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Abstract: Human‑caused environmental change has profoundly impacted resource management
and land use patterns in Bangladesh’s Chittagong Hill Tracts. This study used multi‑temporal Land‑
sat images from 1998, 2008, and 2018 to analyze land use and land cover changes, particularly those
associated with forest cover changes, in Bangladesh’s Chittagong Hill Tracts. Using object‑based
image classification, Landsat images from 1998, 2008, and 2018 were separated into four categories
based on their dominant land use and land cover features: forest, grassland, water bodies, and bare
land. Post‑classification comparison was used to assess the degree and frequency of change, and
this method was further developed to evaluate the balance, fluctuation, and adaptation of forests.
In addition, the spatial structure of land cover and temporal trajectories related to changes in for‑
est cover were studied. The CA–Markov chain model was also used to anticipate the 2048 LULC
map. The image classification of the years 1998, 2008, and 2018 showed that the overall accuracy
was 89.65%, 84.44%, and 86.26%; producer accuracy was 90.00%, 68.75%, and 72.22%; and the Kappa
coefficient was 85.68, 82.84, and 76.36, respectively. The results showed that between 1998 and 2018,
forest cover increased by 58.03%, transforming grassland to forest; grassland increased by 29.50%,
converting bare land to grassland; and forest conversion to grassland was 13.34%. In addition, the
result of the landscape metric revealed that during the whole study period, class level indicated a
fragmentation of forest, bare land, grassland, and water in the CHT, and landscape level indicated
by Shannon’s Diversity Index and Shannon’s Evenness Index showed a slight decrease in the land.
Based on the CA–Markov model, forest area is predicted to expand to 9129 Km2 in 2048; however,
other land uses (bare land and grassland) continue to decrease. This substantial increase in forest
cover results from effective forest management based on community forestry practices and the suc‑
cessful execution of Bangladesh’s national forest strategy. However, as Bangladesh’s population
rises, so does the country’s need for lumber/timber. Bangladesh’s government should revise its for‑
est policy to meet the local community’s needs without endangering the forest, and policymakers
must take climate change seriously. Our strategy for evaluating the critical indicators of changes in
forest cover and pathways of change will aid in connecting these patterns to the dynamics of change,
such as deforestation and reforestation. It would therefore serve as a framework for developing
effective conservation and management plans for the Chittagong Hill regions in Bangladesh.

Keywords: remote sensing; GIS; LULC; dynamic change detection; humandriving force; community
forestry; forest management
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1. Introduction
The recognition of the invaluable services provided by tropical forests to both host

nations and the global community is widely acknowledged [1]. These unique ecosystems,
characterized by their unparalleled array of plant and animal species, possess irreplaceable
biodiversity and genetic resources [2,3]. Since the Earth Summit, forest policies in numer‑
ous countries have prioritized the objective of sustainable forest management, regardless
of the extent of human interventions within forested areas [4]. Forests and woodlands are
vital to keeping the environment carbon‑free [5–7]. However, ecological systems, such as
forests, experience constant changes due to natural biological processes, resulting in con‑
tinued instability [4].

Bangladesh has approximately 2.52 million hectares of tropical forest, accounting for
10% of its area [8]. Rural areas house over two‑thirds of Bangladesh’s population, and
their livelihoods are closely linked to the forests, either directly or indirectly [9]. For sev‑
eral decades, the national forests in Bangladesh have faced significant and rapid depletion,
reaching a critical stage of concern [1]. The natural forests of Bangladesh experienced a
consistent annual decline of 2.1% over 20 years until the early 1980s, which further accel‑
erated to a rate of 2.7% between 1984 and 1990 [10]. Between 1964 and 1985, there was a
decline in the growing stockwithin ChittagongHill Tracts reserve forests, decreasing from
23.8millionm3 to below 19.8millionm3 [11]. Between 2000 and 2005, around 2000 hectares
of forest cover were lost annually [12].

As a result of degradation, forest communities are motivated to utilize their tradi‑
tional knowledge and practices to engage in activities such as conservation, reforestation,
bushfire control, and the prevention of illegal forest exploitation and encroachment [13].
The combined efforts of these local communities have led to the regeneration of forested
lands and the enhancement of biodiversity levels [14]. Several policies and practices in
South and Southeast Asia have emerged centered around community‑based forest man‑
agement [15,16]. The global community places significant emphasis on preserving biodi‑
versity, promoting forest health, ensuring sufficient forest productivity, and safeguarding
the socio‑economic functions associated with forest resources [17].

In Bangladesh, traditional forest management techniques have historically aimed to
achieve economic and ecological objectives [18]. However, rapid deforestation occurred
due to various socio‑economic and socio‑political factors [19,20], diminishing the effective‑
ness of traditional forest planning andmanagement approaches. Unplanned human activ‑
ities and unforeseen pressures exceeded planned conservation efforts, resulting in exten‑
sive deforestation and fragmentation of forest resources [19]. Given the country’s dense
population and limited land area, policymakers had to explore alternative management
practices. In the late 1970s, social forestry was introduced as a successful alternative that
transitioned the Forest Department’s role from a custodial to a participatory model, in‑
volving local communities in forest protection, reforestation activities, and benefit‑sharing
arrangements [21].

During Bangladesh’s current period of sovereignty, the Forest Act underwent its first
amendment in 1989, which aimed to enhance forest protection by imposing stricter penal‑
ties and limiting the discretionary powers of forest officials and local magistrates [18].
Although this amendment primarily focused on strengthening traditional forest protec‑
tion measures, it did not introduce the concept of social forestry until 2000, when another
amendmentwas introduced, leading to the emergence of social forestry in Bangladesh [22].
The Forest (Amendment) Act of 2000 marked a significant milestone as it paved the way
for the formulation of the groundbreaking 2004 Social Forestry Rules (SFR) by the gov‑
ernment [18]. Bangladesh’s fundamental principle of social forestry revolves around inte‑
grating local communities in reforestation activities, aiming to achieve multiple objectives
encompassing ecological, economic, and social benefits [23].

One of the main requirements for global change research is to evaluate and track the
condition of the earth’s surface [24,25]. As the foundation for all living things and a key
factor in global climate change, vegetation classification and mapping are crucial tech‑
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nological undertakings for managing natural resources [25,26]. Land use/cover change
(LUCC) is most frequently associated with logging, globalization, and agricultural expan‑
sion that alter the natural vegetation [27,28]. At both the local and global levels, LUCC
causes several environmental issues, such as biodiversity loss brought on by greenhouse
gas emissions [28,29], variations in land surface temperature (LST), and shifts in precip‑
itation [30]. Urbanization’s adverse environmental effects, which include population in‑
crease, extensive infrastructure development, and constantly shifting landscapes, are a
worldwide issue [31].

Bangladesh, known for its high population density, faces increasing land pressure,
particularly in forested areas, due to food production, urban settlements, and industrial
development [1]. Approximately 60% of the total land is utilized for agriculture, which
serves as a primary source of livelihood for over two‑thirds of the rural population [32].
However, limited land availability per person, constrained by geographical factors and in‑
adequate farming practices, hinders the country’s food production capacity [9]. The forests
and agricultural lands play a crucial role in the lives of people residing in Bangladesh’s
Chittagong Hill Tracts (CHT) region [33]. In the past, these forested landscapes provided
various local and regional benefits, including food, energy, timber, water, and healthcare,
while also contributing to national revenue generation. Nonetheless, the exploitation and
degradation of forests, which started in the previous century [34] and continue to this day,
have significant implications for the sustainable livelihoods of forest‑dependent commu‑
nities in terms of both direct and indirect resources [35].

Bangladesh is not exceptional in these environmental changes. Urbanization has also
affected the local environment to certain degrees and made it more susceptible to land
degradation. Thus, timely and accurate information about local spatial coverage, distribu‑
tions of LULC categories, and their dynamics are prerequisites for the country’s planning,
socio‑economic development, and sustainable landmanagement. No evidence‑based stud‑
ies have been conducted in the Chittagong region to understand how implementing a
community‑based forestry policy affects forest cover change and regional land dynamics.
This is the first study of its kind to examine the impact of community‑based forestry on
land use and land cover change in the Chittagong Hill Tracks and whether or not there are
factors that influence this change. This study will highlight the aspects responsible for a
land cover change in the Chittagong Hill Tracks. The study aimed to access the dynamic
LULC change detection in the Chittagong Hill Tracks using remote sensing data and Ge‑
ographic Information Systems technologies for 1998, 2008, and 2018. The study also used
the cellular automata–Markov model (CA–Markov) to predict future land use changes un‑
der a simulated 2048 scenario. The main objectives of this study were: (i) to detect and
identify the dynamics change in LULC from 1998 to 2018 in the Chittagong Hill Tracts,
Bangladesh; (ii) to identify the driving forces behind these changes; and (iii) to predict the
LULC map for the year 2048 using CA–Markov.

2. Materials and Methods
2.1. Study Area

The Chittagong Hill Tracts are part of the Chittagong Division, located in the south‑
eastern hilly area of Bangladesh, and play a vital role (Figure 1) [9]. It geographically lies
between 21.025′ N to 23.045′ N latitude and 91.045′ E to 92.050′ E longitude and covers an
area of approximately 13,198.16 Km2, almost 40% of the total forest land area, and 8% of
the total land area in Bangladesh [36]. The study area borders Myanmar in the southeast,
the Indian state of Tripura to the north, Mizoram to the east, and the Chittagong district
in the west. The Chittagong Hill Tracts are divided into three hill districts: Khagrachhari,
Bandarban, and Rangamati. The area comprises forest, grassland, watershed, bare land,
and agricultural land [9]. Paths and rows cover this area: 136/44, 136/45, and 135/45. In
this region, almost twelve ethnic groups are the principal inhabitants, highly dependent
on natural resources for their livelihood [37]. The major sources of income are agriculture,
livestock, and the harvesting of forest products. The landscape and local people are unique
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parts of the Chittagong Hill Tracts. The traditional landscape of Chittagong Hill Tracts
combines a mix of land uses: natural forests and plantation forests cover more than 70%
of the land area in three districts. The primary plant species in the region are tropical wet
evergreen/semi‑evergreen and deciduous, classified as ‘hill forests’. The large area covers
mixed natural and planted forests [34]. This area is characterized by a tropical monsoon
climate with three dominant seasons: the dry winter season (November toMarch), the pre‑
monsoon season (April to May), and the monsoon season (June to October). The rainfall
usually starts to increase fromMarch to June. Annual rainfall ranges from 2540 mm in the
north to 2450 mm in the east, reaching nearly 3810 mm in the south and west.
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Figure 1. Location map of Chittagong Hill Tracts showing the study area in Bangladesh.

2.2. Remote Sensing Data
The data used in this study were obtained from various Landsat sensors, including

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 OLI
for 1998, 2008, and 2018 (Table 1). A total of 3 senses were acquired between Novem‑
ber and December. All images were obtained from the United States Geological Survey
(USGS—https://earthexplorer.usgs.gov/ (accessed on 12 January 2023)). All raw satellite
images had a cloud cover of less than 10%. Each image cloud was removed by supervised
classification extraction by the mask tool in ENVI 5.1. For the Thematic Mapper (TM),
the Enhanced ThematicMapper Plus (ETM+) image band combinationwas red‑green‑blue
(RGB) [4‑3‑2], and the Landsat 8 OLI image band combinationwas red‑green‑blue (RGB) [5‑3‑2].

https://earthexplorer.usgs.gov/
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Table 1. Characteristics of Landsat data used in the study.

Years Satellite Sensor Type Spatial
Resolution

Date of
Acquisition Image

1998 Landsat 5 TM 30 m December 1998 GeoTiff
2008 Landsat 7 ETM+ 30 m November 2008 GeoTiff
2018 Landsat 8 OLI 30 m November 2018 GeoTiff

2.3. Satellite Image Pre‑Processing
Geometric rectification is essential for producing corrected LULCmaps (Figure 2). For

change detection, various pre‑processing requirements, for example, geometric correction,
radiometric collaboration, and atmospheric corrections, are the most important to avoid
errors in the results. In this study, Landsat Collection Level‑1 downloaded images were
rectified and corrected—geometrically and topographically. Moreover, one of the more
significant preconditions for remote sensing data analysis is an atmospheric correction,
which has been done by applying the Model FLAASH (Fast Line‑of‑Sight Atmospheric
Analysis of Spectral Hypercubes) to improve image information by transforming radiance
as a sensor into surface reflectance values. Mosaic was applied for the paths and rows:
136/44, 136/45, and 135/45. The image pre‑processingwas done using ENVI 5.1 andArcGIS
10.5 software.

2.4. Image Classification
Image classification was performed using a supervised classification method based

on the Maximum Likelihood Classifier of given classes (Table 2). Training samples were
selected with sufficient homogeneity to symbolize the spectral and spatial characteristics
of each LULC class and maximize classification accuracy. This step is the most signifi‑
cant element of supervised classification because spectral signatures extracted from train‑
ing samples will define the overall accuracy of the classification and, therefore, the final
LULC map.

Table 2. Classification scheme/categories.

Code LULC Classes Description

1 Water Area covered with ponds, lakes, rivers, and seasonal streams.
2 Bare land Areas described with non‑vegetative cover, rocks, and some limited settlement areas.
3 Forest Areas with natural or artificial woody vegetation and canopy cover more than <10%.
4 Grassland Areas covered by grasses, agriculture, and some sparse shrubs in between.

2.5. Accuracy Assessment
Accuracy assessment is a post‑classification step accomplished through the correspon‑

dence evaluation of classified LULCmaps against assumed factual geographical reference
data [38]. The image classification accuracy was assessed with ground truth data in the
form of reference data points obtained from Google Earth images of 1998, 2008, and 2018,
used to obtain overall accuracy, user accuracy, producer accuracy, and Kappa coefficient.
The classifier, carried out using 58, 90, and 211 points, was generated randomly for 1998,
2008, and 2018 supervised images, respectively. Each point has a specific pixel value based
on ground‑truth data and visual interpretation. Identified points were considered classi‑
fied values, and pixel values were considered reference values.

Classification results were carried out on thematic maps using different truth refer‑
ence data, and accuracy assessments were presented for all classifications. Overall accu‑
racy, user accuracy, producer’s accuracy, and Kappa coefficient accuracy derived from the
error matrices were used for the accuracy assessment of the final maps. An error matrix
and Kappa statistics were generated from reference and classified data.
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Figure 2. Flow chart of the remote sensing methodology.

In this study, satellite images were accurately assessedwith the Landsat images Land‑
sat 5‑TM 1988, Landsat 7‑ETM+ 2008, and Landsat 8 OLI 2018, which the ground truth data
likely equates to. Overall accuracy was calculated by dividing the sum of correctly classi‑
fied pixels (diagonal) [39] by the total number of reference pixels.

Overall accuracy = (∑_(e = 1)^Lncc)/N (1)

The overall classification accuracywas calculated for all classifications, aswell as class‑
specific accuracy, which can be created on the user and producer levels. Users’ accuracy,
i.e., the error of commission [40] and user accuracy assessment, was calculated by dividing
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the number of correctly classified pixels in each category by the total number of classified
pixels in that category (row total).

Users’ accuracy = ncc/(n + c) (2)

Producer accuracy is themeasure of the error of omission [40], and producer accuracy
was calculated by dividing the number of correctly classified pixels in each category by the
total number of reference pixels in that category (total column).

Producer accuracy = ncc/(nc+) (3)

The Kappa coefficient was calculated by using the following equations:

k^ = (∑_(1‑1)^r〖P_ii ‑∑_(1‑1)^r〖P_(i+) × P_(+i)〗〗)/(1‑∑_(1‑1)^rP_(i+) × P_(+i)) (4)

where r = the number of rows in the error matrix;

P_ii = the proportion of pixels in row ‘r’ and column ‘i’;
P_(i+) = the proportion of the marginal total of row ‘i’;
P_(+i) = the proportion of the marginal total of column ‘i’.

2.6. Cellular Automata Model
The cellular automatamodelmainly consists of cell, time, and rule neighbor. The filter

of the cellular model determines the neighbors. Cellular automata (CA) are a spatiotem‑
poral calculation of a dynamic process model used for LULC change. The commonly used
neighborhoods are Moore, the extendedMoore, and von Neumann. The expression of the
Cellular Automata equation is:

S (t, t + 1) = f (St, N) (5)

where S is the set of states of the finite cells, the (t, t + 1) are different times, N is the neigh‑
borhood of cells, and f is the transformation rule of local space [41].

2.7. CA–Markov Model
The CA–Markov model is valuable for modeling LULC changes and can simulate

prediction changes. The spatial prediction accuracy can be effectively simulated simultane‑
ously [42]. CA–Markov model effectively combines the Markov model and the CAmodel.
This approach is based on a Markov stochastic probability matrix for predicting the transi‑
tion from one condition to another [30]. The Markov chain model is most commonly used
to simulate transitions, parameters, and trends. It created probability transitionmatrices to
anticipate and categorize probable land use/cover change (LUCC) and urban development
scenarios and investigate land change simulation trends [30]. Equations ((6)–(8)) based on
the conditional probability formula were used to estimate trends:

(t + 1) = Pij × S(T), (6)

Pij = Pij =

P11 P12 P1n
P21 P22 P2n
Pn1 Pn2 Pn3

, (7)

(0 ≤ Pij < 1 and ∑N
j=1 Pij = 1, (i, j = 1, 2, . . . . . . . . . n), (8)

where S(t) is the state of the system at time t, S (t + 1) is the state of the system at time (t + 1),
and Pij is the matrix of the transition probability in a state. By projecting 2018 and 2048,
the cellular automata (CA) and Markov chain models are employed to generate the LUCC
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future scenario. The land use change modeler (LCM) in TerrSet (Clark Labs TerrSet 18.31)
was used to forecast LUCC for the projected time using the CA–Markov model [30].

2.8. Landscape Metrics
The FRAGSTATES software version 4.2.1 [43] was applied for computed landscape

metrics in this study area. Landscape metrics characterized the spatial fragmentation and
heterogeneity for 1998, 2008, and 2018, covering three decades. The selected landscape
patterns were divided into three levels, i.e., patch, class, and landscape. FRAGSTATS is a
spatial pattern analysis program implemented by the decision maker, forest manager, and
ecologists to analyze landscape fragmentation or describe characteristics of the landscape
and elements of those landscapes [44]. FRAGSTATS version 4.2.1 was used to extract the
landscape metrics from each 1998, 2008, and 2018 classified map. In this study, a total of
twelve landscape metrics were examined, including:
‑ Class level: Class Area (CA), Total Landscape Area (TLA), Number of Patches (NP),

Mean Patch Size (MPS), Patch Size Coefficients of Varian (PSCOV),Mean Shape Index
(MSI), Edge Density (ED), Mean Nearest Neighbor Distance (MNN), and Intersper‑
sion Juxtaposition Index (IJI);

‑ Landscape level: Total Landscape Area (TLA), Number of Patches (NP), Mean Patch
Size (MPS), Mean Shape Index (MSI), MeanNearest Neighbor Distance (MNN), Inter‑
spersion Juxtaposition Index (IJI), Mean Proximity Index (MPI), Shannon’s Diversity
Index (SDI), and Shannon’s Evenness Index (SHEI).

2.9. LULC Change‑Driving Forces Model
Previous studies have suggested that the main LULC of the Chittagong Hill Tracts

area driving factor is climate change, while anthropogenic contributed to LULC slightly.
Therefore, this study only considered climate change as a leading driving factor.

The monthly meteorological data from 1998 to 2018 were collected from the meteoro‑
logical station of Bangladesh. Each year of the CHT areawas obtained by substituting time
into the linear regression model. The annual average temperature (AAT), annual average
relative humidity (AARH), and annual average rainfall (AAR) were used in the analysis.
Climate change factors such as the average yearly temperature and annual average rela‑
tive humidity were used to establish corresponding data sets. All the meteorological data
processing steps were carried out in linear regression.

Climate change factors such as the annual average temperature and annual average
relative humidity were used to establish corresponding data sets. The relationship be‑
tween dependent variables and independent variables is given below:

Y = a + b1x1 + b2x2 + b3x3 + . . . . . . . . . . . . . + bnxn, (9)

where Y is a dependent variable, a is a constant turn, x1, x2, and x3 are independent vari‑
ables, and b1, b2, and b3 are the coefficients of independent variables.

The constant coefficient illustrates the value of Y in all dependent variables at a zero
time zone. In addition, the parameter coefficients state a change in Y for one unit increase
in the dependent variable [45]. T‑tests were applied to verify the statistical regression coef‑
ficients’ significance and constant in the linear regression model. The determination sam‑
ple coefficient (R2) was applied to explain the contribution to the dependent variable in
the linear regression model. R2 means how closely dependent variables are related to in‑
dependent variables [46].

3. Results
3.1. LULC Classes and Their Distribution

Land use cover changes (LULCCs) were computed for 1998, 2008, and 2018, focusing
on vegetation, grassland, water bodies, and the bare land area in the study area (Figure 3).
In 1998, themaximum land area covered by grassland accounted for 44.71% (5901.11 Km2),
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which gradually decreased to 43.90% (5794.51 Km2) in 2008 and 24.10% (3180.34 Km2) in
2018. Whereas the forest area was calculated to be approximately (5576.26 Km2) in 1998,
5048.22 Km2 (2008), and 8284.62 Km2 (2018), with a slight decrease of −4% from 1998
to 2008 and periodic increments of 24.52% from 2008 to 2018. The bare land area was
calculated to be 1188.75 Km2 in 1998, 1853.79 Km2 in 2008, and 1161.72 Km2 in 2018, with
an increase of 5.04% from 1998 to 2008 and then a decrease of −5.25% from 2008 to 2018
(Table 3). The cumulative change calculated in water area was approximately 39.44 Km2

(1998–2018), 532.04 Km2 in 1998, and 571.48 Km2 in 2018. An increase of 0.3%was observed
in water from 1998 to 2018 (Table 3, Figure 4).
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Table 3. Depicting the percentage of the spatial coverage of LULC in Chittagong Hill Tracts from
1998 to 2018.

Year

Land Use Classes

Water Forest Grassland Bare land Total

Area

Km2 % Km2 % Km2 % Km2 % Km2 %

1998 532.04 4.03 5576.26 42.25 5901.11 44.71 1188.75 9.01 13,198.16 100
2008 501.64 3.80 5048.22 38.25 5794.51 43.90 1853.79 14.05 13,198.16 100
2018 571.48 4.33 8284.62 62.77 3180.34 24.10 1161.72 8.80 13,198.16 100

Kappa coefficients anduser accuracy for supervised classification (LULCCmaps)were
calculated with TerrSet IDRISI. The overall accuracy of the classification was observed at
89.65%, 84.44%, and 86.26%, while producer accuracies were 90.00%, 68.75%, and 72.22%,
and the Kappa coefficient was 85.68, 82.84, and 76.36 in three different periods (Table 4),
respectively.
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Figure 4. Spatial area coverage % of LULC in Chittagong Hill Tracts during the study interval
(1998–2018).

Table 4. Accuracy computation of land use and land cover change (LULC) maps between 1990
and 2018.

Year LULC Classes Water Bare Land Forest Grassland Kappa Value Overall Accuracy

1998 User’s 81.82 77.78 95.00 94.44
0.857 89.65Producer’s 90.00 77.78 95.00 89.47

2008 User’s 84.61 64.28 91.17 86.21
0.828 84.44Producers 68.75 69.23 91.18 92.59

2018 User’s 86.67 76.19 92.06 75.51
0.764 86.26Producer’s 72.22 66.66 92.10 86.04

3.2. LULC Change Detection
The post‑classification comparison of LULC change for each class within the study

period from 1998 to 2018 is shown in Figure 5, whereas the result analysis of LULC change
is indicated in Table 5. From 1998 to 2008, only bare land increased by 665.04 Km2. In
contrast, water, forest, and grassland decreased significantly by−30.40 Km2,−528.04 Km2,
and −106.60 Km2, respectively, with a significant decrease in bare land and grassland,
i.e., −692.07 Km2 and −2614.17 Km2, between 2008 and 2018 (Table 5). During the three
decades, the grassland decreased by −2720.77 Km2, while the forest increased by an area
of about 2708.36 Km2.

Regarding LULC conversions and transformations, the most dynamic change in the
study area is the conversion of grassland to forest by 13.34% (Table 6), followed by forest
into grassland by nearly 58.03%. The transformation of bare land to forest was 1.68%, and
the transformation of bare land into grasslandwas calculated to be 6.28%. However, forest
land conversion to bare land in the region was estimated to be 12.10%, while the transfor‑
mation of grassland into bare land was observed to be 29.50%. Therefore, between 1998
and 2018, the region experienced many changes in its LULC.
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Table 5. Analysis of LULC change in Chittagong Hill Tracts.

Classes
Net of LULC Changed (Km2)

1998–2008 2008–2018 1998–2018

Water −30.40 69.84 39.44
Bare land 665.04 −692.07 −27.03
Forest −528.04 3236.40 2708.36

Grassland −106.60 −2614.17 −2720.77
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Table 6. Change matrices of LULC classes in Chittagong Hill Tracts between 1998 and 2018.

Year 1998

2018

LULC Classes
Water Bare land Forest Grassland

Area % % % %
Water 95.72 1.26 0.73 0.51

Bare land 2.73 57.59 1.68 6.28
Forest 1.36 12.10 84.25 58.03

Grassland 0.19 29.50 13.34 35.19

3.3. Prediction of LULC Change Based on the Markov Model
The state transition area mapwas created according to LULCmaps from 1998 to 2018,

which can be used to predict, using the CA–Markov model in IDIRISI software version
17.0, the land requirements for the different LULC types in 2048. The predictive results
map for 2018 is obtainedwith a 5× 5 contiguity filter, whose running cycle is 30 years. The
combination of cellular automata (CA) and the stochastic transition matrix of the Markov
chain model resulted in LUCC for the projected period of 2048 (Figure 6). Map accuracy
for the projected land use/cover change for predictive years was classified by a sufficient
Kappa coefficient value of 0.97. A 2048 map predicted that the maximum area covered by
forest accounts for 9129 Km2 (69.17%) and the minimum area covered by water accounts
for 665 Km2 (5.05%). A decrease of 1.51% of bare land and 5.61% of grassland cover areas
were estimated during 2018–2048, respectively (Table 7). However, forest and water area
cover will expand by 6.40% and 0.72%, respectively, during 2018–2048.
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Table 7. Probability area percentage of LULC classes in Chittagong Hill Tracts in 2048.

LULC Classes

Period

2048 Change Detection
2018–2048

Km2 % Km2 %

Water 665 5.05 93.52 0.72
Bare land 963 7.29 −198.72 −1.51
Forest 9129 69.17 844.38 6.40

Grassland 2441 18.49 −739.34 −5.61
Total area 13,198 100

3.4. Landscape Metrics Analysis of Land Use and Land Cover Structure
From LULC maps from 1998 to 2018, the most changing classes, such as water, bare

land, forest, and grassland, were chosen to analyze spatial landscape metrics at class and
landscape levels. The most significant change among land use and land cover classes is
increased forest and decreased grassland. The statistical results of the landscape metrics
in the Chittagong Hill Tracts area are shown below (Table 8).

Table 8. Metrics of landscape patterns for 1998, 2008, and 2018.

Indices

LULC
Classes Year CA (ha) NP ED (m/ha) IJI (%) PSCOV (ha) MPS (ha)

Water
1998 58,223.88 217 1.2 92.32 831.16 235.37
2008 58,223.88 739 2.16 93.48 991.11 78.79
2018 57,432.96 256 1.33 95.07 925.63 224.35

Bare land
1998 119,352.9 2030 5.5 60.38 669.55 58.79
2008 178,306.8 2671 8.56 85.47 665.78 66.76
2018 116,615.1 2431 6.3 79.38 473.06 47.97

Forest
1998 557,963.6 1639 13.7 36.37 2388.84 340.43
2008 505,352.3 2049 13.2 57.75 2969.51 246.63
2018 828,093.2 744 16.09 59.96 2548.7 1113.03

Grassland
1998 591,653.8 1704 17.07 63.85 2723.98 347.21
2008 578,162.5 1492 15.7 73.15 3197.04 387.51
2018 317,904.2 3268 15.17 52.48 1057.64 97.28

CA = Class Area (ha); NP = Number of Patches; ED = Edge Density (m/ha); IJI = Interspersion Juxtaposition Index
(%); PSCV = Patch Size Coefficient of Varian (ha); MPS = Mean Patch Size (ha).

The statistics ofwater showed that ClassArea (CA) indices increased from 51,075.18 to
57,432.96 ha, the Number of Patches (NP) also increased from 217 to 256, the Patch Size
Coefficient of Varian (PSCV) increased from 831.16 to 925.63 ha, andMean Patch Size (MPS)
decreased from 235.37 to 224.35 ha during the whole period from 1998 to 2018.

Regarding bare land area during the period 1998 to 2018, CA indices decreased from
119,352.9 to 116,615.1 ha, NP increased from 2030 to 2431, Edge Density (ED) increased
from 5.5 to 6.3 m/ha, Interspersion Juxtaposition Index (IJI) increased from 60.38 to 79.38%,
while the PSCV decreased from 669.55 to 473.06 ha, and MPS decreased from 58.79 to
47.97 ha.

The spatial analysis of forest areas showed that CA indices increased from 557,963.6
to 828,093.2 ha, NP decreased from 1639 to 744, ED increased from 13.7 to 16.09 m/ha,
IJI increased from 36.37 to 59.96%, PSCOV increased from 2388.84 to 2548.7 ha, and MPS
decreased from 58.79 to 47.97 ha.

Grassland areas showed that CA indices decreased from 591,653.8 to 317,904.2 ha, NP
increased from 1704 to 3268, ED decreased from 17.07 to 15.17 m/ha, IJI decreased from
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63.85 to 52.48%, PSCOV decreased from 2723.98 to 1057.64 ha, and MPS decreased hugely
from 347.21 to 97.28 ha.

The analysis of the landscape level showed that the fragmentation of the landscape
increased with the number of patches (NP) from 5590 to 6699, the Mean Proximity Index
(MPI) increased from 2296.4 to 2676.39 m/ha, the Mean Patch Size (MPS) decreased from
236.14 to 197.05, Mean Shape Index (MSI) values are identical, Mean Nearest Neighbor
Distance (MNND) decreased from 606.1 to 567.5 m, Interspersion Juxtaposition Index (IJI)
increased from 56.95 to 62.83%, Shannon’s Diversity Index (SEI) decreased from 0.77 to
0.71, and Shannon’s Evenness Index (SDI) decreased from 1.07 to 0.99 (Table 9). There is
no significant change in the heterogeneity of the landscape.

Table 9. Analysis matrices of landscape patterns with references to the studied years 1998, 2008,
and 2018.

Year
Indices

NP MPI MPS MSI MNND IJI SEI SDI

1998 5590 2296.4 236.14 1.27 606.1 56.95 0.77 1.07
2008 6951 2231.18 189.91 1.23 583.3 72.68 0.82 1.14
2018 6699 2676.39 197.05 1.27 567.5 62.83 0.71 0.99

NP = Number of Patches; MPI = Mean Proximity Index; MPS = Mean Patch Size (ha); MSI = Mean Shape Index;
MNND =MeanNearest Neighbor Distance; IJI = Interspersion Juxtaposition Index (%); SEI = Shannon’s Diversity
Index; SDI = Shannon’s Evenness Index.

3.5. Analysis of the Driving Forces behind LULC Change
The linear regression model result indicated that all driving factors had significant

values in adjusted R square for the model of change in the forest, bare land, grassland, and
water of 0.619, 0.559, 0.718, and 0.752, respectively (Table 10). The study’s results explained
that AT was highly significant and AR substantially impacted forests (p < 0.01, p < 0.05;
Tables 8 and 11). AR was highly influential, and ARH significantly impacted bare land
(p < 0.01, p < 0.05; Tables 8 and 11). AT had a highly significant impact on grassland
(p < 0.01; Tables 8 and 11). AT had a highly substantial effect, and ARH, AR had a consider‑
able effect onwater (p < 0.01, p < 0.05; Tables 8 and 11) and the change of CHT in Bangladesh.

Table 10. Climate change impact driving model variables included in the CHT.

Model R2 Std Error F Value Sig.

Y1 0.62 611.37 9.12 0.008 **
Y2 0.56 138.88 7.35 0.015 *
Y3 0.72 462.73 13.75 0.002 **
Y4 0.75 10.49 11.10 0.004 **

Note: Y1 = forest land, Y2 = bare land, Y3 = grassland, and Y4 = water. ** = highly significant; * = significant.

Table 11. Estimating the influence of drivers behind changes in LULC.

Model Std Error Coefficients T Value Sig.

Intercept 3883.059 −6113.87 −1.5745 0.154 NA

Y1 AR 0.644799 −1.51007 −2.34193 0.047 *
AT 159.0128 658.4076 4.140596 0.003 **

Intercept 1046.292 −2152.03 −2.05681 0.073 NA

Y2 AR 0.144635 0.510366 3.528659 0.007 **
ARH 13.31509 32.69115 2.455195 0.039 *

Intercept 2938.974 18,078.93 6.151443 0.000 **
Y3 AR 0.488029 1.026891 2.104158 0.068 NA

AT 120.3521 −629.188 −5.22789 0.000 **
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Table 11. Cont.

Model Std Error Coefficients T Value Sig.

Intercept 156.4302 −159.272 −1.01817 0.342 NA

Y4 AR 0.011129 0.026354 2.367997 0.049 *
ARH 1.308958 3.491847 2.667654 0.032 *
AT 3.551116 16.20295 4.562777 0.002 **

Note: Y1 = forest land, Y2 = bare land, Y3 = grassland, and Y4 = water. AR = average rainfall, AT = average
temperature, and ARH = average relative humidity. ** = highly significant; * = significant; NA = non‑significant.

4. Discussion
4.1. Accuracy Assessment

After calibration, land cover data were extracted from photographs and corrected for
atmospheric effects. Landsat 5 TM 1998 had six spectral bands plotted upon them, but
Landsat 7 ETM+ 2008 and Landsat 8 OLI 2018 had seven bands, respectively. In three
different periods, a summary of supervised classification accuracy was recorded as the
highest in 1998 (89.65%) and 2008 (84.44%). This result is consistentwith the study findings
by the authors [44]. The study indicated that all classes of producers were classified over
85% accurately. Similarly, a study by Dewan and Yamaguchi [47] using MSS found that
the lowest overall accuracy was 85.6%. Another study by Kayiranga et al. [48] revealed
that from 1986 to 2015, all images’ overall accuracy and Kappa coefficient results were
greater than 75%. In this study, among the three periods of 1998, 2008, and 2018, Kappa
coefficients were above 0.8% in all classes except 2018. Very similar results were found in
the study conducted by del Castillo [49], who investigated that all forest classes’ Kappa
coefficients were above 0.8 except Q. pyrenaica in 2010.

4.2. Trends in Forest Cover Changes
According to estimates of forest cover change (loss and gain) derived from Landsat

images during the past twenty years, forest and tree cover increased from 1998 to 2018.
The national assessment led by FAO [50] showed that the net growth of tree cover has
remained stable since 1990. Different spatial and temporal extents may, in part, explain
these discrepancies. Furthermore, while our results show a net gain in forest cover over
time, details on the visibility and psychological impact [51] on forest loss vs. gain may also
shape perspectives on forest dynamics [52].

The most notable LULC changes were the transformation of grassland to forest. The
analysis of the Landsat images reveals some trends that complement the LULC from 1998
to 2018. From 1998 to 2018, the change in LULC classes shows that the Chittagong Hill
Tracts region has been impacted and degraded with forest (2708.36 Km2) and bare land
(−27.03Km2), respectively. A similar resultwas contrary to the range reported elsewhere [53,54].
A similar result was proposed by Baral et al. [55], who reported that forest cover increased
with a similar loss in the extent of all other land cover types. The human population was
the most important factor in increasing or decreasing land use and land cover change.

Here is the evidence that variations in forest cover changesmay be associatedwith the
types of management regimes [56]. Community‑based management or secure tenure can
result in positive social interactions, better forest conditions, and opportunities to increase
tree cover and distribute economic benefits [57]. State‑led plantation initiatives and the
National Forest Policy of 1994 have been primarily responsible for expanding forests in the
CHT region, focusing on plantationsmade possible by the relocation of native peoples [58].
Bangladesh has demonstrated encouraging progress in curbing the annual deforestation
rate. It has reduced deforestation from 2.1% from 1960 to 1980 [59] to approximately 0.2%
between 1990 and 2010 [18].

4.3. Future LULC Change Prediction
In contrast, between 2018 and 2048, the predicted LULC in Chittagong Hill Tracts

grassland significantly decreased after 1998, the forest increased, and the remaining area
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increased by a certain amount in 2048. Similar predictive results were proposed by Lip‑
ing et al. [41]; they reported that water and bare land increased and the woodland area
decreased significantly. Predictive results were revealed by [60]: bare land will increase
and potentially lead to the loss of ecosystem services. The Markov predictive results have
shown that the probability of each class changing in LULC in the future is high.

4.4. Landscape Analysis
During the study period (1998–2018) in Chittagong Hill Tracts, changes occurred in

four major land classes: water, bare land, forest, and grassland. The results of the land‑
scape indices (forest) revealed that the values of NP decreased proportionally with in‑
creased CA, ED, IJI, PSCOV, and MPS. Similar results were found in the study conducted
by Kayiranga et al. [46], who reported that during the whole study period (1986–2015),
the values of MPS increased with a decrease of NP inside the Nyungwe–Kibira Park. del
Castillo et al. [49] also reported that the forest inside theMoncayoNatural Park (Spain)was
slightly fragmented. This study claims landscape pattern metrics at heterogeneity with a
similar identic landscape configuration. According to research correlations on landscape
metrics, Shannon’s Evenness Index (SEI) and Shannon’s Diversity Index (SDI) were also
selected as indices for the landscape pattern analysis [61]. During the study period, Shan‑
non’s Diversity Index and Shannon’s Evenness Index showed a slightly decreased land‑
scape. The landscape metrics analysis provided valuable information about land use and
land cover change, especially fragmentation and heterogeneity weighed at the landscape
class and landscape level. The landscape structure became more fragmented and hetero‑
geneous [62]. Moreover, during the study period, landscape fragmentation increased and
forests became a major land area [63,64]. Landscape (fragmentation and heterogeneity)
and land use/landcover results indicated that forest management significantly increases,
decreases, and maintains landscape patterns [49].

4.5. LULC Change–Climate Factors
The linear regression results assumed that the climate change factors model variables

indicated that three impact factors were selected for the forest: bare land, grassland, and
water. These three factors are less than significantly related to forest, bare land, grassland,
and water. According to Salman‑Mahini and Kamyab [65], there was a linear relationship
between dependent and independent variables in multiple linear regression. The result
of linear regression indicated that the climate change factors (average rainfall, average hu‑
midity, and average temperature) model as independent variables estimated the influence
of drivers behind changes in four kinds of LULC change: forest, bare land, grassland, and
water. Grassland was most affected by rainfall, the forest was significantly affected by
rainfall and temperature, bare land was significantly affected by rainfall and humidity,
and water was significantly affected by rainfall, humidity, and temperature. Rainfall was
the main factor driving LULC changes. A similar result was found in a Northern Iranian
study by Jahanifar et al. [46]. The linear alternative of income per capita, rain, and tem‑
perature with a definite coefficient of 0.4 as independent variables qualified for estimating
forest area reduction.

Although research into the spatial‑temporal trends and connections between forest
cover and local land use practices will aid in identifying regions where changes have taken
place and making predictions about future changes, this research alone will not be suf‑
ficient to explain the neighborhood’s driving factors of change, which are necessary for
making trained, evidence‑based decisions. Understanding the mechanisms of forest cover
changes, like deforestation and forest regeneration, in the ChittagongHill Tracts at various
geographical scales requires knowledge of the local driving variables at work. Therefore,
future research should investigate the causes and consequences of landuse and forest cover
changeswithin this landscape’s socioeconomic, policy, institutional, and past histories and
how these shifts relate to larger shifts happening at the regional and global levels.
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5. Conclusions
Knowledge of past land use trends and land cover change is vital to comprehend‑

ing the connection between landscape dynamics and ecological responses. Our method,
which integrates multi‑temporal remote sensing data with GIS techniques, has enabled us
to quantify and characterize the spatial‑temporal pattern of LULC changes, notably those
associated with forest cover changes in mountainous regions. The findings revealed that
the terrain of the Chittagong Hill Tracts underwent LULC shifts between 1998 and 2018.
Between those years, forest cover andwater body area expandedwhile grassland and bare
land shrank. The spatial pattern shift demonstrated that between 1998 and 2008 and be‑
tween 2008 and 2018, the forest cover gained and lost area with varying annual intensities
and dynamics.

The annual increase was significant during both periods, while deforestation was
prominent during the first period (1998–2008) but inactive during the second period
(2008–2018). Between 1998 and 2018, there was a net change of 2708.36 Km2 in forest
cover and a total change of 8284.62 Km2. The LULC structure, predicted based on the
CA–Markov model that in 2048, the forest area would increase drastically with a consis‑
tent decrease in grassland and bare land areas. The linear regression results for the climate
change factors model variables indicated that grassland was most affected by rainfall, the
forest was significantly affected by rainfall and temperature, bare landwas significantly af‑
fected by rainfall and humidity, and water was significantly affected by rainfall, humidity,
and temperature. Rainfall was the main factor driving LULC changes. Currently, the area
faces different environmental issues that threaten these resources, such as climate change,
LULC change, disturbance of species diversity, ecosystem fragmentation, and flooding. It
was found thatmassive population growth in settlements is an important factor influencing
LULC changes and the implications of sustainable landscape management. Furthermore,
the findings of this study have some important suggestions that a scientific forest manage‑
ment system should have a strict process. Additionally, efficient programs should be run
to educate local communities about sustainable land management.
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