
Citation: Koko, A.F.; Han, Z.; Wu, Y.;

Zhang, S.; Ding, N.; Luo, J.

Spatiotemporal Analysis and Prediction

of Urban Land Use/Land Cover

Changes Using a Cellular Automata and

Novel Patch-Generating Land Use

Simulation Model: A Study of

Zhejiang Province, China. Land 2023,

12, 1525. https://doi.org/

10.3390/land12081525

Academic Editors: Jianjun Zhang,

Víctor Hugo González-Jaramillo and

Ruetger Rollenbeck

Received: 20 June 2023

Revised: 18 July 2023

Accepted: 30 July 2023

Published: 1 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Spatiotemporal Analysis and Prediction of Urban Land
Use/Land Cover Changes Using a Cellular Automata and Novel
Patch-Generating Land Use Simulation Model: A Study of
Zhejiang Province, China
Auwalu Faisal Koko 1,2,† , Zexu Han 1,2,†, Yue Wu 1,2,*, Siyuan Zhang 1,2, Nan Ding 1,2 and Jiayang Luo 1,2

1 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
faisal.koko@zju.edu.cn (A.F.K.)

2 International Center for Architecture and Urban Development Studies, Zhejiang University,
Hangzhou 310058, China

* Correspondence: ywu100@zju.edu.cn
† These authors contributed equally to this work.

Abstract: Urban land use/land cover (LULC) monitoring and prediction are vital for understanding
the spatiotemporal change dynamics of future land uses. They provide the necessary data for effec-
tively planning and managing natural land resources. In this study, we analyzed and simulated the
changes in urban LULC within Zhejiang Province, a region in China experiencing rapid urbanization.
By exploring the historical change dynamics of the region, we observed substantial transformations
in the extent of built-up areas, forests, and agricultural land from 1995 to 2020. Specifically, the study
area witnessed the expansion in urban built-up areas by approximately 6126.93 km2, while forests
and agricultural land witnessed decreases of 3252.47 km2 and 2885.13 km2, respectively. To predict
the study area’s future LULC, a cellular automata (CA) model was utilized in combination with an
advanced patch-generating land use simulation (PLUS) model. This integrated approach allowed for
multiple land use predictions based on different scenarios. Under the baseline scenario (BLS), it was
projected that the area of urban expansion in Zhejiang Province would be approximately 4501.62 km2.
However, under the scenario of cultivated land and ecological protection, i.e., CLPS and EPS, urban
growth was observed to be 538.64 km2 and 1776.16 km2, respectively. These findings indicate that the
extent of built-up area development in Zhejiang Province is significantly reduced when the CLPS and
EPS are implemented in comparison to the BLS. Therefore, policy interventions are crucial to protect
agricultural land and conserve ecological areas. This research provides the scientific data needed for
proper planning and serves as reference data for other regions with similar rapid urbanization.

Keywords: land use changes; LULC modeling; CA model; PLUS model; Zhejiang

1. Introduction

Land plays a critical role within the natural environment and holds significant impor-
tance in various aspects of human existence as well as the development of ecosystems [1–3].
However, the global availability of land resources has become increasingly limited due to
the growing urban population and the high demand for agricultural development [4,5].
Currently, more than 56% of the global urban population, approximately 4.4 billion people,
reside in cities, which is expected to reach approximately 68% by 2050 [6]. Due to this
rapid urbanization process, there has been a notable transformation in the spatio-temporal
distribution of land use and land cover (LULC) at local, regional, and global levels [7]. It
is, therefore, vital to monitor and analyze the dynamics of LULC to effectively manage
land resources and achieve sustainable urban development [8]. In addition, to address
the negative impacts of urbanization, such as biodiversity loss, land resource depletion,
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ecosystem degradation, and environmental pollution [9,10], accurate predictions of changes
in LULC are necessary for proper land resource planning and management.

In China, the country’s late 1970s economic reform and opening-up policy have con-
tributed substantially to the severe inconsistency between the demand for land resources
and economic supply in most provinces [11,12]. This inconsistency is mainly attributed to
the pressures of 21st century urban development and rapid industrialization. The urbaniza-
tion rate of China has grown considerably from 17.90% in late 1978 to approximately 64.72%
in 2021 [13,14]. The impact of this development has been the increased utilization of land
resources, resulting in continuous declines in agricultural areas, loss of arable farmlands,
ecological deterioration, and inequality between the land supply and demand [15–17].
The irrational use and development of land resources, particularly in areas with high
commercial and land value, have contributed to these alterations in LULC [18,19]. There-
fore, environmental studies that focus on sustainable development in urban areas through
ecofriendly strategies are critical for mitigating the negative impacts of urbanization and
rapid industrialization [20,21]. Proper monitoring and prediction of land uses are essential
to address these urbanization challenges [22–24].

Recent environmental studies have employed remotely sensed data using various
geospatial techniques to examine the change dynamics of LULC [25]. Such methods provide
a cost-effective approach for the spatial and quantitative exploration of land use changes
using earth observation data [26,27]. Time-series satellite data analysis, in particular, offers
an excellent platform for understanding and predicting urban land use changes [28,29].
Over the years, various spatial models have been used in different urban areas to forecast
future land use changes [30]. Among the most utilized simulation models include cellular
automata (CA), Markov chain (MC), CA-Markov, logistic regression (LR), artificial neural
networks (ANNs), machine learning (ML), and the conversion of land use and its effects
(CLUE-S) model [31]. These models are utilized to estimate future LULC transitions on
a local and regional scale [32,33]. Each model has unique characteristics and specific
modeling abilities. The CA model, for instance, is commonly used for simulating land
use transitions because it considers previous LULC conditions, neighboring influences,
and transition rules. It employs a nonlinear stochastic process to estimate pixel locations
and generates a complex matrix of LULC alterations [34]. Cellular automata models have
rapidly evolved in several environmental studies and offer valuable insights into the
spatiotemporal complexities of land uses in urban areas [35,36].

Several regional studies have utilized these models to determine the future dynamics
of urban LULC [25,37–39]. For example, the Markov chain (MC) model was employed
to forecast the urban LULC changes in the Bhagirathi-Hugli River, India [40]. In another
study, the Markov model was combined with a CA model to forecast changes in LULC
based on space and time, effectively integrating the cellular automata model’s spatial
capacity with the Markov chain’s long-term simulation abilities [41]. The decadal change
dynamics of LULC in the Zarriné-Rūd River Basin, Iran, were spatially mapped using
an integrated-based scenario model [42]. By incorporating different socioeconomic and
climatic variables, another study demonstrated that most land use changes do not signify
land degradation/desertification in Greece, with future predictions indicating a similar
trend of land use modification [43]. Recent studies have also determined the anticipated
urban sprawl in the city of Lagos, Nigeria, using a spatially explicit model [10,44]. The
study results showed substantial urban growth over the last 20 years. Similarly, the CA-
Markov was utilized in the Kurdistan region of Iraq to model future LULC. The model was
also used in the Mellegue catchment region between Algeria and Tunisia to forecast and
assess land use changes [45,46].

While numerous previous studies have forecasted future LULC using spatially explicit
models, such models have limited capabilities in understanding the underlying factors
responsible for land use changes and experience numerous challenges in simulating patch-
level alterations of LULC due to their deficiency in conversion rule strategy. Therefore,
there is an imperative need for a novel method that accurately represents the complex
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and heterogeneous nature of LULC alterations. Such an approach would remedy the
deficiency of the conversion rule strategy by providing a multitype seed mechanism that
better simulates land changes using multitype land use patches. An example of such
a method is the novel patch-generating land use simulation (PLUS) model. The model
produces an improved simulation result due to its multiobjective optimization algorithms,
providing better insights into the underlying factors of land use changes specific to the
study area.

In our current investigation, we applied the PLUS model to examine the factors be-
hind the expansion of urban land uses and forecast the anticipated LULC within Zhejiang
Province, China, over the next 20 years, i.e., 2040. The innovative approach employed in
this study utilized a rule-mining framework derived from the land expansion analysis
strategy and incorporated multiclass random seeds to have a more accurate simulation
result compared to the existing CA models. This technique models the nonlinear relation-
ships inherent in patch-level variations of land uses [47]. By utilizing a multiobjective
optimization algorithm along with multitype random seeds, the PLUS model effectively
forecasted the anticipated changes in the study area’s land uses, which is vital to achieving
the three specific objectives of this research. These objectives include (i) analyzing the
spatiotemporal LULC change dynamics within Zhejiang Province between 1995 and 2020,
(ii) examining the underlying factors that contributed to these land use changes over the
last 25 years, and (iii) simulating the anticipated pattern of the future urban LULC under
three different scenarios.

2. Materials and Methods
2.1. Study Area, i.e., Zhejiang Province

Zhejiang Province is located in China’s mainland between longitude 119◦0′0′′ E and
123◦0′0′′ E and latitude 28◦0′0′′ N and 31◦0′0′′ N around the country’s southeastern coast,
as shown in Figure 1. It is bordered by Shanghai and Jiangsu Province to its north, Anhui
and Jiangxi Provinces to its west, Fujian Province to its south, and the East China Sea to its
east. The province covers approximately 103,117 km2 and has varying topography, with
hilly areas in its southern and western regions and flat areas around its north. It has diverse
climatic features, with a mean annual rainfall between 1000 and 1900 mm and humid and
hot summers/springs. The study area, i.e., Zhejiang Province, is identified as a region with
one of the fastest socioeconomic growth in China. In 2021, the region’s gross domestic
product was estimated at CNY 7.35 trillion, which is 108 times that of 1978 based on the
country’s data. This growth has contributed to significant land use changes, resulting
in numerous challenges, such as inadequate land resources and other environmental
challenges. The 2019 National Land of China indicated a per capita cultivated land area
of approximately 0.30 mu in Zhejiang Province. This amount is far below the United
Nations warning level of 0.795 mu, as suggested by the Food and Agriculture Organization
(FAO). This makes the region an ideal study area for analyzing land use changes and
their associated drivers. By focusing on Zhejiang Province, the study provides more
understanding of the driving factors behind land use changes and offers valuable insights
into the future LULC pattern.

2.2. Data Sources

We acquired the classified land use and land cover (LULC) datasets from China’s
annual classified land cover products (CLCD). These data, which are publicly available in
the Zenodo archive [48], cover the period from 1995 to 2020 and consist of nine major LULC
classes. The spatial resolution of the data is 30 m. The accuracy of the classification was
assessed by validating it against third-party test samples, resulting in an overall accuracy
of 79.31%. We obtained additional data for our study from various sources. Specifically, we
retrieved information on the digital elevation model (DEM), precipitation, and tempera-
ture of Zhejiang Province from the Chinese Academy of Sciences (CAS) Data Center for
Resources and Environmental Sciences. To incorporate spatial information, we obtained
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road and administration center data from the OpenStreetMap platform. Socioeconomic
factors were acquired from the Global Change Research Database and Repository. To obtain
data on slope and distance to roads, we utilized the DEM and the Euclidean distance
technique in ArcGIS 10.7.1 geospatial software. It is important to note that different years
were used for these datasets due to their availability. We relied on the most reliable and
comprehensive data sources available during the study. Collecting reliable and consistent
multiyear socioeconomic data is challenging, especially at a regional scale and for specific
variables. Given the constraints we faced, we utilized the GDP and population data for
2015 to perform the analysis changes of the study area’s land uses. A summary of the
diverse datasets is provided in Table 1.
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Table 1. Summary of the different datasets.

S/
No. Data Subdata Year Spatial

Resolution Source Format

1. Land use
dataset Classified LULC 1995–2020 30 m https://zenodo.org/ Geo TIFF

2. Natural/physical data

DEM
Slope

Precipitation
Temperature

2015

30 m
30 m

1000 m
1000 m

https://www.resdc.cn Geo TIFF

3. Socioeconomic data

GDP
Population 2015 1000 m https://www.geodoi.ac.cn/ Geo TIFF

Distance to motorway
Distance to railway

Distance to primary road
Distance to secondary road

Distance to tertiary road
Distance to government

2020 https://www.openstreetmap.org/ .Shp

2.3. Methods

The methodological procedure comprised two major steps that involved (i) monitoring
and analyzing the study area’s LULC change dynamics from 1995 to 2020 and (ii) forecasting
the future distribution of the study area’s LULC over the next 20 years. The classified LULC

https://zenodo.org/
https://www.resdc.cn
https://www.geodoi.ac.cn/
https://www.openstreetmap.org/
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maps and the spatial driving factors served as the input data for the simulation process
using the procedures below.

2.3.1. Classification of Land Use/Land Cover

The extent of the study area, i.e., Zhejiang Province’s boundaries, was cropped and
projected to WGS 1984 UTM prior to the reclassification of LULC. The collected data were
then preprocessed with quality enhancement techniques. The research categorized the
study’s areas LULC into six (6) key classes of land uses. The classes include agricultural
land (plantations, cropland, fallow land, and farmlands), forest areas (riparian vegetation,
open forest, deciduous woodlands, evergreen broad or needle-leaved forests, dense forest,
deciduous forest, and mixed forest), grassland (areas with vegetation of two meters and
below height and range lands), water bodies (rivers, lakes, ponds, reservoirs, swamps,
streams, and wetlands), built-up or urban areas (residential, commercial, and industrial
buildings alongside other infrastructural facilities, such as road networks), and barren land
(includes gravel or silt deposit, construction site, degraded hillsides, rock, open lands, or
bare soil with no plantation or vegetation cover), as described in Table 2. The study further
interpreted and verified the reclassified LULC using high-resolution Google Earth images in
ArcGIS 10.7.1. Finally, we utilized various resampling techniques, such as the bilinear and
nearest neighbor interpolation, to harmonize the spatial resolution discrepancies between
classified land cover maps and spatial driving variables, enabling their effective integration
and analysis within our study.

Table 2. Classification scheme of LULC classes.

S/No. LULC Category Description of LULC Categories

1. Agricultural Land Comprises all croplands, farmlands, plantations, and
agricultural areas

2. Forest Areas Consist of all land with different types of forestland
3. Grassland Areas with open pasture and green land
4. Water Bodies Areas with rivers, lakes, ponds, streams, and reservoirs

5. Built-up Areas Include residential, institutional, and commercial areas
with urban facilities and impervious surfaces

6. Barren Land Covers areas having no vegetation cover, crops, or grasses.

2.3.2. Spatiotemporal Analysis of LULC

This research analyzed the spatiotemporal changes in the study area’s land uses using
six-time epochs. We utilized the change modeler of TerrSet geospatial software 19.0.6 to
estimate the LULC changes between 1995 and 2000, 2000 and 2005, 2005and 2010, 2010
and 2015, 2015 and 2020, and 1995 and 2020. The change transition was analyzed using
geospatial techniques that overlapped two classified maps of the different years. The study
also produced the statistical data of area changes and change alterations for the different
time nodes. For the annual rate of changes in each LULC category, the land use difference
between the initial and final periods of individual land use classes was divided by time
interval. The change magnitude and the rate of annual changes in LULC were calculated
using Equations (1) and (2) below:

Change Magnitude (CM)= AL(t1) −AL(t2), (1)

Annual Rate of Change (ARC)=
AL(t1) −AL(t2)

AL(t2) × N
× 100%, (2)

where CM is the magnitude of change, AL is the area of individual classes of land uses, t1
is the initial time, t2 is the final time, and N is the time interval between t2 and t1.
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2.3.3. Driving Variables of LULC Changes

The study recognized the significance of spatial driving factors to the numerous LULC
alterations. The factors that led to the study area’s numerous LULC transitions are diverse
and complex, resulting from several physical and natural factors alongside socioeconomic
considerations. Physical and socioeconomic factors influence the simulation model’s accu-
racy. The study area’s geographical and climatic factors served as the physical factors that
substantially influenced anthropogenic activities in the province. Physical considerations
such as DEM, slope, and distance to roads are utilized to determine their contribution to
urban land use transition. The natural condition was the basis for determining the study
area’s spatial distribution related to land availability. In addition, socioeconomic factors
also helped in understanding the study area’s evolution of LULC. The main driving factors
considered in this study comprised gross domestic product (GDP), population, digital
elevation model (DEM), slope, precipitation, temperature, distance to road networks, and
urban administrative centers.

2.3.4. Modeling and Prediction of Future LULC

The study utilized the novel patch-generating land use simulation (PLUS) model
coupled with the cellular automata (CA) model using the operational workflow presented
in Figure 2. The spatiotemporal LULC distribution was modeled using the classified LULC
maps, spatial driving variables, and transition constraints unique to the study area.
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The patch-generating land use simulation (PLUS) model is a hybrid simulation ap-
proach that utilizes cellular automata techniques and raster data to predict LULC trans-
formations at the patch scale [49,50]. It considers the potential spatial drivers of LULC
in understanding the factors contributing to land use changes. The PLUS model has an
operational mechanism for handling multiple LULC types and can accommodate a mul-
tiobjective optimization algorithm to simulate variations in urban land use [51]. Hence,
it serves as a more advanced, effective, and reliable tool for modeling future land uses
than the previously utilized LULC simulation models. The PLUS model incorporates a
random forest (RF) algorithm to study the correlation between land utilization and spatial
factors in understanding the anticipated changes in future LULC. The model employs a
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mining rule framework that utilizes the land expansion analysis strategy (LEAS) and the
multiclass random patch seeds (CARS) of the cellular automata model to simulate LULC
transitions [52].

i. Land Use Expansion Analysis Strategy (LEAS)

The LEAS module helps determine land use alteration using multiple patches obtained
between the two nodes of LULC alteration. It utilizes a random forest (RF) algorithm in
mining the potential variables of land use changes [53]. The modeling process requires
overlaying two-time node land use data and extracting the spatial data for each LULC type.
The LEAS provides the developmental proximities of each LULC category and determines
the significance of the different variables in shaping the transformation of individual land
use classes. Therefore, the proposed strategy helps in demonstrating and interpreting a
better spatial evolution of land uses [54];

ii. CA Model’s Multiclass/Type Random Patch Seed (CARS)

The CARS segment of the PLUS model helps forecast the spatiotemporal pattern
of land uses based on LULC demand, transition potential, and other parameters. It is a
simulation approach that combines the generation of random seeds with a mechanism that
gradually reduces its threshold, allowing for a dynamic simulation of patch generation
while considering the space and time constraints imposed by developmental probabili-
ties [51,55]. The CARS module has a patch-generating tool that relies on multiclass random
seeds to simulate future land use [56]. The multiclass random seeds model land transitions
in patches using the threshold-descending rule to limit patch generation in the various
LULC types. Therefore, land use cells with higher probabilities will likely transform more
rapidly. The selected class of LULC is evaluated based on the decreasing threshold (τ)
of the new land uses and calculated using the mathematical expressions presented in
Equations (3) and (4) below:

If ∑N
k=1

∣∣∣Gt−1
c

∣∣∣ −∑N
k=1

∣∣Gt
c
∣∣ < Step Then, l = l + 1, (3)

{
Change Pd=1

i,c > τ and TMk,c = 1
No Change Pd=1

i,c ≤ τ or TMk,c = 0
τ = δl × r1, (4)

where Step is the PLUS model’s step size; δ is the decreasing threshold’s decay factor; τ
ranges between 0 and 1, with r1 being the value of the normal random distribution; l is
the decay steps number; and TMk,c refers to the LULC transition matrix, which identifies
whether (k) land use category can be transformed into (c) land use category.

Using the descending threshold presented above, land use patches of new types
develop spontaneously and evolve freely based on transition probability constraints. There-
fore, the underlying drivers of urban land use alterations are better identified in our
proposed model, i.e., PLUS model, than in previously utilized simulation models.

The hybrid model highlighted a new strategy for LULC prediction, serving as a
significant improvement to the previously utilized simulation models. The model maintains
the advantages of the previous simulation models and remedies the numerous alterations
occurring exponentially with land use categories while providing a better mechanism for
forecasting land use changes [53]. Hence, the proposed model provides more efficient and
accurate LULC simulation results.

2.3.5. Validation of the Simulation Model

We assessed the accuracy of the PLUS model by examining the real and simulated land
use and land cover (LULC) maps of Zhejiang Province. To ensure the model’s reliability,
we employed the Kappa statistical index, which allowed us to compare the outcomes of the
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simulated LULC with the real data of the study area. The validation process was conducted
using Equation (5), as described in the mathematical expression below:

Kappa Index (K) =
Oc − As

Es − As
(5)

where K represents the Kappa index, Oc represents the overall classification accuracy, As
signifies the accuracy of the real simulation, and Es is the expected simulation accuracy.

The Kappa index usually ranges between zero and one. The upper limit, i.e., 1,
signifies a total agreement between the real and forecasted map, while a Kappa value
of zero represents an equal chance agreement [57,58]. In general, Kappa values above
0.75 indicate an accurate and satisfactory simulation result due to the high agreement
between the real and simulated map. In contrast, Kappa values less than 0.40 signify poor
agreement in the simulation modeling process [59,60].

3. Results
3.1. Spatial and Quantitative Distribution of LULC

The LULC mapping and statistical distributions between 1995 and 2020 are presented
in Figure 3 and Table 3, respectively. The result indicates that the study area’s most pre-
dominant land use class was forest areas, accounting for over 66.89% of the total landmass
in Zhejiang Province, followed by agricultural land and built-up areas, which accounted
for over 24.34% and 8.59%, respectively. The result further indicated the differences in the
spatial distribution of other LULC classes, as shown in Figure 4.
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Table 3. Statistical data of the LULC categories in Zhejiang Province.

S/
No.

LULC
Categories

Area (km2)

1995 2000 2005 2010 2015 2020

1. Agric. Land 27,225.00 26,509.14 24,821.68 23,507.11 24,229.75 24,339.87
2. Forest Areas 70,133.460 69,746.59 69,637.56 69,512.71 67,544.28 66,880.99
3. Grassland 24.440 16.68 24.09 28.86 15.46 9.44
4. Water Bodies 3005.18 3121.60 3432.85 3502.54 3350.68 3029.38
5. Built-up Areas 2728.56 3722.72 5200.44 6564.59 7975.50 8855.49
6. Barren Land 0.30 0.21 0.32 1.13 1.27 1.77

103,116.90 103,116.90 103,116.90 103,116.90 103,116.90 103,116.90
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Figure 4. Distribution of LULC categories in Zhejiang Province, China, (in %).

The spatial distribution of LULC indicates that Zhejiang Province has expanded rapidly
over the last 25 years, with a built-up area development of approximately 6126.93 km2 (5.94%),
while forest areas declined from 70,133.46 km2 (68.01%) to 66,880.99 km2 (64.86%). Similarly,
other LULC categories witnessed positive and negative changes between 1995 and 2020.
Barren lands and water bodies increased slightly, with 1.47 km2 (0.00%) and 24.20 km2

(0.02%), respectively, while agricultural land and grassland indicated a substantial and
slight decline of −2885.13 km2 (−2.80%) and −15.00 km2 (−0.01%) from 1995 to 2020. The
change trend of the study area’s spatial distribution, as presented in Table 4, shows nu-
merous alterations in the different LULC categories. The built-up areas indicated the most
prominent urban expansion between 1995 and 2020, with an annual change rate of about
306.35 km2, while forest areas and agricultural land declined annually by approximately
−162.62 km2 and −144.26 km2, respectively.

Table 4. Statistical data of the LULC changes in Zhejiang Province.

S/
No.

LULC
Categories

∆ Changes in LULC (km2)

1995–2000 2000–2005 2005–2010 2010–2015 2015–2020 1995–2020

1. Agric. Land −715.86 −1687.46 −1314.57 722.64 110.12 −2885.13
2. Forest Areas −386.87 −109.03 −124.85 −1968.43 −663.29 −3252.47
3. Grassland −7.76 7.41 4.77 −13.40 −6.02 −15.00
4. Water Bodies 116.42 311.25 69.69 −151.86 −321.30 24.20
5. Built-up Areas 994.16 1477.72 1364.15 1410.91 879.99 6126.93
6. Barren Land −0.09 0.11 0.81 0.14 0.50 1.47

Note: ∆ signifies the area changes in LULC, and km2 signifies sq. km.
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3.2. Spatiotemporal Changes in Land Uses

We analyzed the change dynamics of the six (6) categories of land uses during the
historical period between 1995 and 2020 using a time span of five (5) years. The results
are presented in Figure 5, which indicates numerous variations in the study area’s LULC
categories with notable losses and gains and the contributions of the different land uses to
the urban growth of the province.
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In Period 1, i.e., 1995–2000, the study area’s barren land lost an area of −0.14 km2

and gained 0.05 km2, witnessing a net loss of −0.09 km2 (−42.86%). Built-up areas lost
−60.92 km2 and gained 1055.08 km2, experiencing a net gain of 994.16 km2 (26.71%). Water
bodies witnessed a 116.42 km2 (3.73%), comprising an area loss of −228.35 km2 and a
344.77 km2 gain. The grassland of the region observed a net change of −7.76 km2, with
a decline of –9.10 km2 and an increase of 1.34 km2, while forest and agricultural areas
witnessed a substantial decrease of −386.87 km2 and −715.86 km2, respectively, between
1995 and 2000.

In Period 2, i.e., 2000–2005, barren land, grassland, built-up areas, and water bodies
witnessed considerable growth, with an increase of 0.11 km2 (34.38%), 7.41 km2 (30.76%),
1477.72 km2 (28.42%), and 311.25 km2 (9.07%), respectively. Built-up areas observed
the most significant increase with 1477.72 km2 (28.42%), comprising an area decline
of −83.11 km2 and an increase of 1560.83 km2, while agricultural land witnessed the
most substantial decline with an area of –1687.46 km2 (−6.80%), comprising a loss of
−2790.23 km2 and a gain of 1102.77 km2. Forest areas also observed a decline of approxi-
mately −109.03 km2 (−0.16%).

In Period 3, i.e., 2005–2010, similar change trends were observed in water bodies, bar-
ren land, grassland, and built-up areas within the period between 2000 and 2005. However,
the undeveloped areas of Zhejiang Province witnessed the most significant growth during
this period, with an increase of approximately 0.81 km2 (71.68%), followed by built-up
areas and grassland with 1364.15 km2 (20.78%) and 4.77 km2 (16.53%), respectively. Similar
to Period 2, agricultural land observed the most significant decline with an area of about
−1314.57 km2 (−5.59%), while forest areas declined by −124.85 km2 (−0.18%).

In Period 4, i.e., 2010–2015, contrary to the earlier trend, the agricultural land of the
study area witnessed an increase of 722.64 km2 (2.98%), while grassland and water bodies
declined by −13.40 km2 (−86.68%) and −151.86 km2 (−4.53%), respectively. Similar to the
previous periods, built-up areas observed an expansion of 1410.91 km2 (17.69%) between
2010 and 2015. Barren land increased by 0.14 km2 (11.02%). During this period, the result
indicates that the most significant growth and decline were witnessed in built-up areas and
grassland, respectively.

In Period 5, i.e., 2015–2020, similar land use changes were observed as the previous
5 years. The study area’s grassland, water bodies, and forestland declined by approximately
−6.02 km2 (−63.77%), −321.30 km2 (−10.61%), and −663.29 km2 (−0.99%), respectively,
while barren land, built-up areas, and cultivated land expanded by 0.50 km2 (28.25%),
879.99 km2 (9.94%), and 110.12 km2 (0.45%), respectively. The result indicates that the most
significant land use increase was witnessed in barren land, while grassland witnessed the
most significant decline during this period.

Over the entire period between 1995 and 2020, i.e., Period 6, built-up areas observed
a substantial urban expansion with approximately 6126.83 km2, while land uses such as
forest areas, agricultural land, and grassland declined by −2885.13 km2, −3252.47 km2,
and −15.00 km2, respectively. The LULC classes that led to the significant urban growth
between 1995 and 2020 comprise mainly the transition of 5392.96 km2 of agricultural lands
into urban growth areas, followed by the transformation of forest areas and water bodies by
approximately 463.48 km2 and 266.38 km2, respectively. The numerous transition between
the LULC categories is presented in Figure 6.

3.3. Underlying Drivers of LULC Changes Using LEAS

The study employed a PLUS model using the LEAS module to examine the relationship
between the various alterations in land uses and the factors that influence these changes.
The result of the different variables that influenced the LULC changes in Zhejiang Province
between 1995 and 2020 are presented in Figure 7.
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(b) forest areas, (c) water bodies, and (d) built-up areas.

Figure 7a highlights the significance of each variable to the changes in the agricultural
land of Zhejiang Province. The result indicates that slope contributes most substantially
to the agricultural land transition, followed by elevation and population. The greater
the slope, the more prevalent the area becomes to erosion-related challenges. The result
revealed proximity to the tertiary and secondary roads to have the least influence on the
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transformation of agricultural areas. These findings may be attributed to the importance of
slope and elevation in consideration of China’s agricultural areas.

Figure 7b shows the contribution of each variable to forest land changes. The elevation
of Zhejiang Province exhibited the most prominent influence on the forest area changes,
followed by temperature, population, and slope. Similar to agricultural changes, proximity
to secondary and tertiary roads indicated the least influence on the transformation of forest
areas. These influences could be associated with the natural correlation between altitude
and temperature, which significantly impacts the growth of trees.

Figure 7c,d depict the contribution of each variable to the changes in water bodies
and built-up areas. Slope had the most significant influence on changes in built-up areas,
followed by proximity to government and population. The built-up areas expand out-
ward around the various administrative centers in the major cities of the province. Such
cities have constantly attracted large urban population, contributing to the study area’s
rapid urbanization.

3.4. Future Prediction of LULC, i.e., 2040
Multiscenario Prediction Using a PLUS Model

The study employed a novel method that integrated a PLUS model with CA model
to forecast the anticipated pattern of future land use/land cover (LULC) within Zhejiang
Province, China, specifically for the year 2040. We examined the dynamics of LULC
alterations and predicted future land uses under three (3) different scenarios. Under the
baseline scenario (BLS), it is assumed that government policies will not significantly impact
land use changes during 2020–2040. The study area’s alteration of LULC is expected to
follow a consistent pattern observed between 1995 and 2020. Based on this assumption,
the cultivated land protection scenario (CLPS) strategy involves strict control over built-up
areas, improvement of land utilization rate, and control of agricultural land conversion
into built-up areas. By incorporating the cultivated land protection scenario (CLPS) into
our study, we forecasted the potential consequences of land use policies and practices that
prioritize the conservation of agricultural areas. The CLPS scenario helps in assessing
the long-term impact of measures aimed at maintaining agricultural land productivity,
mitigating soil degradation, and sustaining food production systems. The ecological
protection strategy (EPS) places emphasis on the conservation of forest areas, grassland,
and water bodies. It strictly controls the alteration of these three LULC categories into
built-up areas. By incorporating the ecological protection scenario (EPS) in our study, we
sought to explore the potential outcomes of policies and interventions in safeguarding the
ecological integrity of the study area. The EPS scenario helps assess the implications of
prioritizing conservation efforts, such as habitat preservation, biodiversity conservation,
and ecosystem restoration.

In the present study, we parameterized the matrix of transition cost with the settings of
the cost matrix to develop the three prediction scenarios presented in Table 5, as suggested
in previous studies [61,62]. Within the matrix, a value of one (1) signifies that a LULC
category is allowed to be converted into another, while a value of zero (0) signifies the
nonconvertibility of the LULC category.

Table 5. Cost matrix of the multiscenario setting (2020–2040).

Scenario Setting
Baseline Scenario (BLS) Cultivated Land Protection Scenario

(CLPS)
Ecological Protection Scenario

(EPS)

AL FO GR WB BA BL AL FO GR WB BA BL AL FO GR WB BA BL

AL 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1
FO 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0
GR 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0
WB 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0
BA 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0
BL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note: AL represents agricultural land; FO signifies forest areas; GR represents grassland; WB denotes water
bodies; BA indicates built-up areas; and BL denotes barren land.
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To forecast future LULC, we combined a random forest (RF) algorithm with multiclass
random seeds to accurately model the land use demand of the six LULC categories in
Zhejiang Province under three scenarios. The result of the 2040 multiscenario prediction is
spatially mapped and presented in Figure 8.
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Under the baseline scenario (BLS), significant transformation will occur in the forest
areas, agricultural land, and built-up areas of Zhejiang Province over the next 20 years,
i.e., 2040. The result indicates that between 2020 and 2040, the built-up areas will expand by
approximately 51.22%, increasing by 4501.62 km2, while forest areas and agricultural land
will decline by −2436.72 km2 and −1779.47 km2, respectively. Water bodies are expected
to decrease by −283.38 km2, and grassland will experience a reduction of −2.24 km2. In
contrast, barren land is projected to increase slightly by 0.19 km2.

Under the cultivated land protection scenario (CLPS), substantial changes will occur
in the agricultural areas of Zhejiang Province, experiencing an area increase of 3114.70 km2

between 2020 and 2040. Forest areas and water bodies will decline with −2785.90 km2

and −864.79 km2, respectively, while built-up areas will slightly expand with 538.64 km2.
Grassland will decrease slightly by −2.24 km2, and barren land will decline by −0.41 km2.
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Under the ecological protection scenario (EPS), built-up land will expand by 1776.16 km2

in 2040. However, agricultural land will significantly decline to −1779.47 km2, while
grassland and barren land will slightly decrease by −1.13 km2 and −0.17 km2. Compared
to the other two scenarios, forest areas are expected to increase slightly under the EPS
with about 1.13 km2 from 2020 to 2040, mainly due to effective ecological protection. The
quantitative data for the different LULC categories, as indicated in the three prediction
scenarios, are presented in Table 6.

Table 6. Multiscenario statistics of predicted LULC categories (2020–2040).

S/
No.

LULC
Categories

Real and Simulated LULC (km2) Changes in LULC (2020–2040)

2020 BLS 2040 CLPS 2040 EPS 2040 BLS CLPS EPS

1. Agric. Land 24,274.40 22,494.90 27,389.10 22,494.90 –1779.47 3114.70 –1779.47
2. Forest Areas 66,765.30 64,328.60 63,979.40 66,766.50 –2436.72 –2785.90 1.13
3. Grassland 9.40 7.10 7.10 8.20 –2.24 –2.24 –1.13
4. Water Bodies 2876.10 2592.70 2011.30 2879.60 –283.38 –864.79 3.48
5. Built-up Areas 8788.90 13,290.60 9327.60 10,565.10 4501.62 538.64 1776.16
6. Barren Land 1.50 1.70 1.10 1.30 0.19 –0.41 –0.17

Note: BLS signifies baseline scenario; CLPS represents cultivated land protection scenario; and EPS denotes
ecological protection scenario.

3.5. Result of the Validated PLUS Model

The PLUS model was validated using the LULC maps of Zhejiang Province in 2015
and 2020. The validation result indicated a significant consistency between the real and
simulated maps of 2020, as shown in Figure 9. It presented an accuracy of 95.60% and a
Kappa coefficient of 0.915, suggesting a satisfactory simulation model. Hence, the validated
PLUS model can effectively predict future LULC.
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4. Discussion
4.1. Trends of Urban LULC Changes

In this section, we analyze the spatiotemporal changes in the urban LULC dynamics
of Zhejiang Province, China, over the last 25 years. The study utilized the change modeler
of TerrSet Geospatial software 19.0.6 to determine the losses and gains experienced by the
individual classes of land uses. The overall trend indicated numerous transitions in the
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different LULC categories, with the built-up areas of the province showing the most sub-
stantial growth. The result conforms to the outcome of an earlier study that indicated the
rapid urbanization of most Chinese cities after the country’s “1979 reform and opening-up”
policy [63,64]. The spatial result also aligns with a previous study conducted in 261 cities
in China, which revealed a total annual urban expansion of approximately 1869.81 km2

between 1990 and 2015 [65]. The result also conforms to another study conducted in
36 major cities in China; the analysis of the land use changes revealed substantial growth
and annual urban expansion of 15.51 km2 per city, suggesting multiple-fold urban devel-
opment between 1986 and 2015 [66]. The rapid urban expansion of Zhejiang Province
could also be attributed to the population growth and socioeconomic development of the
region. According to China’s official estimate [67], the total population of Zhejiang Province
has significantly increased to 64.57 million people in 2020, witnessing the second largest
growth among all the provinces in China, with an increase of 10.14 million people between
2010 and 2020. The province also experienced a substantial increase in gross domestic
product (GDP) from CNY 2.74 trillion (USD 405.2 billion) in 2010 to CNY 6.46 trillion (USD
936.8 billion) in 2020, ranking fourth in China’s provinces.

4.2. Driving Factors of Urban LULC Changes

The study indicates that the alteration of LULC results from the different spatial
variables comprising mainly natural and anthropogenic factors [68]. The natural factors
include the DEM, slope, precipitation, temperature, distance to road networks, and urban
administrative center, while the anthropogenic factors comprise mainly socioeconomic
data that include gross domestic product and population [69]. Wang and Lu analyzed
land use transformation in 55 mountainous cities in China [70]. The result identified
population growth and development policies, i.e., urban, transport, and economic, as the
main factors that influences the expansion of land uses. In our study, we utilized the
PLUS model’s LEAS module to analyze the relationship between LULC changes and the
different spatial driving factors. Our results revealed the significant influence of physical
and socioeconomic factors that include slope, DEM, population, gross domestic product
(GDP), and proximity to administrative center to the urban land use alteration within
Zhejiang Province. The results align with earlier studies that revealed the strong influence
of regional policies, socioeconomic development, and environmental settings on land
use alteration [71,72]. Hence, LULC changes are greatly influenced by several factors
that contribute to human–natural environment interactions [73]. Xu et al. maintained
that anthropogenic factors, comprising traffic conditions, economic development, and
government policies, contribute significantly to the local LULC [7]. Natural factors such
as slope and elevation reveal land productivity [74]. Areas with steep slopes are often
considered unsuitable for human activities. Such areas may also have low economic
value and less probability of changing. Lower elevation areas observed rapid land use
alterations mainly as a result of the anthropogenic suitability of the areas for farming. Slope
is identified as a vital consideration for agricultural land use in China [75]. Zhou et al.
observed that urban growth areas are often found in areas with flat terrain [76]. Such areas
are more likely to be subjected to the intensive pressure of urbanization, which contributes
to the encroachment of agricultural areas.

4.3. Multiscenario Dynamics of Future Land Uses

The analysis of the predicted land uses reveals that urban growth is evident in all three
scenarios, i.e., the baseline scenario (BLS), cultivated land protection scenario (CLPS), and
the ecological protection scenario (EPS); however, the growth rate is significantly controlled
when the CLPS and EPS are implemented in comparison to the BLS. The agricultural
areas of Zhejiang Province were observed to be effectively protected under the cultivated
land protection scenario compared to the other two scenarios, i.e., baseline and ecological
protection. Therefore, urban expansion will substantially increase in Zhejiang Province
over the next 20 years. The consequences of this development will lead to numerous
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spatiotemporal variations under the three different scenarios, i.e., BLS, CLPS, and EPS.
The study’s findings align with the result of Xu et al., which forecasted the urban land
use changes in metropolitan areas and subcenters of China [49]. The result shows a
more than 10.6% expansion in the built-up areas of Hangzhou and other administrative
centers between 2022 and 2030. The development also conforms to the recent discoveries
of Mamitimin et al., which modeled the LULC changes in northwest China’s arid and
semiarid region under multiple scenarios [77]. The study indicated that under the BLS,
urban expansion is expected to persist, while agricultural areas will decrease over the next
7 and 27 years. Similar to these studies, the present study indicates that the agricultural
decline, particularly under the BLS and EPS, could significantly influence the self-sufficiency
and future availability of agricultural produce in Zhejiang Province over the next few years.
Therefore, policy interventions that effectively protect agricultural land while controlling
urban expansion are necessary for the study area.

5. Policy Recommendations

Based on the multiscenario dynamics of the study area’s forecasted land uses, the
following policies are recommended for the three development scenarios, i.e., BLS, CLPS,
and EPS.

i. Baseline scenario (BLS)

The following policy recommendations are suggested to balance urban expansion and
preserve agricultural land and natural areas:

• Smart Growth and Compact Development: Encourage the development of compact
and efficient growth patterns in urban areas, prioritizing the infill development and
redevelopment of barren land areas. This approach will help minimize the conversion
of agricultural land and natural habitats to other land uses;

• Agricultural Land Protection: Implement policies and regulations to protect agricul-
tural land from urban encroachment. Such strategies can promote sustainable farming
practices, support farmers’ livelihoods, and ensure food security;

• Green Infrastructure Development: Incorporate green infrastructure, such as ecological
corridors, parks, and green belts, into the planning of urban areas to enhance urban
resilience and improve the overall quality of the urban environment.

ii. Cultivated Land Protection Scenario (CLPS)

The study recommends the following policy recommendations to effectively protect
cultivated land:

• Strict Land Use Control: Enforce stricter measures and land use regulations to prevent
the conversion of cultivated land for nonagricultural purposes. Such a strategy will
include enhanced monitoring and enforcement through regulatory bodies to curb
illegal land use alteration;

• Agricultural Innovation and Support: Invest adequately in modern agricultural re-
search and development by encouraging contemporary farming techniques and as-
sisting farmers in embracing sustainable agricultural practices. This will improve
productivity and reduce the pressure to convert further land for cultivation;

• Land Use Consolidation: Encourage land consolidation programs to optimize frag-
mented agricultural land and improve productivity. This can be achieved through
voluntary land exchange programs, agricultural cooperatives, or other mechanisms
that facilitate more efficient land use.

iii. Ecological Protection Scenario (EPS)

The following policy recommendations are suggested to preserve and protect the
ecological system:

• Ecological Conservation and Restoration: Strengthen the protection of key ecological
areas, such as forests and wetland areas, classified as water bodies. Implement various
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measures for ecological restoration, such as reforestation, wetland preservation, and
habitat conservation;

• Sustainable Tourism Development: Promote sustainable tourism practices that mini-
mize negative impacts on ecological systems and support local communities. Encour-
age nature-based tourism, ecotourism, and the development of protected areas for
tourism purposes;

• Environmental Education and Awareness: Provide educational programs to raise
environmental awareness among urban inhabitants about the importance of ecological
conservation. In addition, encourage community participation in various conserva-
tion efforts.

The above recommendations seek to ensure sustainable urban development and
protect valuable ecological resources by addressing the anticipated changes in urban land
use of the study area, i.e., Zhejiang Province, China.

6. Conclusions

We analyzed the spatial and temporal alteration of land uses in Zhejiang Province,
China, between 1995 and 2020 and predicted the study area’s future land use/land cover
(LULC) pattern in 2040 under three multiscenarios. The study employed a cellular automata
(CA) model integrated into a patch-generating land use simulation (PLUS) model to predict
future land uses. It is a novel prediction technique that utilizes multiclass random patch
seeds and land expansion analysis strategy to improve on previous simulation models. The
innovative model embodies the framework of the CA model and incorporates factors such
as neighborhood effect, adjustment elements, and developmental constraints. The result
of the historical analysis indicated significant changes in land uses such as built-up areas,
forests, and agricultural land, with an area of approximately 6126.93 km2, 3252.47 km2,
and 2885.13 km2 between 1995 and 2020. Various factors related to both physical and
socioeconomic aspects were employed to determine their contributions to the alteration
of land uses. The result suggests that the main factors influencing the study area’s LULC
changes varied according to the land use category. The findings imply that the alteration of
cultivated land, forest areas, and water bodies were closely attributed to the significance
of the study area’s elevation and slope, while the transformation of other land uses into
built-up areas was mainly linked to slope, proximity to government, and population. The
LULC prediction under the baseline scenario (BLS) indicated a continuous and substantial
urban expansion in Zhejiang Province with an area of approximately 4501.62 km2, while
the CLPS and EPS showed a controlled growth of 538.64 km2 and 1776.16 km2, respectively,
over the next 17 years, i.e., 2040. By investigating different development scenarios and their
potential impacts on land use change, the paper contributes to the understanding of the
policy–land use relationship. The study further recommends specific strategies to manage
land resources and promote sustainable urban development. While the present study has
effectively examined regional scale alteration in LULC systems, other modeling approaches
could be employed to compare the simulation results. Also, the study relied mainly on
a single-year GDP and population data in understanding the fundamental drivers that
influence land use modification. Future research may consider incorporating the study
area’s multiyear socioeconomic data and developmental policies as the driving force factors
that could improve land use analysis.
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