of China’s
CO2 emissions [30]. Meanwhile, MEIC has the advantages of objectivity, stability, high
precision, and wide coverage and provides multi-year, different spatial scales, dynamic,
and continuous CO2 emissions monitoring information.

2.2.2. Socio-Economic Data

Based on numerous previous studies on CO2 emissions from urban agglomerations [31–33],
population (POP), GDP per capita (GDPPC), the proportion of secondary industry (SI), car-
bon emission intensity (CI), and urbanization (UR) were selected as the influencing factors of
CO2 emissions in this study. All data were derived from the China City Statistical Yearbook
(2009–2018 editions).

Table 2 reports the influencing factors used in this study. POP represents the size of the
population. GDPPC is the ratio of GDP to total population, which represents the regional
economic development level. SI is the ratio of the value added of the secondary industry’s
GDP to total GDP, which represents the industrial structure. The resource endowments in
the upper, middle, and lower reaches of YREB are unbalanced, and the industrial structure
differs greatly [34]. CI is the ratio of total CO2 emissions to GDP, which represents the
technology level. UR represents the urbanization level.

Table 2. Brief description of influencing factors.

Factor Abbreviation Description Unit

CO2 emissions CE Total anthropogenic CO2 emissions 104 tons
Population POP Total resident population person

GDP per capita GDPPC GDP/Population 104 yuan/person
Proportion of secondary industry SI Added value of the secondary industry/GDP %

Carbon emission intensity CI CO2 emissions/GDP ton/104 yuan
Urbanization UR Non-agricultural population/Population %

POP, GDPPC, SI, CI, and UR were used to construct the MGWR model to analyze the
influencing factors of CO2 emissions in YREB urban agglomerations. Moreover, GDPPC
was used in EKCs to depict economic growth.

2.3. Spatial Autocorrelation
2.3.1. Global Autocorrelation

Global Moran’s I is a typical spatial autocorrelation index that measures the degree of
spatial autocorrelation of CO2 emissions in each urban agglomeration [35]. It determines
whether the geographic phenomenon is aggregated. The calculation formula is as follows:

I =
n∑n

i=1 ∑n
j=1 Wij(xi − y)

(
xj − x

)(
∑n

i=1 ∑n
j=1 Wij

)
∑n

j=1(xi − x)2
(1)

where n is the number of units in each urban agglomeration, xi and xj denote the CO2
emissions of spatial units i and j, respectively, x denotes the average CO2 emissions of each
urban agglomeration, and Wij denotes the spatial weight matrix.

The value of I ranges from −1 to 1. I > 0 indicates positive spatial autocorrelation,
and the observations tend to be spatially clustered. The closer I is to 1, the stronger the
aggregation. I < 0 indicates negative spatial autocorrelation, and the observations tend to

http://meicmodel.org.cn/
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be dispersed. The closer I is to −1, the more dispersed it is. I = 0 indicates that there is no
spatial autocorrelation, and the observations are randomly distributed.

2.3.2. Local Autocorrelation

The local indicators of spatial association (LISA) are used to describe the correlation
between a spatial unit and its neighboring unit [36], and the formula is as follows:

Ii =
(xi − x)

S2

m

∑
j=1

Wij
(
xj − x

)
, S2 =

1
n

n

∑
i=1

(xi − xi)
2 (2)

where xi and xj denote the CO2 emissions of spatial units i and j, respectively, x denotes
the average CO2 emissions of the urban agglomeration, S2 denotes the variance of CO2
emissions of spatial units, Wij denotes the spatial weight matrix, n denotes the number of
spatial units in the urban agglomeration, and m denotes the number of neighboring units
of unit i.

Ii > 0 means that the observations of this spatial unit and its neighboring units show a
positive correlation, as high values are surrounded by high values (H-H), or low values
are surrounded by low values (L-L). Ii < 0 shows a negative correlation, as high values are
surrounded by low values (H-L), or low values are surrounded by high values (L-H).

2.4. Carbon Emission Development Stage
2.4.1. Environmental Kuznets Curve (EKC)

EKC depicts the inverted U-shaped relationship between economic growth and carbon
emissions [37]. In this paper, CI, CO2 emissions per capita (CEPC), and CE are selected
as indicators of carbon emissions. Meanwhile, GDPPC is used as an economic growth
indicator. In this study, the quadratic polynomial is used to represent EKC, and if the
coefficients of the cubic term were not significant, the quadratic polynomial is used to
represent EKC [38].

ln(E) = β0 + β1(ln G) + β2(ln G)2 + β3(ln G)3 + ε (3)

where E denotes carbon emission index, β0 is a constant term, ln G denotes the natural
logarithm of GDPPC, β1, β2, and β3 are the primary, secondary, and tertiary coefficients,
respectively, and ε is the error term.

2.4.2. Carbon Emission Development Stage Division Based on EKCs

Urban agglomerations exhibit different carbon emission characteristics at different
stages of economic development. It is necessary to consider the development stage of
carbon emissions with the state of economic development. As shown in Figure 2, there are
three types of EKCs that present a relationship between carbon emissions and economic
growth [39]: (1) EKC with CI, where GDPPC is the independent variable and CI is the
dependent variable; (2) EKC with CE, where GDPPC is the independent variable and CE is
the dependent variable; and (3) EKC with CEPC, where GDPPC is the independent variable
and CEPC is the dependent variable. There is a turning point for each curve, namely TP1,
TP2, and TP3. The development stage of carbon emissions can be divided into four stages
based on the three TPs of the EKCs. S1 is the rapid growth stage, where the carbon emission
index increases rapidly with economic growth; S2 is the pre-peak stage, where the carbon
emission index continues to grow but at a slower rate and decreases until it reaches the
peak; and S3 is the over-peak stage, in which the carbon emission index starts to decrease.
S4 is the low-carbon stage, in which the carbon emission index gradually decreases to a
lower level.
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2.5. MGWR Model

MGWR is an extension of geographic weighted regression (GWR) and has been widely
used in the analysis of spatial relationships of explanatory variables. GWR is a model for
geographic analysis that allows the model parameters to be verified based on a specific
location [40]. The GWR model is formulated as follows:

yi = β0(ui, vi) +

n

∑
j=1

β j(ui, vi)xij + εi (4)

where i represents the i-th unit, (ui, vi) are the latitude and longitude coordinates of city i,
yi is the CO2 emissions of unit i, β0(ui, vi) is the intercept at i, β j(ui, vi) is the regression
coefficient of the j-th variable of unit i, j denotes the uniform bandwidth of the regression
coefficient, xij is the j-th influencing factor for unit i, and ε is the error term of i. When
β j(ui, vi) is a constant, GWR is equal to the ordinary least squares (OLS) model.

However, the bandwidth of GWR is constant, and it cannot explain the phenomena,
which involve numerous spatial processes with various [41]. Therefore, Fotheringham
et al. (2017) proposed a multiscale geographically weighted regression (MGWR) model [42].
MGWR allows an optimal bandwidth for the explanatory variables based on local regres-
sion. MGWR is formulated as follows:

yi = βbw0(ui, vi) +

n

∑
j=1

βbwj(ui, vi)xij + εi (5)

where bw0 denotes the bandwidth used for the regression coefficient of the global variable,
bwj denotes the bandwidth used for the regression coefficient of the j-th variable, and the
other variables have the same meaning as in the GWR model.
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3. Results
3.1. Spatiotemporal Variation of CO2 Emissions
3.1.1. Temporal Variation of CO2 Emissions

Figure 3 shows the CO2 emissions of three urban agglomerations in YREB during
2008–2017. The CO2 emissions of three urban agglomerations reached their peak around
2012–2013 and then began to decrease, with the lowest emissions of the three urban agglom-
erations in 2017. Moreover, the CO2 emissions of YRD-UA were much higher than those of
CY-UA and YRMR-UA, where 41.87% of the CO2 emissions in YREB were contributed by
YRD-UA. YRD-UA had entered the middle and late stages of urban agglomeration develop-
ment with a higher level of regional integration and stronger comprehensive strength [43].
The CO2 emissions of CY-UA were the lowest among the urban agglomerations since CY-
UA was at the initial stage of urban agglomeration development with fewer megacities [44].
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Figure 3. The CO2 emissions of the three urban agglomerations from 2008 to 2017.

Since 2013, the CO2 emissions of three YREB urban agglomerations have shown a
decreasing trend; CY-UA reached its peak around 2012, while YRMR-UA and YRD-UA
reached their peaks around 2013. Specifically, the CO2 emissions in YRMR-UA declined
most significantly, while the CO2 emissions decline in YRD-UA was relatively stable. In
2016, a symposium on comprehensively advancing the development of the sustainable
development of YREB was held for the first time, highlighting the importance of ecological
conservation and environmental management [45]. The significant reduction of CO2
emissions in 2017 illustrated the effectiveness of government policies.

3.1.2. Spatial Variation of CO2 Emissions

Figure 4 shows the CO2 emissions in 2008 and 2017. The 10-year average CO2 emis-
sions of CY-UA was 49,553 × 104 tons, with the low-value area distributed in the western
mountainous area and northern mountainous areas, and the high-value area distributed
in the urban areas around Chongqing and Chengdu. The 10-year average CO2 emissions
of YRMR-UA was 74,461 × 104 tons, with the low-value area distributed in the southern
mountainous area and the border of Jiangxi and Hubei provinces, and the high-value area
distributed in Wuhan, Changsha, and Nanchang. For YRD-UA, the 10-year average CO2
emissions was 127,413 × 104 tons, with the low-value areas distributed in the southwestern
mountains and western and northern plains, and the high-value areas distributed in Shang-
hai, Hangzhou, Nanjing, and the surrounding areas. Notably, the CO2 emissions of several
large cities, such as Chengdu in the CY-UA and Wuhan in the YRMR-UA, decreased in
2017 compared to 2008.
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3.1.3. Spatial Aggregation of CO2 Emissions

Table 3 shows the global autocorrelation performance. The Z score is a multiple
of the standard deviation, and the p value indicates probability. Z is correlated with p,
where p < 0.05 indicates that the confidence level is greater than 95% [46]. CY-UA and
YRD-UA presented significant spatial aggregation characteristics. The Moran’s I of CY-UA
in 2008 and 2017 were 0.146 and 0.173, respectively, where the spatial autocorrelation of
CO2 emissions increased. The Moran’s I of YRMR-UA in 2008 and 2017 was 0.034 and
0.045, respectively. As for YRD-UA, the Moran’s I was 0.180 and 0.135 in 2008 and 2017,
respectively.

Table 3. Global spatial autocorrelation of CO2 emissions in three urban agglomerations.

2008 CY-UA YRMR-UA YRD-UA 2017 CY-UA YRMR-UA YRD-UA

Moran’s I 0.146 0.034 0.180 Moran’s I 0.173 0.045 0.135
Z score 4.260 0.969 3.257 Z score 5.463 1.105 2.427
p value 0.000 0.333 0.001 p value 0.000 0.269 0.015

Figure 5 shows the spatial aggregation characteristics of the CO2 emissions of three
urban agglomerations. For CY-UA, the H-H clusters and L-H clusters were distributed
around Chongqing and Chengdu, and the L-L clusters were distributed in the western
mountainous areas and scattered in the south and east. The cluster pattern of CO2 emissions
in CY-UA can be described as high in the middle and low around, and the overall pattern
has not changed in the decade. For YRMR-UA, the H-H clusters mainly appeared in the
north area, the L-H clusters mainly appeared around Wuhan, Changsha, and Nanchang,
and the L-L clusters appeared in the southeast area. The cluster pattern of CO2 emissions in
YRMR-UA was high in the north and low in the south. For YRD-UA, the H-H clusters and
L-H clusters were mainly distributed in the eastern coastal area, including Shanghai and
Nanjing, while the L-L clusters were scattered in the south and southwest areas. The cluster
pattern of CO2 emissions in YRD-UA was high along the coast and low in the southwest.
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3.2. Carbon Emission Development Stage Analysis

Figure 6 shows the relationship between carbon emissions and GDPPC for CY-UA.
The carbon emission development stage of CY-UA could be divided into three stages: S1
(–2005), S2 (2005–2012), and S4 (2012–). S3 and S4 of CY-UA largely overlapped and could
be combined into one stage. The peak time of CO2 emissions in CY-UA was around 2011,
and CY-UA is at the low-carbon stage.

Figure 7 shows the relationship between carbon emissions and GDPPC for YRMR-UA.
Similar to CY-UA, the S3 and S4 stages of YRMR-UA were combined. The YRMR-UA CO2
emissions could be divided into three stages: S1 (–2008), S2 (2008–2011), and S4 (2011–).
The peak time of CO2 emissions in YRMR-UA was around 2011, and YRMR-UA is at the
low-carbon stage.
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Figure 7. Carbon emission development stage of YRMR-UA.

Figure 8 shows the relationship between carbon emissions and GDPPC for YRD-UA.
The emissions of YRD-UA could be divided into four stages: S1 (–2005), S2 (2005–2020), S3
(2020–2022), and S4 (2022–). The CO2 emissions of YRD-UA reached the peak around 2020,
and YRD-UA was at S4 stage. Obviously, the actual CO2 emissions peaked earlier than the
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carbon emission development stage. It could be concluded that the Yangtze River Delta
integration policy strongly deepened the industrial division of labor and industrial transfer
among cities, which contribute to the reduction of CO2 emissions.
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3.3. Model Comparison
3.3.1. Comparison of Model Performance

Table 4 shows the statistical results of OLS, GWR, and MGWR. R2 is the coefficient of
determination. Adjusted R2 excludes the effect of the number of independent variables on
R2. AICc denotes the corrected Akaike information criterion, which is a relative measure
of the goodness of fit [47]. RSS is the sum of squared errors. The effective number of
parties (ENP) is a trade-off between the variance of the fitted values and the deviation of
the coefficient estimates to measure the value of the equilibrium point.

Table 4. Comparison of OLS, GWR, and MGWR indicators from 2008–2017.

Year Model R2 Adjusted R2 AICc RSS ENP

2008 MGWR 0.96 0.95 5.38 2.85 11.42
GWR 0.96 0.95 7.40 2.80 12.52
OLS 0.93 0.92 1159.39 / /

2011 MGWR 0.95 0.94 13.24 3.33 10.42
GWR 0.95 0.94 17.48 3.81 8.61
OLS 0.93 0.92 1177.63 / /

2014 MGWR 0.95 0.94 12.45 3.35 10.01
GWR 0.95 0.94 13.92 3.59 8.83
OLS 0.93 0.93 1165.29 / /

2017 MGWR 0.88 0.87 74.08 8.12 9.88
GWR 0.87 0.86 75.64 8.80 8.43
OLS 0.86 0.85 1204.20 / /
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As shown in Table 4, compared to GWR and OLS, MGWR gave higher R2, adjusted
R2, and ENP, with lower AICc and RSS, indicating that MGWR had a better local fit and
less information loss. Meanwhile, the spatial distribution of R2 for GWR and MGWR is
presented in Figure 9. CY-UA shows a higher R2 than the other urban agglomerations.
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3.3.2. Comparison of Model Bandwidth

Table 5 presents the bandwidths of each influencing factor for GWR and MGWR in
different years. In GWR, the factors shared the same bandwidth, while they were assigned
to different bandwidths in MGWR. The different values of bandwidth demonstrated the
spatial heterogeneity of factors, by which the diversity of influencing factors can be better
represented [48].

Table 5. Bandwidths of different influencing factors in MGWR and GWR.

Factors
2008 2011 2014 2017

MGWR GWR MGWR GWR MGWR GWR MGWR GWR

POP 66 51 68 67 68 66 68 69
GDPPC 48 51 59 67 53 66 68 69

SI 68 51 68 67 68 66 68 69
CI 44 51 48 67 68 66 52 69
UR 46 51 46 67 46 66 44 69

3.4. Influencing Factors for CO2 Emissions

Table 6 shows the descriptive statistics of the regression coefficients of influencing
factors in MGWR. It can be seen that the rank of the generated regression coefficients was
POP > GDPPC > CI > UR > SI. Obviously, POP and GDPPC presented the highest regression
coefficients. The coefficient of POP is positive, indicating that the rise of population will
promote the CO2 emissions of urban agglomerations in YREB. GDPPC presented the
second highest regression coefficient, indicating that GDPPC had a facilitating effect on
CO2 emissions. The coefficients of UR and SI were much lower, and their impact on CO2
emissions was not significant.
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Table 6. Statistics of regression coefficients for different influencing factors in MGWR.

Factors Year Min Median Max Mean STD

POP 2008 0.637 0.818 0.992 0.814 0.134
2011 0.664 0.814 0.89 0.79 0.089
2014 0.705 0.805 0.961 0.821 0.102
2017 0.719 0.732 0.743 0.733 0.007

GDPPC 2008 0.594 0.659 0.678 0.647 0.03
2011 0.591 0.63 0.647 0.625 0.019
2014 0.635 0.647 0.66 0.65 0.007
2017 0.183 0.192 0.234 0.201 0.018

SI 2008 −0.034 −0.017 0.106 0.011 0.052
2011 −0.035 −0.027 0.011 −0.019 0.017
2014 0.016 0.022 0.047 0.028 0.012
2017 0.037 0.065 0.083 0.063 0.015

CI 2008 0.098 0.184 0.285 0.202 0.066
2011 0.105 0.171 0.3 0.195 0.066
2014 0.082 0.16 0.269 0.177 0.063
2017 0.157 0.236 0.509 0.262 0.091

UR 2008 −0.068 0.075 0.161 0.041 0.07
2011 −0.038 0.038 0.111 0.027 0.038
2014 −0.048 −0.044 −0.004 −0.033 0.017
2017 0.132 0.214 0.408 0.255 0.108

Figure 10 shows the spatial distribution of the regression coefficients of POP. There
was a significant positive correlation between POP and CE, where an increase in population
will increase energy consumption and thus produce more CO2 emissions [49]. The impact
of POP on CE was significant in YRD-UA. YRD-UA was an important economic center in
China, which provided sufficient jobs and attracted a large number of migrants [50]. Traffic
congestion caused by population concentration was not conducive to adequate combustion
of fuels [51], leading to an increase in transportation CO2 emissions. The transportation
CO2 emissions in YRD-UA amounted to 9971.78 × 104 tons in 2017, which is approximately
equal to the sum of CY-UA and YRMR-UA.
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Figure 11 shows the spatial distribution of regression coefficients for GDPPC. The
positive correlation between GDPPC and CE indicates that the growth of GDPPC pro-
moted CO2 emissions in YREB urban agglomerations. The influence of GDPPC on CE
was significant in YRD-UA, and the regression coefficient decreased from east to west
in 2008, 2011, and 2014. Economically developed regions responded better to the policy.
The government improves local competitiveness in response to economic conditions [52].
More attention should be paid to the change in people’s awareness and environmental
management caused by the economic improvement.

Figure 12 shows the spatial distribution of the regression coefficients of CI. The positive
correlation between CI and CE indicates that the adoption of technological innovations and
the improvement of energy use efficiency reduced CO2 emissions [53]. The impact of CI
on CE was significant in YRD-UA. Technological advances promoted the harmonization
of economic and environmental development [54]. Companies were more inclined to use
environmentally friendly technologies [55].

Figure 13 shows the spatial distribution of regression coefficients for UR. The impact
of UR on CE was insignificant, and the value of the regression coefficient varied between
−0.07 and 0.41. The reason was that urbanization led to an increase in people’s demand
for employment, housing, transportation, commodities, and energy dependence [56], and
urban construction increased society’s demand for high-emitting industries such as steel
and cement [57].

Figure 14 shows the spatial distribution of regression coefficients for SI. SI presented a
negative correlation with CE in 2008 and 2011, while SI positively correlated with CE in 2014
and 2017. The reason may be that some cities in YREB were at the stage of industrial start-up
and development. YRD-UA was dominated by light industry and high-tech industry with
low CO2 emissions [58]. YRMR-UA was at the initial stage of the Rise of Central China
Plan, and CY-UA was vital to China’s western development [59]. The industrial layout and
energy structure of YREB are gradually maturing.
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It is noteworthy that the spatial distribution of five influencing factors changed signifi-
cantly in 2017. The spatial heterogeneity of POP decreased, the impact of GDPPC decreased,
the spatial heterogeneity of CI increased, and the spatial heterogeneity of UR increased.
It may be due to the convening of the symposium on comprehensively advancing the
development of sustainable development in YREB held in 2016. The difference in the
sensitivities of inland and coastal cities to policies resulted in changes in the regression
coefficients of the influencing factors in 2017.

4. Discussion
4.1. Insights into the CO2 Emissions of YREB Urban Agglomerations

As a pioneer demonstration belt for the construction of ecological civilization in China,
YREB is of great significance to China and the world in achieving emission reduction and
sustainable development. Different urban agglomerations present different carbon emission
characteristics at different stages of economic development, making it important to develop
targeted emission reduction measures. China is in the process of rapid urbanization and
industrialization [60]. In 2017, the proportion of tertiary industry in YRD-UA was 2.84%
higher than the proportion of secondary industry [53]. Several cities in the southeast coastal
region had already crossed the industrialization stage and entered the post-industrialization
period [61], which was confirmed by the low proportion of industrial CO2 emissions in
YRD-UA and the significant growth of electricity CO2 emissions. However, most cities
in central and western China were in the process of industrialization, and the proportion
of tertiary industry was lower than the proportion of secondary industry [62], which led
to a higher proportion of industrial CO2 emissions in CY-UA and YRMR-UA than that in
YRD-UA.

The optimization and upgrading of industrial structures could promote carbon miti-
gation in CY-UA and YRMR-UA. Specifically, attention can be paid to industries such as
electronic information, engineering machinery, rail transportation equipment, automobiles,
aerospace, biomedicine, and new materials. In addition, CY-UA and YRMR-UA could
undertake the transfer of high-tech industries from the developed coastal regions. With the
deepening of the 14th Five-Year Plan and the vigorous development of wind, hydro, and
photovoltaic power generation [63], renewable energy will be the mainstream of the future
energy structure in YREB. The west-east gas pipeline project has provided cleaner energy
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and reduced fossil fuel consumption [64]. More attention should be paid to taking measures
to reduce CO2 emissions from production and life while increasing the share of the service
industry in the regional economy. Meanwhile, YRD-UA should focus on reducing the
facilitating effects of population on CO2 emissions by considering human capital agglomer-
ation in the process of urbanization [65]. The investigation of spatiotemporal variations
in CO2 emissions contributes to timely policy adjustments for carbon emission mitigation
in YREB urban agglomerations. Meanwhile, EKCs revealed the relationship between CO2
emissions and economic development, providing a strategy that can be applied to analyze
the carbon emission development stage of more regions. Furthermore, the importance of
different influencing factors for CO2 emissions was generated and discussed, which can be
conducive to promoting regional sustainable development.

4.2. Limitations

This study investigated the CO2 emissions of YREB urban agglomerations, but there is
still room for further research. The MEIC CO2 emissions data is from 2008 to 2017, and the
spatiotemporal patterns of CO2 emissions after 2017 were not explored in this study. There-
fore, expanded CO2 emissions datasets with more recent years will be considered in the
future. Meanwhile, five influencing factors that reveal economic and social characteristics
were selected in this study, and future studies will focus on the selection of representative
and comprehensive influencing factors of CO2 emissions in urban agglomerations.

5. Conclusions

This paper revealed the spatial and temporal variations of CO2 emissions in three
urban agglomerations in YREB. Meanwhile, the carbon emission development stage of the
YREB urban agglomerations was explored based on EKCs that take economic growth and
carbon emissions into account. In addition, the influencing factors of CO2 emissions were
analyzed using MGWR. The main conclusions are as follows:

(1) The CO2 emissions in the three urban agglomerations first increased and then de-
creased from 2008 to 2017. YRD-UA contributed 41.87% of the CO2 emissions of YREB,
with the highest CO2 emissions among the three urban agglomerations. A sympo-
sium on comprehensively advancing the development of the sustainable development
of YREB was held in 2016, and the CO2 emissions in three urban agglomerations
decreased significantly in 2017.

(2) The carbon emission development stage of urban agglomeration was analyzed based
on the relationship between carbon emissions and economic growth. According to the
EKCs, CY-UA, YRMR-UA, and YRD-UA reached the CO2 emissions peaks around
2012, 2011, and 2020, respectively. Nowadays, the urban agglomerations in YREB are
at the low-carbon stage.

(3) The CO2 emissions of YREB urban agglomerations were significantly affected by
POP and GDPPC, while the impacts of UR and SI were not significant. The spatial
distribution of influencing factors changed significantly in 2017. To reduce CO2
emissions, human capital agglomeration and clean energy should be considered in
the process of urbanization.

Moreover, future work will focus on the long-term carbon emission development stage
analysis of typical urban agglomerations, where more comprehensive CO2 emissions data
and influencing factors will be taken into account.
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