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Abstract

:

Geological disasters refer to adverse geological phenomena that occur under the influence of natural or human factors and cause damage to human life and property. Establishing prevention and control zones based on geological disaster risk assessment results in land planning and management is crucial for ensuring safe regional development. In recent years, there has been an increase in extreme rainfall events, so it is necessary to conduct effective geological hazard and risk assessments for different extreme rainfall conditions. Based on the first national geological disaster risk survey results, this paper uses the analytic hierarchy process (AHP) combined with the information method (IM) to construct four extreme rainfall conditions, namely, 10-year, 20-year, 50-year, and 100-year return periods. The susceptibility, hazard, vulnerability, and risk of geological disasters in the Laoshan District in eastern China are evaluated, and prevention and control zones are established based on the evaluation results. The results show that: (1) There are 121 collapse geological disasters in Laoshan District, generally at a low susceptibility level. (2) A positive correlation exists between extreme rainfall and hazards/risks. With the rainfall condition changing from a 10-year return period to a 100-year return period, the proportion of high-hazard zones increased from 20% to 41%, and high-risk zones increased from 31% to 51%, respectively. The Receiver operating characteristic (ROC) proved that the assessment accuracy was acceptable. (3) Key, sub-key, and general prevention zones have been established, and corresponding prevention and control suggestions have been proposed, providing a reference for geological disaster prevention and early warning in other regions.
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1. Introduction


Geological disasters refer to adverse geological processes or phenomena caused by natural or human factors. Geological disasters can be divided into more than 30 types. Natural geological disasters are induced by rainfall, snowmelt, and earthquakes, while artificial geological disasters are caused by engineering excavation, loading, and blasting. Common geological disasters mainly include six types of disasters related to geological processes, including collapse, landslide, mud-rock flow, subsidence, ground fissures, and land subsidence (Figure 1). Geological disasters have the characteristics of being sudden, uncontrollable, and highly destructive, causing harm to people’s lives and property safety [1]. Especially in recent years, extreme weather has increased, and excessive rainfall is more likely to trigger geological disasters [2,3]. In 2022, there were 5659 geological disasters in China, mainly landslides and collapses (Figure 2 and Figure 3). Conducting geological hazard risk assessment, analyzing the occurrence patterns of regional geological hazards, mastering the risk and hidden dangers of critical geological hazards, and predicting and identifying the occurrence of geological hazards are necessary means of effectively resolving disaster risks [4].



The research on geological hazards and risk assessment is in the development stage. It can be divided into three categories: qualitative evaluation, quantitative evaluation, and a combination of qualitative and quantitative reviews. Qualitative evaluation methods include the Analytic Hierarchy Process (AHP) [5,6] and the Comprehensive Indicator Method (CIM) [7,8]. The AHP is a multi-objective decision analysis method that quantifies the empirical judgments of decision-makers. It is widely used for analysis and decision-making when the target structure is complex and needs more necessary data. It can obtain a satisfactory decision structure, especially for complex problems that are difficult to quantify fully. The CIM refers to comprehensively evaluating benefits by weighting the average number of individual benefit indicators and calculating the comprehensive value based on a reasonable set of benefit indicator systems. Commonly, these methods heavily rely on the expertise of individuals, which is subjective and susceptible to human influence. On the other hand, quantitative evaluation methods are grounded in data and offer a more objective approach to inferring the likelihood of geological disasters. Some prominent examples include logistic regression analysis [9,10], neural network methods [11,12], random forest methods [13,14], and the information value model method [15,16]. Logistic regression analysis, while unaffected by subjective factors, can introduce uncertainty in areas with dense vegetation. The neural network method exhibits substantial capabilities in addressing complex issues involving incomplete or insufficient data but suffers from limitations in sample selection and iterative processes. The random forest method demonstrates high predictive ability but necessitates extensive geological disaster data for reliable results, making it less suitable for regions with fewer incidents. The information value model method calculates the contribution of each factor through the information value of known geological disaster points and factors, establishing a prediction model. Compared to other methods, it requires less data. Still, it can only reflect the likelihood of geological disasters occurring under specific combinations of influencing factors and does not account for variations in the impact levels of each factor [17]. Hence, a combination of quantitative and qualitative evaluation proves more beneficial in enhancing the accuracy of geological disaster assessment results.



With the rapid development of GIS and machine learning technology (ML), the means and methods for risk assessment of geological disasters are also maturing. Based on remote sensing and GIS, Tan et al. [18] introduced a hierarchical entropy variable weight method using an entropy algorithm to reduce personal impact and obtain more accurate evaluation results. Lyu and Yin [19] merged AHP and the analytical network process (ANP) into a geographic information system and integrated interval numbers into the fuzzy hierarchical analysis process (FAHP) to evaluate the risks of various disasters in Hong Kong, improving the accuracy of the multi-risk assessment. Yang et al. [20] proposed an improved coupling landslide susceptibility evaluation model by combining the theory of unascertained measures (UM), dynamic, comprehensive weighting (DCW) based on the AHP entropy weight method and set pair analysis (SPA) theory. Chen and Zhang [21] conducted a comparative study on GIS-based Bayesian networks (BN), Hoeffding trees (HT), and logistic model trees for landslide susceptibility modeling, demonstrating that the HT model is a good classifier for landslide susceptibility modeling. Rong et al. [22], based on the integrated machine learning model (MLM) and scenario simulation technology, calculate the precipitation in different extreme precipitation return periods and evaluate the landslide risk with the susceptibility results. It is found that the optimized Random Forest model has the best all-around performance in sensitivity evaluation.



In 2020, the State Council of China launched the first comprehensive survey of natural disaster risks (regarding geological disasters), which shifted its work philosophy from focusing on post-disaster relief to pre-disaster prevention and from reducing disaster losses to reducing disaster risks. After two years of effort, by the end of 2022, 2041 counties completed geological hazard risk surveys, and 1522 counties completed 1:50,000 geological hazard risk surveys. The first survey task has been fully completed as scheduled. The system has systematically conducted the comprehensive remote sensing identification of geological hazards in 713 counties (cities and districts) with an area of 4.07 million Square kilometers that is prone to geological disasters in China, completed the fine survey of 2161 cities and towns, 6615 important hazard surveys, 6250 engineering treatments, 2676 hazard elimination and removal, and relocated 125,000 people from 34,000 households threatened by geological disasters. In addition, more than 20,000 universal professional monitoring projects (rainfall monitoring, slope displacement and crack monitoring, groundwater level monitoring, video monitoring, etc.) were completed and operated before the flood season, and the inspection and monitoring system for more than 264,000 geological disaster group measurement and prevention personnel was improved. More than 200 ministerial-level experts are stationed in 30 provinces nationwide to strengthen risk prevention technical support. The integration of “civil air defense” and “technical prevention” was further enhanced, and geological disaster investigation and evaluation, monitoring and early warning, comprehensive management, emergency response, and grassroots disaster prevention capabilities were further improved. This article is a follow-up study based on the results of this work.



Laoshan District is the most economically developed area in Qingdao, Shandong Province, China. How to effectively avoid the harm caused by geological disasters in urban planning is an urgent problem for government departments to solve. At the same time, there are many mountains in Laoshan District that are prone to collapse disasters under the conditions of rainstorms. This article introduces extreme rainfall factors based on conventional geological hazard risk assessment in response to this issue. Four extreme rainfall conditions have been set: 10-year, 20-year, 50-year, and 100-year return periods. Through the combination of AHP and IM methods, a complete geological hazard assessment, including susceptibility, hazard, vulnerability, and risk, was carried out in Laoshan District. Based on the evaluation results, prevention and control zones were divided, and corresponding prevention measures were proposed. The research results can provide authoritative disaster risk information and a scientific basis for decision-making for effective local natural disaster prevention and control work, proper regional land planning, and sustainable economic and social development. Finally, an automatic geological hazard monitoring and warning system is introduced, which can provide a reference for geological hazard prevention in similar rainstorm areas.




2. Areas and Methods


2.1. Study Area


Laoshan District is located in Qingdao, Shandong Province. Its geographical coordinates are 120°24′33″~120°43′ E and 36° 03′~36°23′ N, with a north-south length of 25 km, an east-west width of 17 km, and a total area of 395.79 km2 (Figure 4). Laoshan District belongs to the northern temperate continental monsoon climate zone, with humid air, abundant rainfall, and moderate humidity. As it is close to the Yellow Sea, it is regulated by the sea. Also, it shows the characteristics of an Oceanic climate, such as no severe cold in winter, no intense heat in summer, a slight temperature difference between day and night, a long frost-free period, and high humidity. The annual average temperature is 12.1 °C. The area has abundant rainfall, with an average annual rainfall of 849.9 mm and a maximum annual rainfall of 1426.1 mm (Data sourced from Shandong Provincial Meteorological Bureau, China).



Tectonically, Laoshan District is located at the northern end of Jiaonan Uplift, a medium-low hilly area with steep mountains, ravines, and complex terrain. Centered around the Laoshan Mountains, it is high in the middle and low on both sides. The fault structure in the area is developed, the crust rises significantly, Erosion is intense, and the slope is generally greater than 30°. The lithology is mainly magmatic rock with extreme Weathering. The study area is also affected by human engineering and economic activities. Many activities, such as quarrying, road construction, and engineering construction, have promoted the formation of geological disasters.




2.2. Current Situation of Geological Disasters


There are 121 potential geological hazards in Laoshan District, all of which are collapses on a small scale (affected area < 1 × 104 m3, the standard is sourced from China’s “Technical Requirements for Geological Disaster Risk Investigation and Evaluation“), including 16 geological disaster points, resulting in direct financial losses of CNY 10.55 million. There are 108 potential geological disaster points, all of which are small-scale, with a predicted financial loss of CNY 49.16 million and a threatened population of 472 people (data sourced from the first comprehensive survey of natural disaster risks in China). Based on the location of geological hazard points and economic development planning, key areas with a concentrated number of geological hazards are selected for evaluation, covering an area of 232.91 km2. The relationship between the key areas and the overall area is shown in Figure 5.



2.2.1. Collapse Type


Analyze the development characteristics of geological hazards based on the failure mode, structural type, stability of the dangerous rock mass, and risk assessment level. According to the state of action, it can be divided into three categories: tilting, sliding, and pulling apart. According to the slope structure type, the collapsed slope in the area can be divided into three types: Dip slope, transverse slope, and oblique slope. According to the current stability status, it can be divided into two categories: stable and unstable. According to the risk level, it can be divided into three categories: low risk, medium risk, and high risk (Table 1).



Fissures mainly cut through the collapse in Laoshan District to form missing bodies. The deformation and destruction of cutting bodies in the early stage are especially caused by fissure expansion and base erosion. The cracks in the collapse area are mainly unloading shots and joint planes perpendicular to the ground. The images are multi-opening, with some extending to form a connected structure. When a nearly vertical tensile crack is created, a cutting body is made if the damage is not connected and the dangerous rock body is not separated from the parent body. Under the influence of self-weight stress and other external forces, the cracks expand, and after the trailing edge penetrates, an independent body is formed (Figure 6).



Transverse joints are developed on the surface of the slope. The slope surface has been subjected to weathering for a long time, blocks are produced under the self-weightless, and the cutting body and separation body base are eroded, forming a free face at the lower part. The rock mass overhangs or reclines on the cliff, and the cutting and separation bodies are transformed into the dangerous rock mass. In addition, the natural collapse lithology in the area is primarily Metamorphic rock and marble. Due to “differential weathering”, the base is cut out, forming a concave rock cavity and transforming into a dangerous rock mass. After the cutting and separating bodies are transformed into perilous rock bodies, they enter the later stage of deformation and failure, i.e., the deformation and failure of dangerous rock bodies. When the foundation support point of a hazardous rock body reaches its limit, rock collapse will occur under any external force, such as earthquakes or heavy rainfall. Moreover, most of the leading edge of the dangerous rock body is airborne, which provides favorable conditions for the problematic rock body to fall [23].




2.2.2. Time Distribution Pattern


Based on the statistics of historical rainfall monitoring data from many meteorological stations in Laoshan District, the authors found that during the period from 2006 to 2022, rainfall was concentrated in the flood season (June to August), accounting for 58% of the annual rainfall (Figure 7). The temporal pattern of collapsed geological disasters in the Laoshan District is roughly the same as rainfall. A hefty rainstorm is one of the main factors causing geological disasters in the region [24]. Especially in July 2020, there were 16 geological disasters caused by collapses, resulting in direct financial losses of 8 million yuan and putting 76 people at risk.





2.3. Evaluation Method


This assessment adopts the analytic hierarchy process (AHP) and information quantity method (IM) [25]. The AHP refers to the systematic approach of decomposing a complex multi-objective decision-making problem into multiple objectives or criteria as a system. It then decomposes them into various levels of numerous indicators. Using qualitative indicator fuzzy quantification methods, the hierarchical single ranking and total ranking are calculated, which serve as the objective and multi-scheme optimization decision-making systems. The IM converts the measured values reflecting factors affecting regional stability into information quantity values as quantitative indicators for risk zoning. The quantity and quality of information obtained in the process of geological disaster prediction are related to the actual occurrence of geological disasters, which can be used to evaluate and predict geological disasters. At the same time, GIS has also been applied to this evaluation, and the evaluation process is shown in Figure 8.



The impact and control of geological hazard susceptibility are caused by the superposition of various factors, which can be summarized as essential and induced factors, with varying degrees of contribution from each factor. The risk assessment of geological disasters in the Laoshan District is divided into three layers. The target layer is the zonal susceptibility assessment, and the criterion layer is divided into primary and induced factors. The scheme layer selects slope aspect, slope, elevation, rock and soil mass, distance to fault, river, road, and rainfall as the assessment factors and the hierarchical structure model. Quantify based on the 1–9 scale [26] and construct a judgment matrix for each level (Table 2, Table 3 and Table 4). Based on expert opinions, score each factor and ultimately calculate the weight values of each factor (Table 5). Calculate the information value of each factor based on the ratio of the number of geological hazard distribution units within each evaluation factor unit to the total distribution of geological hazards in the study area [27]. To eliminate the differences in the impact of different factors on geological disasters, the weight values obtained by AHP are used to assign the information content of various evaluation factors, and the formula is as follows:


  I =   ∑  i = 1  n    W i     I i  =   ∑  i = 1  n    W i    ln    N i  / N    S i  / S    



(1)







In the formula, Wi is the weight value of the evaluation factor i calculated based on the AHP. It is the amount of information on the occurrence of geological disasters in the evaluation factor i; Ni is the number of units in the distribution of geological hazards for the evaluation factor i; N is the total number of teams with known geological hazard distribution in the study area, and in this study, N = 121; Si is the unit area of the i evaluation factor; S represents the total area of the study area units, and in this study, S = 232.91.





3. Results


3.1. Susceptibility Assessment


Select seven evaluation factors from C1 to C7 for susceptibility evaluation. The first step is to use the GIS Spatial analysis function to calculate the amount of information for evaluation factors [28]. Select a grid cell size of 30 × 30 m2, obtain the grid layer of each factor, and then overlay each index Factor graph with the geological hazard distribution map to obtain the distribution of geological hazards in each factor classification (Figure 9). The second step is to use the weight of each factor determined by the AHP to reclassify the grid layers of each factor using the reclassification function of GIS [29]. The information content map of each factor is regenerated based on the information content value [30]. Finally, the information content calculation is completed using the grid calculation function of GIS, and the calculation results are shown in Table 6. The third step is to stack the evaluation factors according to the weighted information amount through GIS to obtain the total information amount of geological hazard susceptibility in Laoshan District (the more significant the information amount value, the easier the geological hazard is), and finally output the evaluation map (Figure 10a).



In combination with the geological environment of Laoshan District, the degree of susceptibility to geological disasters in Laoshan District is divided into three zones according to the classification standard (Table 7): medium-susceptibility zone, low-susceptibility zone, and non-susceptibility zone (Figure 10b). Among them, the area of the medium-susceptibility zone is 49.93 km2, accounting for 21% of the total area of the region. The low-susceptibility zone is 94.86 km2, accounting for 41% of the region’s total area. The location of the nonsusceptibility zone is 88.12 km2, accounting for 38% of the region’s total area. In general, the geological disasters in Laoshan District are at a low level of susceptibility.




3.2. Hazard Assessment


Overlay rainfall data (C8) based on susceptibility and conduct geological hazard assessment through qualitative and quantitative methods. Considering that the main inducing factor of geological disasters in Laoshan District is extreme rainfall, the 10-year return period, 20-year return period, 50-year return period, and 100-year return period rainfall conditions are used as the risk assessment indicators of geological disasters in Laoshan District in this hazard assessment (Table 8 and Figure 11). The rainfall index refers to the historical rainfall data for each station in Laoshan District.



The natural discontinuity method of GIS divides Laoshan into three zones: high, medium, and low. The assessment results under each rainfall condition are shown in Figure 12.



According to the hazard assessment results, the area of each division and the number of geological disaster points are counted, respectively. The results show that most geological disasters are distributed in high- and medium-hazard areas. The density of disaster points increases from low-hazard areas to high-hazard areas. The density of disaster points in high-hazard regions is the highest, indicating that the hazard division of Laoshan District is relatively reasonable (Figure 13). Also, there is a positive correlation between rainfall and hazard, with the more significant the rain, the greater the hazard. As the rainfall conditions change from once every 10 years to once every 100 years, the proportion of high-hazard zones has increased from 20% to 41%. According to the Receiver operating characteristics [31,32], the accuracy of the hazard assessment results was tested (Figure 14). The calculated Area Under Curve (AUC) values were 56.3%, 63.8%, 64.2%, and 68.1%, with acceptable assessment accuracy. The above results show that the hazard zoning accuracy rate obtained using the AHP-IM method is high and suitable for hazard assessment in Laoshan District.




3.3. Vulnerability Assessment


The vulnerability assessment of geological disasters is an essential link in risk assessment, which evaluates the disaster-bearing body and human engineering. Vulnerability mainly includes the following parts: ① Building vulnerability is the primary carrier of population distribution and has its own economic value. Normalizing the building area is adopted, and the normalized value is used as the basic vulnerability within the survey area. ② Personnel vulnerability is obtained by investigating the number of geological hazard points and potential threat populations, using GIS and the kernel density algorithm to obtain personnel vulnerability, and then reclassifying. ③ The vulnerability of transportation facilities and other living facilities is assigned based on different types and levels of facilities. ④ Comprehensive vulnerability assessment involves overlaying the vulnerability of different types of disaster-bearing bodies to obtain a comprehensive vulnerability assessment chart. The vulnerability assessment of these three factors is conducted separately, and the weights of each factor are determined to be 0.4, 0.4, and 0.2 through expert scoring. The vulnerability assessment results for Laoshan District are obtained by superposition analysis according to weight (Figure 15). From the vulnerability assessment map of Laoshan District, the high-vulnerability zone of Laoshan District is 19.69 km2, accounting for 9% of the total area of the district; the medium-vulnerability zone is 74.95 km2, accounting for 32% of the total area of the community; and the low-vulnerability zone is 138.26 km2, accounting for 59% of the total area of the district. Laoshan District’s vulnerability is mainly low and medium, and the size of its high vulnerability is slight, primarily concentrated in urban areas and villages.




3.4. Risk Assessment


The United Nations believes that “Risk = Hazard× Vulnerability” and most researchers use this definition to describe the geological hazard risk assessment [33]. Therefore, this study applies this calculation model to the geological hazard risk assessment in Laoshan District. The hazards and vulnerability of geological disasters in Laoshan District are superposed and analyzed by GIS to form the risk zoning of geological disasters in the study area according to the classification standard (Table 9), divided into high-risk, medium-risk, and low-risk areas (Figure 16). There is also a positive correlation between rainfall and risk (Figure 17); the more significant the rain, the greater the risk. As rainfall conditions change from once every 10 years to once every 100 years, the proportion of high-risk zones has increased from 31% to 51%. The calculated Area Under Curve (AUC) values were 73.9%, 66.9%, 62.4%, and 68.3%, with acceptable assessment accuracy (Figure 18).





4. Prevention


To effectively mitigate and prevent geological disasters, it is crucial to establish a proficient and scientific system for geological disaster prevention and control. Alongside conducting regional assessments of geological disaster risks, it is imperative to establish designated prevention and control zones while also developing precise monitoring and early warning systems [34]. With improved monitoring and early warning technology, the number of successfully predicted geological disasters in China has gradually increased. Among them, in 2022, China successfully predicted 321 geological disasters and avoided direct financial losses of 600 million yuan (Figure 19). Based on the risk assessment results in the third section, the author’s team carried out the geological disaster prevention and control zoning work in Laoshan District.



4.1. Prevention and Control Zoning


The division is based on the number of significant geological disasters and geomorphic units, combined with national economic and social development plans, and considering the relative integrity of administrative units. According to the above zoning principles and methods, the geological disaster prevention and control zone in Laoshan District is divided into three regions according to the development degree, scale, hazard degree, and landform of specific geological disasters, namely, the key prevention zone, the sub-key prevention zone, and the general prevention zone (Figure 20).



4.1.1. The Key Prevention Zone


The key prevention zone is 112.70 km2, accounting for 48% of the region’s total area. There are 95 geological hazards. Most of the main geomorphic types in this area are hilly regions with significant ground elevation differences. The bedrock lithology is mainly granite, with developed fault structures, high rainfall, dense personnel, and crisscrossed roads. There are many potential collapse hazards.



When conducting urban economic planning in this region, focusing on the risk of geological disasters is necessary. We have put forth the following policy recommendations: ① Comprehensive management of geological disaster points that seriously threaten the safety of people’s lives and property. ② Select hidden danger points with poor stability and a significant threat to the population for relocation and avoidance work. ③ Establish a spatial database of geological hazards and carry out professional monitoring and geological hazard warning and prediction work. Establish a meteorological warning information system for geological disasters and an emergency response system for sudden geological disasters during the flood season. ④ A geological hazard risk assessment is required during the construction of the megaproject.




4.1.2. The Sub-Key Prevention Zone and the General Prevention Zone


The sub-key prevention zone is 71.17 km2, accounting for 31% of the region’s total area and 12 geological hazard points. The general prevention zone covers an area of 49.04 km2, accounting for 21% of the region’s total area. There are 14 geological hazards. Most of the main geomorphic types in the two parts are medium-hilly areas with minor ground elevation differences.



The risk of geological disasters in these two regions is relatively low, and attention should be paid to the prevention of geological disasters when conducting regional land management and planning in these two regions. We have put forward the following policy suggestions: ① Establish a sound system for mass measurement and prevention of geological disasters; carry out popular science training for mass measurement and prevention; and improve public awareness of prevention. ② Set up warning signs at potential geological hazards. ③ The natural resources department regularly organizes professional teams to inspect hidden danger points, especially during the flood season, to strengthen duty.





4.2. Monitoring and Early Warning


The author’s research group has established a geological hazard monitoring and warning information system in the key prevention zone (Figure 21). As mentioned earlier, this work is crucial for the prevention and control of geological disasters in key prevention zones. The system is based on the Internet of Things, automatic expansion and load balancing technology, multi-source heterogeneous big data management, and other technologies that can achieve complete automated geological disaster monitoring and early warning throughout the life cycle. The system monitors real-time parameters such as rainfall, stress, crack displacement, ground sound, vibration acceleration, and soil moisture content for potential collapse hazards. When the monitoring values exceed the threshold, warning information can be issued promptly.



By leveraging the monitoring data obtained during the flood seasons of 2021 and 2022, we conducted a thorough analysis to evaluate the efficacy of the monitoring and early warning platform. Our study involved comparing data collected from three distinct types of devices, namely stress gauges and crack monitoring equipment, which demonstrated superior precision and device reliability in monitoring geological hazards (Figure 22). Furthermore, both device types exhibited heightened sensitivity to data fluctuations, facilitating more accurate tracking of changes in geological hazards. We scrutinized the periods associated with various extreme points by comprehensively examining the curves. Additionally, by considering other curve results, we performed a comparative analysis to assess the characteristic changes in potential hazardous rock masses and predict the likelihood of their occurrence. This system exhibits significant potential for practical application in geological hazard prevention and control endeavors in similar regions.





5. Conclusions


Based on the first national geological hazard risk survey, this paper combines the analytic hierarchy process (AHP) with the information quantity method (IM). It takes different extreme rainfall conditions as the main inducing factors to evaluate the susceptibility, hazard, vulnerability, and risk of geological hazards in Laoshan District, eastern China. At the same time, geological disaster prevention and control zoning was carried out, and corresponding policy recommendations were proposed to serve regional land management and planning. The main conclusions obtained are as follows:



	(1)

	
There are 121 geological disasters in Laoshan District. Using the AHP to assign values to the information content of evaluation factors, the susceptibility assessment results of geological disasters were obtained, generally at a relatively low level of susceptibility;




	(2)

	
There is a positive correlation between extreme rainfall and hazards/risks. As the rainfall conditions change from once every 10 years to once every 100 years, the proportion of high-hazard zones has increased from 20% to 41%, and the ratio of high-risk zones has increased from 31% to 51%. AUC values of hazard assessment calculated by ROC are 56.3%, 63.8%, 64.2%, and 68.1%, and AUC values of risk assessment calculated by ROC are 73.9%, 66.9%, 62.4%, and 68.3%. The accuracy is acceptable but could be higher. In the future, different evaluation methods will be compared to determine the one with the highest accuracy;




	(3)

	
According to the risk assessment results, Laoshan is divided into key, sub-key, and general prevention zones for geological disasters. Based on the different focus of each prevention and control zone, corresponding prevention and control policy recommendations have been proposed, including comprehensive management, relocation and avoidance, science popularization training, setting warning signs, etc. The established geological disaster monitoring and warning information system and emergency response system for sudden geological disasters during flood season can effectively predict the probability of geological disasters and provide a reference for preventing and controlling geological disasters in similar regions.
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Figure 1. Six common geological hazards. (a) collapse; (b) landslide; (c) mud-rock flow; (d) subsidence; (e) ground fissures; (f) land subsidence. (Data sourced from the Natural Resources Department of Shanxi Province, China). 
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Figure 2. Number and growth rate of geological disasters in China (Data sourced from the Ministry of Natural Resources of China). 
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Figure 3. Types and quantities of various geological disasters in 2022 (Data sourced from the Ministry of Natural Resources of China). 
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Figure 4. The geographic location of Laoshan District. 
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Figure 5. Scope of key areas and distribution of disaster points. 
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Figure 6. Typical potential collapse points in Laoshan District (Photographed in 2022). 
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Figure 7. Rainfall data for Laoshan District. 
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Figure 8. Evaluation process. 
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Figure 9. Distribution map of the information content of evaluation factors. (a) Elevation; (b) slope (degree); (c) slope aspect; (d) engineering geological rock formations; (e) distance to a fault; (f) distance to a river; (g) distance to a road. 
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Figure 10. Susceptibility assessment results. (a) Overlay calculation results; (b) partition results. 
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Figure 11. Rainfall zoning map. (a) Once in 10 years; (b) once in 20 years; (c) once in 50 years; (d) once in 100 years. 
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Figure 12. Hazard assessment results. (a) Once in 10 years; (b) once in 20 years; (c) once in 50 years; (d) once in 100 years. 
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Figure 13. The proportion of hazardous zones. (a) Once in 10 years; (b) once in 20 years; (c) once in 50 years; (d) once in 100 years. 
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Figure 14. Receiver operating characteristic (ROC) of hazard assessment. 
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Figure 15. Vulnerability assessment results. 
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Figure 16. Risk assessment results. (a) Once every 10 years; (b) once every 20 years; (c) once every 50 years; (d) once every 100 years. 
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Figure 17. The proportion of risk zones. (a) Once every 10 years; (b) once every 20 years; (c) once every 50 years; (d) once every 100 years. 
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Figure 18. Receiver operating characteristic (ROC) of risk assessment. 
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Figure 19. Successfully predicted geological disasters. (a) Quantity and growth rate; (b) financial losses and growth rate. 
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Figure 20. Prevention and control zoning. 
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Figure 21. Geological hazard monitoring and warning system. 
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Figure 22. Monitoring data in flood season. 
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Table 1. Collapse type.
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Category

	
Quantity

	
Percentage






	
Failure mode




	
Tilting type

	
81

	
66.94




	
Sliding-type

	
37

	
30.57




	
Pull-apart type

	
3

	
2.49




	
Slope structure type




	
Dip slope

	
101

	
83.47




	
Oblique slope

	
19

	
15.71




	
Transverse slope

	
1

	
0.82




	
Stability of dangerous rock mass




	
Stable

	
30

	
24.79




	
Instability

	
91

	
75.21




	

	
Risk

	




	
Low risk

	
2

	
1.65




	
Medium risk

	
10

	
8.26




	
High risk

	
109

	
90.09
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Table 2. A-B matrix and weights of each factor in layer B.
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	A
	B1
	B2
	Wi





	B1
	1
	2
	0.6667



	B2
	1/2
	1
	0.3333
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Table 3. B1-C matrix and weights of various factors in layer C.
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	B1
	C1
	C2
	C3
	C4
	C5
	C6
	Wi





	C1
	1
	1/2
	1/9
	1/8
	1/2
	1/2
	0.0335



	C2
	2
	1
	1/7
	1/7
	1/2
	1/2
	0.0456



	C3
	9
	7
	1
	3
	7
	9
	0.4788



	C4
	8
	7
	1/3
	1
	7
	7
	0.3101



	C5
	2
	2
	1/7
	1/7
	1
	3
	0.0795



	C6
	2
	2
	1/9
	1/7
	1/3
	1
	0.0524
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Table 4. B2-C matrix and weights of various factors in layer C.
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	B2
	C7
	C8
	Wi





	C7
	1
	1/9
	0.1



	C8
	9
	1
	0.9
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Table 5. Combination weight values of various factors in layer C.
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	A-B
	B-C
	Weight





	C1
	0.6667
	0.0335
	0.02233445



	C2
	0.6667
	0.0456
	0.03040152



	C3
	0.6667
	0.4788
	0.31921596



	C4
	0.6667
	0.3101
	0.20674367



	C5
	0.6667
	0.0795
	0.05300265



	C6
	0.6667
	0.0524
	0.03493508



	C7
	0.3333
	0.1
	0.03333



	C8
	0.3333
	0.9
	0.29997
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Table 6. Weighted information content of evaluation factors.
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Classification

	
Factor

	
Grade

	
Ni

	
Si

	
Information Value

	
Layered Weight Value

	
Weighted Information Value






	
B1

	
C1

	
−1

	
1

	
1.28

	
0.4149

	
0.02233445

	
0.009267




	
0~22.5°

	
3

	
13.40

	
−0.8328

	
0.02233445

	
−0.0186




	
22.5~67.5°

	
12

	
24.51

	
−0.0502

	
0.02233445

	
−0.00112




	
67.5~112.5°

	
15

	
29.52

	
−0.0130

	
0.02233445

	
−0.00029




	
112.5~157.5°

	
21

	
33.12

	
0.2086

	
0.02233445

	
0.004659




	
157.5~202.5°

	
26

	
28.49

	
0.4924

	
0.02233445

	
0.010997




	
202.5~247.5°

	
16

	
25.22

	
0.0000

	
0.02233445

	
0




	
247.5~292.5°

	
16

	
31.16

	
0.0000

	
0.02233445

	
0




	
292.5~337.5°

	
7

	
29.54

	
−0.7758

	
0.02233445

	
−0.01733




	
337.5–360°

	
4

	
14.92

	
−0.6525

	
0.02233445

	
−0.01457




	
C2

	
0~50 m

	
14

	
19.80

	
0.3083

	
0.03040152

	
0.009373




	
50~100 m

	
25

	
26.43

	
0.5994

	
0.03040152

	
0.018223




	
100~150 m

	
24

	
24.78

	
0.6228

	
0.03040152

	
0.018934




	
150~200 m

	
11

	
20.52

	
0.0314

	
0.03040152

	
0.000955




	
200~250 m

	
11

	
17.99

	
0.1631

	
0.03040152

	
0.004958




	
>250 m

	
36

	
123.40

	
−0.5770

	
0.03040152

	
−0.01754




	
C3

	
0~5°

	
9

	
20.48

	
−0.1583

	
0.31921596

	
−0.05053




	
5~10°

	
22

	
23.60

	
0.5940

	
0.31921596

	
0.189614




	
10~15°

	
21

	
32.81

	
0.2180

	
0.31921596

	
0.069589




	
15~20°

	
22

	
42.08

	
0.0157

	
0.31921596

	
0.005012




	
20~25°

	
17

	
44.54

	
−0.2991

	
0.31921596

	
−0.09548




	
25~30°

	
9

	
35.55

	
−0.7094

	
0.31921596

	
−0.22645




	
30~35°

	
10

	
20.30

	
−0.0438

	
0.31921596

	
−0.01398




	
>35°

	
11

	
11.85

	
0.3892

	
0.31921596

	
0.124239




	
C4

	
Semi-hard volcanic rock, debris

	
3

	
10.51

	
−0.5989

	
0.20674367

	
−0.12382




	
Coastal soft alluvial and marine deposits

	
0

	
2.18

	
0.0000

	
0.20674367

	
0




	
Hard block intrusive rock subregion

	
114

	
209.22

	
0.0476

	
0.20674367

	
0.009841




	
Loose alluvial-proluvial layer

in mountain valleys

	
4

	
11.00

	
−0.3563

	
0.20674367

	
−0.07366




	
C5

	
0~500 m

	
52

	
70.65

	
0.3484

	
0.05300265

	
0.018466




	
500~1000 m

	
24

	
59.73

	
−0.2569

	
0.05300265

	
−0.01362




	
1000~1500 m

	
15

	
48.28

	
−0.5140

	
0.05300265

	
−0.02724




	
1500~2000 m

	
12

	
31.58

	
−0.3126

	
0.05300265

	
−0.01657




	
2000~2500 m

	
7

	
16.46

	
−0.2003

	
0.05300265

	
−0.01062




	
2500~3000 m

	
4

	
5.49

	
0.3380

	
0.05300265

	
0.017915




	
>3000 m

	
7

	
0.73

	
2.9161

	
0.05300265

	
0.154561




	
C6

	
0~200 m

	
45

	
49.97

	
0.5500

	
0.03493508

	
0.019214




	
200~400 m

	
16

	
43.93

	
−0.3552

	
0.03493508

	
−0.01241




	
400~600 m

	
17

	
38.61

	
−0.1654

	
0.03493508

	
−0.00578




	
600~800 m

	
15

	
32.11

	
−0.1062

	
0.03493508

	
−0.00371




	
800~1000 m

	
10

	
26.35

	
−0.3142

	
0.03493508

	
−0.01098




	
>1000 m

	
18

	
41.93

	
−0.1909

	
0.03493508

	
−0.00667




	
B2

	
C7

	
<100 m

	
65

	
39.45

	
1.1543

	
0.03333

	
0.038473




	
100~200 m

	
21

	
27.08

	
0.4005

	
0.03333

	
0.013349




	
200~400 m

	
15

	
40.87

	
−0.3475

	
0.03333

	
−0.01158




	
400~600 m

	
10

	
30.71

	
−0.4672

	
0.03333

	
−0.01557




	
600~800 m

	
6

	
23.81

	
−0.7236

	
0.03333

	
−0.02412




	
6: >800 m

	
4

	
70.99

	
−2.2213

	
0.03333

	
−0.07404
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Table 7. Recommended indicators for susceptibility assessment and grading (The standard is sourced from China’s “Technical Requirements for Geological Disaster Risk Investigation and Evaluation (1:50,000)”).






Table 7. Recommended indicators for susceptibility assessment and grading (The standard is sourced from China’s “Technical Requirements for Geological Disaster Risk Investigation and Evaluation (1:50,000)”).





	Assessment Indicator
	High
	Medium
	Low
	Non





	Subarea characteristics
	The mountain is high and steep, the Tectonic uplift is intense, and human activities strongly impact the natural and geological environment. It is a section where rainstorm frequently occurs, and geological disasters occasionally arise in the early stage.
	Mountainous and hilly areas with steep terrain belong to the Tectonic uplift area. Human activities have a substantial impact on the geological environment. There are many rainstorms, and medium and small geological disasters are developed.
	The hilly residual gentle slope area has a relatively flat terrain, developed vegetation, intense human activities, and relatively small geological disasters in the early stage.
	Plain area, with flat terrain and lack of terrain conditions formed by landslides and collapses, with no geological disasters occurring in the early stage



	The area density of geological hazard (%)
	≥50
	20~50
	5~20
	<5



	Point density of geological disaster (points/100 km2)
	≥50
	20~50
	5~20
	<5
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Table 8. Rainfall-weighted information quantity.
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Classification

	
Factor

	
Grade

	
Ni

	
Si

	
Information Value

	
Layered Weight Value

	
Weighted Information Value






	
C1

	
Once in 10 years

	
<2070 mm

	
15

	
53.72

	
0.0000

	
0.29997

	
0




	
2070–2110 mm

	
37

	
52.76

	
0.3000

	
0.29997

	
0.089991




	
3:2110–2150 mm

	
45

	
51.66

	
0.5169

	
0.29997

	
0.155054




	
4:2150–2190 mm

	
17

	
53.54

	
−0.4924

	
0.29997

	
−0.14771




	
5:>2190 mm

	
7

	
21.22

	
−0.4544

	
0.29997

	
−0.13631




	
Once in 20 years

	
<1900 mm

	
4

	
16.13

	
−0.7394

	
0.29997

	
−0.2218




	
1900–2150 mm

	
29

	
69.23

	
−0.2153

	
0.29997

	
−0.06458




	
2150–2400 mm

	
71

	
93.95

	
0.3747

	
0.29997

	
0.112399




	
2400–2650 mm

	
11

	
38.11

	
−0.5878

	
0.29997

	
−0.17632




	
>2650 mm

	
6

	
15.48

	
−0.2932

	
0.29997

	
−0.08795




	
Once in 50 years

	
<1900 mm

	
1

	
3.07

	
−0.4679

	
0.29997

	
−0.14036




	
1900–2200 mm

	
14

	
38.88

	
−0.3666

	
0.29997

	
−0.10997




	
2200–2500 mm

	
77

	
114.62

	
0.2571

	
0.29997

	
0.077122




	
2500–2800 mm

	
22

	
57.82

	
−0.3115

	
0.29997

	
−0.09344




	
>2800 mm

	
7

	
18.51

	
−0.3177

	
0.29997

	
−0.0953




	
Once in 100 years

	
<2000 mm

	
2

	
3.61

	
0.0654

	
0.29997

	
0.019618




	
2100–2350 mm

	
13

	
45.31

	
−0.5938

	
0.29997

	
−0.17812




	
2350–2700 mm

	
81

	
123.05

	
0.2367

	
0.29997

	
0.071003




	
2700–3050 mm

	
21

	
50.04

	
−0.2134

	
0.29997

	
−0.06401




	
>3050 mm

	
4

	
10.90

	
−0.3474

	
0.29997

	
−0.10421
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Table 9. Recommended indicators for risk assessment and grading (the standard is sourced from China’s “Technical Requirements for Geological Disaster Risk Investigation and Evaluation (1:50,000)”).
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Hazard

	
Extremely High

	
High

	
Medium

	
Low




	
Vulnerability

	






	
Extremely high

	
Extremely high

	
Extremely high

	
High

	
Medium




	
High

	
Extremely high

	
High

	
Medium

	
Medium




	
Medium

	
High

	
High

	
Medium

	
Low




	
Low

	
High

	
Medium

	
Low

	
Low
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