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Abstract: Since China declared that the post-epidemic era would begin in April 2020, the prevention
and control of epidemics have become routine. The capacity of cities to respond to future public health
emergencies will be enhanced if the resilience of cities is accurately measured and an emphasis is
placed on improving resilience levels. Under the 4R framework, this study quantifies and analyzes the
level of resilience of the cities in Jiangsu Province from both subjective and objective perspectives. By
selecting explanatory variables and developing a GWR model, the spatial distribution characteristics
of the quantified scores of resilience and the spatial characteristics of the influencing factors are
analyzed. The results indicate that cities in southern Jiangsu should invest more in economic
development and medical resources in the post-epidemic period. Northern Jiangsu should prioritize
boosting the health and social work sector’s gross domestic product. Coastal cities must enhance
their capacity for innocuous waste treatment.

Keywords: post-pandemic era; resilience quantification; GWR

1. Introduction

In recent decades, frequent public health calamities have become a global phe-
nomenon [1]. The outbreak of novel coronavirus pneumonia at the end of 2019 was a
typical and significantly unexpected public health event [2]. COVID-19 has exerted a
variety of social, economic, and environmental impacts on the global community since its
emergence. Threats to the sustainable development of communities are also formidable
obstacles. Wuhan was the first city in China to disclose the COVID-19 epidemic, and
it also had the greatest number of cases [3]. China declared the post-epidemic era to
have begun at midnight on 8 April 2020, when it lifted the quarantine of Wuhan city.
The post-epidemic era refers to when people returned to normal life after COVID-19
had been contained, but we must still cope with its long-term effects. To prevent future
epidemics, robust public health measures are required. In the post-epidemic era, the
public cannot avoid the recurrence of low-intensity epidemics and the constant mutation
of the virus, despite the fact that the peak of the epidemic has passed. As a result of the
virus’s ongoing mutation, its mortality and severity rates have decreased significantly.
Based on this, on 8 January 2023, China announced that the new coronavirus has been
re-classified from Class B to Class B2, a significant adjustment in China’s epidemic
prevention and control policy. Although this change denotes, to some extent, that the
COVID-19 epidemic has been effectively controlled, there are still other known and
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unknown public health disasters such as monkeypox, malaria, etc., that will continue to
pose new challenges to future medical and health services.

In the post-pandemic era, urban areas, as comprehensive systems with multiple inter-
connected elements, have become a propelling force for the nation’s social and economic
development. The length of the social and economic recovery process depends upon the
resilience of the region [4]. Given the escalating threats posed by external factors, bolstering
the capability of cities to recover has assumed paramount importance. This necessitates
emergency healthcare systems, including medical facilities and other critical infrastructure,
to pursue multidisciplinary solutions, thereby shortening the recovery time and enhancing
levels of resilience [5]. Owing to urban characteristics, such as high population density,
intricate building networks, and complex social frameworks, these areas are vulnerable to
uncertainty and disruption from external risks as well as internal structural transforma-
tions [6]. In order for these areas to withstand the effects of natural disasters, it is crucial to
enhance urban resilience in multiple dimensions.

Cities with weak resilience demonstrate less adaptability and a longer recovery pro-
cess, necessitating substantial resource consumption for restoration to the original status,
whereas cities with robust resilience can rapidly recover from unpredictable external in-
terferences, restoring or even surpassing their original status [7]. Rotterdam, one of the
Rockefeller Foundation’s 100 Resilient Cities worldwide, has the potential to deal with
future shocks more effectively [8]. New Orleans and Medellin, which are considered “pio-
neer cities” with regard to resilience, not only reduce vulnerability or mitigate a threat but
also provide multiple groups with economic, social, and infrastructure benefits [9]. Cities
with a high level of resilience can be targeted by identifying their strengths and using them
to maintain that level. Reasonable positioning can improve the capacity of non-resilient
regions to withstand public health emergencies [10]. Through precise quantification of
urban resilience level, an evaluation of a city’s disaster response capacity can be formu-
lated, which provides substantial guidance and recommendations for future resilience
enhancements.

The article is structured as follows. Section 2 provides an overview of the relevant
literature. Section 3 introduces the methodology of quantifying urban resilience analysis
through the combination of resilience assessment indicators’ weighting and quantitative
weighting. Section 4 shows the spatial characteristics of urban resilience based on the GWR.
Section 5 presents the contributions, implications, limitations, and future work following
this study.

2. Literature Review
2.1. The Definition and Characteristics of Resilience

Holling first applied the concept of resilience to the field of ecology, where he defined
it as the capacity of an ecosystem to resist and absorb change and recover from a shock [11].
Although resilience originated in fields such as psychology, its definition has been expanded
in recent decades and is now extensively applied to infrastructure systems and communities,
particularly in the context of public health disasters [10,12]. This paper defines urban
resilience as the ability to resist shocks and maintain normal operations, practice learning,
and summarize existing disasters, and recover to its original state relatively quickly when
a city experiences a sudden public health disaster.

Cui et al., argue that a resilient city must demonstrate four characteristics: robust-
ness, redundancy, rapidity, and resourcefulness [13]. A multi-perspective resilience
approach based on the 4R framework provides a holistic view of a city’s resilience
performance in response to public health disasters. The greater the significance of the
aforementioned 4R characteristics in a city, the greater its resilience. Robustness and
rapidity are considered to be the objectives of resilience, while diversity and redundancy
are the means of achieving these objectives [10]. The basic level of urban resilience is
determined by resourcefulness and redundancy, while the highest level is determined
by the height of urban resilience. The greater the prominence of the 4R characteristics in



Land 2023, 12, 1453 3 of 19

a city, the greater its elasticity [14]. Robustness refers to the urban system’s capacity to
maintain its normal function and stability in the face of external pressure [15]. Redun-
dancy refers to the ability to maintain the original functional state through backup or
other alternative systems, in spite of the damage caused to systems and the community
during, for example, an epidemic. The resourcefulness of a city refers to its capacity
to mobilize other alternative systems or elements from other systems to preserve its
original state and better cope with disasters [16,17]. Rapidity, which refers to the speed
at which a city can recover its normal operating capacity after a disaster and reflects the
ability to control disaster losses when achieving predetermined goals, is another factor
that determines resilience [18].

2.2. Resilience in the Face of Public Health Crises

Liu et al., note that in the context of frequent occurrences of natural disasters
around the globe, resilience construction is imperative for risk reduction and modern
emergency management [1]. Not only do resilient cities exhibit excellent post-disaster
performance, but they also facilitate prompt prevention, control, and management in
response to abrupt public health emergencies. Strong social networks have been found
to make communities more resilient in the face of disasters, as they are better able to
coordinate and respond to the crisis [19]. Bakkensen et al., emphasize the importance
of focusing on the ability of cities and urban systems to recover and reconstruct after
public disasters [20]. Fu et al., also contend, via the geographical detector model and
geographic weighted regression model, that urban resilience is a key factor in enhancing
preparedness for public health challenges [21]. Various factors influence the degree of
urban resilience. For instance, the resilience of urban infrastructure can improve the
city’s ability to respond to natural disasters, while community participation and social
networks can foster cooperation and support among urban residents [6]. Under the new
normal brought by the pandemic, resilience is generally of utmost importance for urban
sustainability. To increase the level of urban resilience, it is necessary to consider the
impact of various factors, and to take measures that emphasize the variable effects of
these factors.

Existing research articles indicate that urban resilience plays a critical role in reducing
risks, enhancing the city’s disaster resistance, promoting urban recovery, and achieving
sustainable development in the face of public health emergencies. However, how to
comprehensively and scientifically evaluate urban resilience is still an urgent problem to
be solved. Therefore, we need multidisciplinary participation to build a comprehensive
and reasonable evaluation system for urban resilience and select scientific, practical, and
operational evaluation indicators.

2.3. Assessment of Urban Resilience

Based on the 4R evaluation system, cities have varying levels of resilience and resource
utilization in the face of sudden public health incidents. In order to maximize resource
utilization and provide decision-makers with valuable empirical evidence and guidance, it
is necessary to use specific indicators and methodologies to quantify urban resilience.

The resilience triangle and performance-based engineering are the two common fun-
damental concepts upon which resilience quantification research is predicted. Bruneau
et al. introduced the resilience triangle as a method for assessing urban resilience based
on robustness and rapidity, which reveals the quality or performance of the urban system
by integrating the curve underneath [17]. Bruneau and Reinhorn expanded resilience
quantification from two to four dimensions by incorporating diversity and redundancy,
resulting in a more scientific and precise approach [22]. Moreover, based on the available
data, contexts, and urban dimensions, various methodologies are adopted in urban re-
silience assessments, such as qualitative methods, index approach, simulation models, and
so on [23]. To determine the impact factors of urban resilience, qualitative methods such as
content analysis and interviews are employed, and semiquantitative methods are used to
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identify the impact mechanism of urban resilience under external disruptions [24–26]. By
selecting urban resilience indicators from both its dimensions and characteristics, the index
approach is the standard method for determining the level of resilience [27,28]. In contrast
to the aforementioned methods, simulation models can dynamically measure resilience to
external shocks [29].

Despite the abundance of studies evaluating urban resilience in various disaster
contexts and proposing methods to improve it, there is a lack of research on identifying
the factors that influence urban resilience and assessing the significance of each factor in
the post-pandemic era. Firstly, in the aftermath of a pandemic, a systematic framework
to identify all the factors influencing urban resilience in the post-pandemic context is
inadequate. Second, our understanding of the impact mechanisms of the various urban
resilience factors remains limited. Without this information, it is challenging to conduct a
systematic and quantitative assessment of the level of urban resilience, which impedes its
overall improvement. To address these gaps, this study aims to systematically identify the
main factors that influence urban resilience in the post-pandemic context, investigate the
relationships between these factors, and systematically quantify the resilience of 13 cities in
Jiangsu Province. This will assist Chinese localities in preparing for future public health
crises and enhancing their resilience.

3. Materials and Methods

Jiangsu Province, which is situated on the eastern coast of China, has made significant
development advances since the implementation of the reform and opening-up policy.
Its communities are economically developed and have significant radiating effects on
neighboring regions [30]. The thirteen urbanized regions of Jiangsu Province feature a high
concentration of industry and a dense population [31]. The occurrence of public health
disasters such as COVID-19 has had varying degrees of impact on the 13 cities and has
also tested the resilience of each city. This paper selects the cities in Jiangsu Province of
China as its research area to evaluate and analyze their urban resilience during the post-
pandemic period. The purpose of this paper is to develop a comprehensive and reasonable
evaluation system, so that the level of resilience of each city can be assessed scientifically
and accurately, and so that practical recommendations can be made for future resistance to
major public health disasters.

This paper combines resilience assessment indicators’ weighting and quantitative
weighting to quantify urban resilience analysis, given that the DEMATEL method can
reflect the qualitative intentions of evaluators, and the entropy method can reflect true
quantitative data [32].

Initially, a literature assessment is conducted to identify the influencing factors of
urban resilience. The weight W1 for the resilience assessment indicators can then be
determined after the DEMATEL method is applied to calculate the resilience assessment
indicators. The weight W2 for the quantitative indicators can be determined using the
entropy weighting technique. In current research, the additive synthesis and multi-
plicative synthesis methods for calculating the combined weights cannot assure the
combined weights’ validity [10]. Therefore, this paper employs the principle of minimal
discrimination information to combine resilience assessment indicators’ weight and
quantitative weights, minimizing the difference between the desired combined weight
and the qualitative weight in order to obtain the combined weight W [33]. In conclusion,
geographically weighted regression (GWR) is used to analyze the spatial distribution of
factors affecting urban resilience in Jiangsu Province, thereby providing recommenda-
tions for enhancing the overall level of urban resilience. Figure 1 depicts the evaluation
system presented in this paper.
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3.1. Identification of Influencing Factors
3.1.1. The Identification of Resilience Assessment Indicators

“Post-epidemic era”, “Public health”, and “Urban Resilience/resilient” are used as key-
words to search ScienceDirect and Wiley Online Library, from which all English-language
literature is screened and verified.

After consulting and organizing existing policies and research, this paper identifies
eight resilience assessment indicators, including economic level, social network, emergency
response, daily management, medical resources, public service resources, experience in
disaster, and information technology, which are illustrated in Figure 2 [13,34–48].
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Economic level and social network are regarded as constituting robustness. First,
economic level has a significant impact on people’s lives [49]. Economic policies aimed
at enhancing resilience are, to some extent, conducive to enhancing recoverability [50].
In addition, economic conditions have a direct impact on the level of financial support
provided by the government after a disaster as well as the ability of cities to recover [51].
Social network refers to the patterns of social interactions between individuals, which
can provide a platform for individuals to communicate regardless of their geographical
locations [52,53]. Social network has been identified as a crucial component of developing
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resilience. The role of social network in promoting resilience building within government
institutions has been deemed crucial [54–56]. Emergency response and daily management
are identified as two indicators of rapidity. By improving emergency response capacity, the
speed with which urban systems can be restored to function can be increased, while daily
management determines a city’s ability to deal with public health emergencies [57–60].
Emergency response and daily operations collaborate to determine the rate of recovery to
pre-disaster levels [61].

Two redundancy-related indicators are identified, namely, medical resources and pub-
lic service resources. In the post-epidemic context, limited medical resources have sparked
significant anxiety among patients, the general public, and health care providers [62]. Even
the world’s most developed economies have difficulty meeting the demand for medical
services [63]. Medical resources ensure the availability of health services to some extent [64].
In the event that adequate public supplies and a well-organized emergency supply chain
ensure the smooth operation of a city, the urban redundancy can be enhanced [65].

Two indicators of resourcefulness are identified, including experience in disaster and
information technology. First, experience in disaster enables individuals to assess risks and
plan for post-disaster supplies in advance [66]. It raises awareness among stakeholders
of the potential hazards posed by disasters and the efficacy of alternative emergency
measures [67,68]. Additionally, information technology enables daily communication and
makes it convenient for people to obtain timely and reliable information about effective
prevention and control measures [13].

3.1.2. The Identification of Quantitative Indicators

To accurately assess the resilience scores of the thirteen cities in Jiangsu Province dur-
ing the post-epidemic period, this study extensively compares the sources of quantitative
indicators data to ensure its accuracy and reliability. For readily available data, we rely
on the Jiangsu Statistical Yearbook (2021) and provincial and municipal government work
reports for readily accessible data. Data from these sources cover a wide range of indicators
including population, employment, healthcare, culture, etc., ensuring the comprehensive-
ness of the data. For some data that are difficult to obtain, we employ web surveys and site
visits to extract the required data. We ensure the reliability of these data by comparing data
sources and consulting with experts.

Using the aforementioned methods, 24 sets of quantitative indicator data are obtained
and categorized using the 4R framework. The data are presented in Table 1.
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Table 1. Detailed Information about data of indicators.

First-Level
Indicator Code Second-Level

Indicator Code Nan
Jing WuXi Xu

Zhou
Chang
Zhou

Su
Zhou

Nan
Tong

Lian
YunGang

Huai
An

Yan
Cheng

Yang
Zhou

Zhen
Jiang

Tai
Zhou

Su
Qian

Economic level R1

GDP per capita R11 174,520 166,672 113,844 166,964 158,586 150,584 99,846 106,144 11,154 151,879 169,648 149,365 84,652
Disposable income per inhabitant R12 66,140 63,014 34,217 56,897 68,191 46,882 32,295 34,731 36,764 42,287 50,360 43,777 29,122

Disposable expenditure per inhabitant R13 39,118 39,820 21,278 34,079 41,818 29,705 21,038 19,857 21,982 26,083 30,780 27,712 18,041

Social network R2

Per capita expenditure on transport and
communication R21 5657 6669 3185 5905 7485 4851 2527 3136 3371 3195 4618 4166 2232

Number of tourist arrivals R22 10,830 8800 5196 6999 11,248 4314 3619 3293 2672 6060 5563 2336 1801
Number of travel agents R23 790 267 208 213 540 218 124 124 156 163 120 144 93

Emergency
response R3

Number of medical beds per
10,000 population R31 64.2 59.3 62.3 54.7 58.1 62.3 57.7 60.1 61.9 52.5 46.2 61.3 65.8

Number of physicians per 10,000 R32 41.7 34.2 32.3 29.8 30.7 29.5 28.8 31.6 32.0 28.6 28.2 30.8 30.4
Tourism income R33 2112.25 1646.79 629.96 1052.02 2262.31 614.96 495.84 403.9 291.09 810.41 774.51 290.03 209.83

Daily
management R4

Engel’s coefficient R41 26 27.1 29.4 27.4 25.8 28.9 32.9 30 28.8 29 28.9 29.5 30.6
Research expenditure as a proportion

of GDP R42 3.54% 3.18% 1.80% 3.30% 3.91% 2.60% 2.37% 1.78% 2.12% 2.26% 2.39% 2.65% 1.84%

Daily treatment capacity of
environmentally friendly treatment plants R43 9660 9390 4296 5190 13250 0 3390 300 2850 4690 1590 1220 1600

Medical
resources

R5

Number of health care facilities R51 3451 3107 4580 1667 4027 3494 2729 2316 3343 1899 1094 2140 2600
Number of beds in health care facilities R52 6.61 5.16 6.12 3.19 7.76 5.06 2.83 3.01 4.36 2.7 1.77 2.94 3.35
Number of staff in health care facilities R53 12.89 8.10 9.40 4.97 12.72 6.94 4.03 4.47 6.18 3.90 2.80 4.19 4.75

Public service
resources

R6

Number of general higher
education schools R61 51 13 12 11 26 9 5 7 6 9 9 7 3

Number of invention patents per
10,000 people R62 95.42 49 22.81 44.8 66.9 41.9 37.32 9.59 17.87 22 48.46 23.94 5.17

Number of postgraduate graduates R63 41,495 2348 4926 970 5269 936 226 91 0 2516 3843 0 0

Experience in
disaster

R7

General public budget revenue R71 1729.5 784.17 319.81 600.78 1358.2 416.56 192.28 224.63 240.05 231.72 160.84 213.49 142.05
Health and social work GDP R72 361.15 214.38 148.52 105.04 392.88 213.15 56.43 107.55 121.2 118.06 67.61 128.48 73.55

Health care expenditure per capita R73 2632 2501 1764 2566 2425 2350 1514 1409 1843 1450 1768 2376 1294

Information
technology R8

Number of 5G base stations R81 3.02 1 0.6 1 2.6 1.2 0.7 0.6 0.4 0.4 0.6 0.68 0.2
Whether a Gigabit city R82 1 1 1 1 1 1 1 0 1 0 1 1 0

Mobile phone penetration rate R83 139.67 131.09 110.5 124.91 140.8 113.63 104.11 106.29 104.54 115.75 117.91 108.79 100.17
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3.2. Analysis of Resilience Assessment Indicators by DEMATEL

The DEMATEL method was first proposed by Gabus and Fontela in 1973 and is an
important multi-criteria decision-making method. Its primary purpose is to identify key
influencing factors [69]. The method has been widely utilized in numerous fields for
risk assessment. This paper employs DEMATEL to determine the weight of qualitative
indicators. It consists primarily of four major steps: constructing the direct influence matrix,
normalizing the direct influence matrix, constructing the comprehensive influence matrix,
and analyzing centrality and causal relationships [70].

(1) Construct the matrix of direct influence. In past studies, the classical influence
degree of Ri on Rj is Rij, which is divided into five levels: very high, high, moderate, low,
and none. The five levels are then coded into corresponding scores as 4, 3, 2, 1, and 0.
However, due to the limited number of evaluation levels in classical DEMATEL, it may
result in insufficiently detailed evaluation results that cannot reflect subtle differences
between influencing factors, thereby reducing the accuracy and sensitivity of the results.
Therefore, in order to improve the accuracy of the DEMATEL method in evaluation, this
study proposed an improvement to the classical DEMATEL. The degree of influence of
Ri on Rj, denoted as Rij, is divided into eight levels, with five levels of very high, high,
moderate, low, and none corresponding to scores of 7, 5, 3, 1, and 0, respectively. The values
2, 4, and 6 correspond to the intermediate judgment scales.

Eight experts from higher education institutions in related fields are tasked with rating
the eight resilience assessment indicators to generate the direct influence matrix R, as
depicted in Equation (1), of whom five are male and three are female, accounting for 62.5%
and 37.5%, respectively. These experts conduct their own research in this field, and their
evaluations are fairly reliable.

R =



0 1 1 2 0 1 2 1
1 0 1 1 0 2 3 3
4 3 0 3 2 2 4 5
2 1 1 0 1 1 3 4
6 7 2 3 0 3 4 5
3 2 1 1 1 0 2 5
2 1 1 1 1 2 0 3
1 1 0 1 0 0 0 0


(1)

(2) Construct the B matrix of direct influence. Normalizing the original relation matrix
yields the normalized influence matrix B, as shown in Equation (2).

B =
Rij

max(
8
∑

j=1
Rij)

(2)

(3) Construct the comprehensive influence matrix T. Since the direct influence matrix
can only express the direct influence relationship between resilience assessment indicators,
it is necessary to obtain the comprehensive influence matrix, as shown in Equation (3),
which can express both the direct and indirect influence relationships between resilience
assessment indicators.

T = (B + B2 + . . . + Bk) =
∞

∑
k=1

Bk = B(I − B)−1 (3)

I is unit matrix.
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(4) Calculate the influence degree Di, affected degree Ci, and centrality degree Mi
based on Equations (4)–(6).

Di =
8

∑
j=1

Rij, (i = 1, 2, 3, . . . , 8) (4)

Ci =
8

∑
j=1

Rji, (i = 1, 2, 3, . . . , 8) (5)

Mi = Di + Ci (6)

By normalizing the centrality degree Mi, the weight W1 of resilience assessment
indicators can be obtained. Table 2 shows the results of calculating the weight W1 for
resilience assessment indicators using the DEMATEL method.

Table 2. Urban resilience indicator weights for Jiangsu Province.

Indictor Weight of Resilience Assessment Indicators W1 Indictor Weight of Quantitative Indicators W2 Portfolio Weight W

R1 0.11
R11 0.0119 0.0222
R12 0.0337 0.0374
R13 0.0343 0.0377

R2 0.117
R21 0.0328 0.0380
R22 0.0364 0.0401
R23 0.0671 0.0544

R3 0.13
R31 0.0130 0.0252
R32 0.0484 0.0487
R33 0.0498 0.0494

R4 0.104
R41 0.0000 0.0000
R42 0.0415 0.0404
R43 0.0428 0.0410

R5 0.169
R51 0.0206 0.0362
R52 0.0289 0.0429
R53 0.0385 0.0495

R6 0.106
R61 0.0588 0.0485
R62 0.0317 0.0356
R63 0.1411 0.0751

R7 0.12
R71 0.0778 0.0593
R72 0.0479 0.0466
R73 0.0310 0.0375

R8 0.144
R81 0.0479 0.0510
R82 0.0288 0.0395
R83 0.0350 0.0436

3.3. Analysis of Quantitative Indicators Using Entropy Method

Shannon first proposed the entropy weighting method in 1948; it is more reliable
and accurate than qualitative weighting methods [71]. It determines the weight of each
quantitative indicator by taking into account the utility value of the indicator’s information
entropy [72]. Entropy in information theory is a measure of uncertainty [71]. It is affected
by the probability and frequency of events, with the effect increasing as system uncertainty
increases [73]. As the amount of information decreases and the level of uncertainty rises,
the entropy also decreases. Therefore, the greater the data disparity between cities for a
given indicator, the greater the indicator’s weight. Using the entropy weighting method,
the quantitative indicator weight is calculated as follows.

(1) Assuming that n independent quantitative indicators are applied to evaluate m
cities, the matrix of quantitative indicators is shown in Equation (7).

R = (Rij)n×m =


R11 R12 · · · R1m
R21 R22 · · · R2m

...
...

. . .
...

Rn1 Rn2 · · · Rnm


n×m

(7)
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(2) Unification of indicators. As shown in Equations (8) and (9), the extreme value
method is used to remove the scale and standardize the indicators in order to unify the 24
quantitative indicators and eliminate the influence of different units.

xij =
Rij − Mini

{
Rij
}

Maxi
{

Rij
}
− Mini

{
Rij
} (8)

xij =
Maxi

{
Rij
}
− Rij

Maxi
{

Rij
}
− Mini

{
Rij
} (9)

For Formulas (8) and (9), the higher the value of the positive indicator and smaller the
value of the negative indicator, the better.

(3) The entropy of the indicator ei, coefficient k, and coefficient pij are calculated as
shown in Equations (10)–(12).

ei = −k∑ m
j=1 pij• ln pij (10)

k =
1

ln m
(11)

pij =
xij

∑ m
j=1xij

(12)

(4) Weight of quantitative indicators is calculated as shown in Equation (13).

wi =
1 − ei

n
∑

i=1
(1 − ei)

(13)

Table 2 displays the weights of quantitative indicators W2 according to the above formulas.

3.4. Calculation of Evaluation Indicator Combinations

After calculating the quantitative weight and the resilience assessment indicators’
weight of the evaluation indicators using the DEMATEL method and the entropy method,
a combined weighting model of the DEMATEL method and the entropy method is con-
structed based on the principle of minimum discriminative information entropy. The
principle of minimum discrimination information entropy can avoid the one-sidedness
of single-index evaluation, fully consider the interdependence and weight of multiple
indicators, and evaluate the advantages and disadvantages of different schemes more com-
prehensively and objectively [33]. W1 represents the weights calculated by the DEMATEL
method, while W2 represents the weights calculated by the entropy method.

The quantitative function is established as follows:

minF =
24
∑

i=1
w(i) ln w(i)

w1(i)
+

24
∑

i=1
w(i) ln w(i)

w2(i)

s.t.
24
∑

i=1
w(i) = 1, w(i) > 0

Using the Lagrange multiplier method to find the minimum value, we can obtain:

w(i) =
[w1(i)w2(i)]

0.5

24
∑

i=1
[w1(i)w2(i)]

0.5
(14)
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The magnitude of the combination weights can then be calculated, and the results are
shown in Table 2.

After calculating the indicator weights, the combined weighting results are applied
to the evaluation model of the DEMATEL-entropy weighting method in order to conduct
comprehensive evaluation calculations. The final urban resilience score for the thirteen
post-epidemic cities is determined by calculating the weighted standardized matrix and
adding the scores for each indicator. According to Table 3, the resilience levels of the
thirteen prefecture-level cities are divided into four categories: low-resilience city, medium-
resilience city, slightly higher-resilience city, and high-resilience city. The resilience scores
of the cities are then represented graphically for easy interpretation. Figure 3 demonstrates
the results.

Table 3. The classification of urban resilience levels.

The Level of
City Resilience High-Resilience City Slightly Higher-Resilience City Medium-Resilience City Low-Resilience City

Interval’s division (0, 0.15] (0.15, 0.3] (0.3, 0.45] (0.45, 1]
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Figure 3. Map of spatial variation in urban resilience and resilience scores.

According to Figure 3, the overall resilience level of Jiangsu Province is relatively
high, with 11 cities having resilience levels that are medium or higher. However, the
number of cities with a high level of resilience is limited, with only three cities, namely,
NJ, WX, and SZ, located in the southern portion of Jiangsu Province and radiating
outward to neighboring cities. Influenced by the radiation of high-resilience cities in the
surrounding areas, CZ and NT have the second-highest level of resilience after the three
cities listed above. The majority of cities, covering the north, central, and south regions
and accounting for 38.46% of all cities, have a medium resilience level, making it the
most widespread of the four levels. With only SQ and HA, the number of cities with low
resilience is the smallest.

Based on the score distribution depicted in Figure 3, there are still distinctions between
cities with high and relatively high resilience levels, whereas the gap between cities with
medium resilience levels is relatively small. Cities with a low level of resilience have low
scores and a large gap compared with cities with medium or higher level of resilience.
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4. Discussion
4.1. GWR Modeling

This study employs the geographically weighted regression (GWR) model to inves-
tigate the spatial characteristics of resilience and the contribution of influencing factors
to the resilience of cities in Jiangsu Province in greater detail. GWR investigates the spa-
tial variability and associated drivers of the dependent variable by establishing a local
regression equation for every point in the spatial domain [74]. GWR is more accurate and
powerful than OLS, because it takes into account the spatial heterogeneity of geographic
factors [75,76]. However, GWR method requires high quality spatial distribution and spa-
tial autocorrelation of data. If the data quality is poor or the spatial distribution is uneven,
it may affect the results of the GWR method.

This study selects four influencing factors, namely, GDP per capita, number of physi-
cians per 10,000, daily treatment capacity of environmentally friendly treatment plants,
and health and social work GDP, as the research objects for the effect of urban resilience.
The results of correlation and collinearity conducted on these four factors are presented in
Table 4.

Table 4. Correlation and covariance tests.

Name of Variable Representation
of Variable Relevance VIF

GDP per capita X1 0.0468 * 1.2491
Number of physicians per 10,000 X2 0.0384 * 1.6633

Daily treatment capacity of
environmentally friendly

treatment plants
X3 0.0098 * 2.6444

Health and social work GDP X4 0.0073 * 3.4194
* Significantly correlated at the 0.01 level (two-tailed).

All the influencing factors are significantly correlated, and the model’s VIF values
are all less than 7.5, indicating that there is no collinearity issue. Therefore, it is possible
to conclude that there is no correlation between the sample data, and the model yields
satisfactory results.

To demonstrate the suitability of the GWR model, the fitness of the GWR model is
compared to that of the OLS model, which is also used for spatial regression analysis. The
influencing factors are computed using the GWR plug-in in the ArcGIS 10.7 software pack-
age, and the regression model is constructed with an automatically optimized bandwidth.
The fitness of the OLS model is 0.956303, while the fitness of the GWR model is 0.956341,
indicating an increase in the fitness of the model and, consequently, a better fitting effect
as resilience level increases. In consideration of spatial heterogeneity, the GWR model is
more suitable than the OLS model for analyzing the spatial variation characteristics of the
influencing factors urban resilience.

Using the GWR model, the quantification scores of resilience for each city serve as the
dependent variable, while the four selected influencing factors serve as the explanatory
variables to conduct regression analysis on the resilience-influencing factors for each city in
Jiangsu Province. Figure 4 demonstrates the visualization outcomes.
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Figure 4. Spatial visualization of regression.

In Figure 4, the colors of the blocks corresponding to each city differ in intensity, with
darker colors indicating higher urban resilience and lighter colors indicating lower urban
resilience. The coefficient denotes the extent to which the independent variable influences
the dependent variable, i.e., the resilience level of the city. The GWR model’s standard
error value (StedResid) is used to indicate its accuracy. If the geographically weighted
regression model for a particular region is more accurate, the error value for that region
will be smaller. The fact that the standard error values for the four factors fall within the
range of (0.07, 0.11) demonstrates the model’s relative precision.

4.2. Spatial Characterization of Influencing Factors

(1) Spatial characterization of GDP per capita
All of the regression coefficients of GDP per capita in the GWR model are positive,

indicating a positive correlation between GDP per capita and urban resilience scores
in the region (Figure 5). The enhancement of economic vitality has a positive effect
on urban resilience. Generally, the regression coefficients indicate a decreasing trend
from south to north. The high-value areas are concentrated in the central and southern
regions of Jiangsu, primarily due to their advantageous location in the Yangtze River
Delta economic belt, adjacent to Shanghai, with a more open market that is conducive to
attracting foreign investment and expanding market scale. Shanghai, as the economic
center of the Yangtze River Delta region and even China’s financial, import–export,
and shipping industries, can radiate and drive the economic development of Jiangsu,
Zhejiang, and even the entire Yangtze River Basin, providing opportunities for capital,
talent, and commodity flow. In the central and southern parts of Jiangsu, the industrial
base is relatively robust, and a relatively complete industrial chain and industrial clusters
have been formed. Considering GDP per capita, (1) for high-value areas, it is necessary to
maintain the high level of economic development in the region and gradually shift to new
urbanization construction in order to drive the economic development of neighboring
cities and enhance urban resilience. (2) For low-value areas, the direction of economic
development should be shifted gradually, and the government and businesses should
invest more in ecological environmental protection while focusing on improving the
urban aesthetic and the happiness of residents.
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(2) Spatial characterization of the number of physicians per 10,000
In the GWR model, the difference between the presentation effect of the number of

physicians per 10,000 and the GDP per capita on urban resilience scores is relatively small
and generally shows a decreasing trend from south to north. Jiangsu’s central and southern
cities have a disproportionately high concentration of high-value areas, indicating that more
emphasis is placed on investing in medical resources by those cities. Jiangsu’s central and
southern regions have relatively high population densities, and as urbanization continues
to advance, so does the demand for medical services. The increase in urbanization and
development also increases the demand for high-quality medical services and advanced
medical technology among urban residents. Therefore, the focus of attention should
vary between low-value and high-value regions. (1) Investments in medical personnel
and resources should be increased in high-value areas, and special attention should be
paid to the cultivation of high-level medical talents and the continuous improvement
of the medical service network system to assure the accessibility and equity of medical
resources. (2) For low-value areas, such as LYG and YC, focusing on investment in medical
resources to enhance urban resilience may not have a significant impact and may result in
an unreasonable utilization of resources.

(3) Spatial characterization of the daily treatment capacity of environmentally friendly
treatment plants

The daily treatment capacity of environmentally friendly treatment plants decreases
progressively from coastal cities to inland cities, as measured by their spatial distribution.
After innocuous treatment, treated wastewater can be discharged directly into the natural
environment via physical, chemical, and other mechanisms, with rivers and oceans serving
as the primary discharge sites. In the post-epidemic era, the treatment of medical waste is a
crucial component of innocuous treatment. (1) Coastal cities such as YC and NT discharge
the most sewage into the ocean, and more efforts are required to increase their capacity for
innocuous treatment. (2) A series of techniques, such as high-temperature sterilization and
microwave treatment, can remove harmful substances or convert them into harmless ones,
increase the efficacy of harmless treatment and the recycling rate of medical waste, and are
effective means of enhancing urban resilience in high-value areas.

(4) Spatial characterization of health and social work GDP
In terms of spatial pattern, the factor of health and social work GDP is opposite to the

factor of GDP per capita, with an upward trend from south to north. In the northern cities of
Jiangsu, high-value regions are concentrated. (1) Given that cities such as LYG and SQ have
relatively underdeveloped medical resources, increasing investment in health and service
work during the post-epidemic period can significantly improve the city’s resilience. (2)
In cities with excellent medical conditions, such as SZ and WX, enhancing the production
value of health and social work has little effect on the overall level of urban resilience. (3)
Such cities should focus on enhancing the level of health services and training senior-level
emergency personnel, as well as bolstering the emergency capabilities of management
personnel and increasing public awareness of public health, which will increase urban
resilience accordingly.

5. Conclusions

Using a combination of subjective and objective methods based on the 4R resilience
theory, this study quantitatively and analytically evaluates the resilience level of various
cities in Jiangsu Province and graphically displays the resilience scores for each city. The
GWR model is used to assess the spatial distribution characteristics of cities’ comprehensive
resilience scores and the spatial distribution characteristics of influencing factors. During
the post-epidemic period, cities in southern Jiangsu with improved development, such as
NJ, SZ, and WX, can improve their urban resilience by increasing economic development
and investment in medical resources while shifting towards new urbanization construction.
Priority should be given to enhancing the production value of health and social work in
relatively underdeveloped regions of northern Jiangsu by promoting digital health services



Land 2023, 12, 1453 16 of 19

and establishing intelligent health management systems. Increasing the capacity of coastal
cities for harmless treatment is essential for urban resilience. The objective of enhancing
the operational efficacy and treatment capacity of harmless treatment can be attained by
improving the management system and supervision mechanism of the harmless treatment
process, as well as by increasing social engagement.

Jiangsu Province has experienced sustained economic growth, accelerated urbaniza-
tion, and effective disaster management in the post-pandemic era, but the issue of uneven
urban resilience development persists. In order to improve the resilience levels of various
cities in Jiangsu Province, it is essential to implement region-specific measures. This study
not only fills a theoretical gap regarding urban resilience in the post-pandemic era, but also
recommends critical actions to enhance urban resilience. Even though the scope of this
study is limited to cities in the province of Jiangsu in China, it has implications for other
Chinese cities. For other regions in China, the same research methodology can be adopted
to evaluate urban resilience from a combined qualitative and quantitative perspective, and
to provide rational recommendations for sub-regional development of the studied cities,
based on spatial heterogeneity.

There is still a great deal of future work to be conducted in this field. This study
identifies and analyzes a limited number of influencing factors; in the future, the range of
influencing factors can be expanded to make the evaluation of resilience more exhaustive
and objective. Future research can validate the proposed improvement path for urban
resilience by examining its performance during other public health disasters to determine
its efficacy.
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