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Abstract: Healthy ecosystems are crucial for sustainable regional development. The lack of spatial
distribution patterns and driving factors of ecosystem health limited ecosystem management and
urban planning. Understanding the spatiotemporal variation characteristics of ecosystem health
and its driving factors can contribute to ecosystem management. Based on the “vigor–organization–
resilience” (VOR) framework, this paper focuses on increasing ESs and forming an improved “vigor–
organization–resilience–ecosystem services (VORS)” framework to evaluate the ecosystem health of
Guizhou Province in 2010 and 2020. At the same time, we used the geographic detector model to
investigate the driving factors of ecosystem health in the region. The results revealed the following:
(1) The areas of forest land accounted for more than 52%. Simultaneously, farmland and forest land
decreased, while construction land increased from 2010 to 2020. Construction land was mainly
converted from forest land, grassland and farmland. (2) The level of ecosystem health in Guizhou
Province spatially increased from northwest to southeast, with the central part exhibiting the lowest
health level. The ecosystem health index (EHI) was mainly moderate, accounting for 78.32% and
83.80% in 2010 and 2020, respectively. (3) Among the 11 selected driving factors, the gross domestic
product (GDP), general public budget revenue, annual average temperature, average annual precipi-
tation, and night light index significantly affected ecosystem health. Our research refines ecosystem
health research and the results will contribute to effective and precise decision-making in ecosystem
management and the implementation of land use policies.

Keywords: ecosystem health; Guizhou Province; VORS; geographical detector model; driving factors

1. Introduction

As the foundation of human survival and development, natural ecosystems provide
abundant food and fuel resources, regulate the climate, and maintain biodiversity [1–3].
Moreover, healthy ecosystems are crucial for economic and societal development. There-
fore, assessing ecosystem health is vital to providing sufficient support for ecosystem
conservation efforts [4]. However, anthropogenic disturbances to regional ecosystems
have been gradually increasing, inducing various environmental problems and weakening
ecosystem functions at global or regional scales due to increasing industrialization and
urbanization. These disturbances include water scarcity [5–7], soil erosion [8–10], rock
desertification [11,12], and biodiversity reduction [13,14]. At the same time, urbanization
and industrialization have led to changes in land use patterns and increased land frag-
mentation, which has a significant impact on ecosystems, including the loss of habitats,
reduction in productivity in agriculture and forests, and decreases in the climate-regulating
functions provided by plants [15].

Several studies have focused on the significance of ecosystem health, whereas only
a few studies have focused on ecosystem health assessment. Schaeffer et al. introduced
the concept of ecosystem health metrics, which combined ecosystem health with human
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and nonhuman animal health [16]. Ropport proposed a specific meaning of ecosystem
health, defining it as the stability and sustainability of an ecosystem. Additionally, he
stated that a healthy ecosystem should be able to preserve its organization and recover
under external pressure [2]. In 1993, Costanza argued that a healthy ecosystem should be
the desired endpoint of environmental management [17]. Several macroecological studies
have highlighted ecosystem health as fundamental to comprehensive ecosystem evaluation
and a critical problem facing ecosystem management [18–22]. Generally, ecosystem health
refers to the capacity of an ecosystem to preserve its structural and functional integrity and
recover from external damage.

Hence, researchers have increasingly devoted themselves to assessing ecosystem
health at various scales worldwide, including selecting assessment methods, and establish-
ing indicator systems. Different assessment methods have been developed and modified
for the scientific evaluation of the ecosystem health index (EHI) in recent decades. These
methods include the vigor–organization–resilience (VOR) framework [4,23], the pressure
state response model [24–26], the hierarchical analysis method [27–29], principal compo-
nent analysis [30], and the fuzzy evaluation method [31,32]. Most relevant studies showed
that the VOR framework, proposed by Rapport in 1989 [2], has been extensively used. Fur-
thermore, several studies have confirmed that the VOR framework is more effective than
other classifications in various fields of ecosystem assessment, such as grasslands [33,34],
forests [35], watersheds [36,37], wetlands [38], and cities [39–41]. However, the VOR
framework focused on measuring ecosystem status and resilience to external disturbances,
ignoring that a healthy ecosystem can provide ecosystem services (ESs) for the economy
and society [42,43]. The Millennium Ecosystem Assessment noted that ESs were defined as
a wide range of goods and services provided by ecosystems for human welfare [43,44]. ESs,
as benefits or a form of well-being to society, are closely associated with the functioning of
ecosystems. Hence, the vigor–organization–resilience–ecosystem services (VORS) frame-
work was developed by combining the state, structure, and functions of ecosystems with
ESs. Yan et al. adopted the VORS framework to assess ecosystem health in the upstream
region of the Liao River Basin using seven indicators, including net primary production
(NPP), the Shannon diversity index (SHDI), and ecology elasticity [44]. Pan et al. selected
the NPP, landscape index, ecosystem resilience, grain production, and water yield of the
Invest model to assess ecosystem health based on the VORS framework [45]. The VORS
framework can be used to express both the quality and services of natural ecosystems [46],
which can be expressed through ecosystem status, external disturbances, and the stability
of ecological service provision. Consequently, we employed the VORS framework in this
study to evaluate ecosystem health in Guizhou Province.

Ecosystem health is closely related to natural and socioeconomic conditions such as
temperature, slope, population growth, and urban expansion. Many previous studies have
proven this relationship using regression [24,47], principal component [48], and correlation
analyses [49]. Although these models enable the identification of influencing factors in
ecosystem health, they often neglect the multicollinearity and spatial relationships among
these factors [50,51]. Compared to these models, the geographical detector (GD) model
has the advantage of handling spatial correlations and evaluating weights of factors with
non-normal distributions and nonlinearities [52]. Because the GD model can detect spatial
differentiation for measuring the significance of stratified heterogeneity [53], it has been
used in several studies, including those regarding land degradation [54], urban shrink-
age [55], tourism eco-efficiency [56], and urban park use [51]. Considering its effectiveness
in exploring the strength of driving factors, the GD model has been commonly applied to
quantitatively explore the various driving factors of ecosystem health.

Guizhou Province has a reputation for being a typical karst region. The karst landscape
in this region occupies 62% of the total area, making the local ecosystem sensitive and
fragile and ultimately causing soil erosion, rock desertification, and biodiversity reduction.
In recent decades, owing to China’s Western Development Strategy, Guizhou Province has
experienced rapid economic and population growth [57]. However, these developments
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have caused significant landscape changes, exerted substantial pressure on the ecosystem,
and severely jeopardized the region’s ability for sustainable ecological development [58],
leading to issues such as rocky desertification and soil erosion [59,60]. Hence, investigating
ecosystem health in this region and implementing effective measures to improve the
environmental situation are essential. Presently, only a few studies have explored ecosystem
health in China’s karst regions, with some exploring this issue at the county level, including
regions such as Qiannan Prefecture, Huajiang Demonstration Area, Guiyang City, and
Bailidujuan Forest Park [46,61,62]. Previous studies have mostly concentrated on evaluating
ecosystem health in small regions rather than at the provincial scale. Research at the
provincial level can show healthy ecosystem changes in the entire Guizhou Province and is
crucial for protecting the ecological environment and the rational use of land in this region.

By combing through the existing research results, it was found that the change of
land use types affects landscape structure, biodiversity, environmental and socio-economic
changes, which in turn affects ecosystem services and ecosystem health [63]. Therefore, the
study of use land use patterns is of great significance for evaluating ecological effects [64].
Many researchers studied regional ecosystem health based on the VOR framework [65,66],
and focused on ecosystem structures and status, while ignoring the ESs provided by the
ecosystem to humans. ESs are the welfare and well-being that the ecosystem provides to
human society. Some findings also focused on ESs and used them to measure the integrity
of ecosystem health [45]. However, ESV was mostly used to calculate ESs, which was based
on the value-equivalent factor of ecosystem services to evaluate ESs. The ecosystem service
assessment matrix can reveal the capacity of different ecosystems to provide ecosystem
services under land use patterns. Therefore, it is necessary to introduce ESs to improve
the VORS framework. Additionally, in terms of driving factors, regression and principal
component analysis often neglect the multicollinearity and spatial relationships among
factors. The GD model can measure the significance of stratified heterogeneity by detecting
spatial differentiation, so the GD model was used to measure driving factors.

As a typical karst area, Guizhou Province has a fragile ecological environment. In
recent decades, the rapid urbanization of Guizhou Province has led to significant changes in
land use types, changed the structure and function of the ecosystem, and resulted in ecologi-
cal and environmental problems such as soil erosion, rocky desertification, biodiversity loss,
and farmland vigor download. How to achieve the coordinated development of ecosystem
health and socio-economic status has become an urgent issue to promote the high-quality
development of Guizhou Province. Therefore, it is necessary to evaluate the ecosystem
health of Guizhou Province. Systematic ecosystem health evaluation should address two
issues: the diagnosis of the ecosystem health level and the discussion of driving factors of
ecosystem health. In this study, Guizhou Province has been taken as the study area, and we
aimed to explore the following: (1) temporal and spatial changes in land use; (2) spatiotem-
poral variation characteristics of ecosystem health; (3) quantitatively exploring the driving
factors of ecosystem health. This paper aimed to provide references and suggestions for
policy choices regarding environmental protection and ecological restoration.

2. Materials and Methods
2.1. Research Area

Guizhou Province has a total area of 176,000 km2 (103◦36′–109◦35′ E; 24◦37′–29◦13′ N)
(Figure 1). The region has faced severe ecological challenges (e.g., soil erosion) due to its
typical karst landscape and sensitive ecosystem [67,68]. In recent years, Guizhou Province
has increased its ecological rectification and protection efforts, such as conducting mine
ecological restoration and the integrated protection and restoration project in the Wuling
mountain area. These policies and projects ensure the sound development of ecology in
Guizhou Province.
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Figure 1. Study area.

Guizhou Province comprises 6 prefecture-level cities, 3 ethnic autonomous prefectures,
and 88 counties. In 2020, the regional gross domestic product (GDP) of Guizhou Province
was CNY 178.26 billion, increasing by 4.5% compared to that in 2019. The urbanization
rate in Guizhou Province was 33.81% in 2010 and 53.15% in 2020, with an increase of 20%
over the last decade. Rapid urbanization affected land use in Guizhou Province, negatively
impacting its ecosystems [24]. Economic development, urban expansion, and fragile karst
landscapes have severely disrupted ecosystem health in Guizhou Province.

2.2. Data Description

The data contained statistical and spatial data. All spatial data were resampled to 1 km
using ArcGIS 10.7 software. The data were preprocessed using ArcGIS 10.7 and Fragstats
4.2 software. Ecosystem organization was calculated using Fragstats 4.2 software. Ecosys-
tem resilience and ESs were calculated using ArcGIS 10.7. The detailed data description is
shown in Table 1.

Table 1. Data sources.

Data Types Data Sources Resolution Period

Statistical data The Guizhou Provincial Bureau of Statistics
(www.stjj.guizhou.gov.cn, accessed on 11 March 2022) - 2010–2021

Land use data The Institute of Geography and Resources, Chinese Academy of
Sciences (https://www.resdc.cn, accessed on 25 March 2022) 1 km 2010 and 2020

DEM data The Geospatial Data Cloud (www.gscloud.cn/search,
accessed on 10 June 2022) 30 m 2010

The net primary production
(NPP) data

The NASA Data Center (https://e4ftl01.cr.usgs.gov, accessed
on 15 June 2022) 500 m 2000–2020

The night light data
The Earth Observation Group (EOG)
(https://eogdata.mines.edu/products/vnl/, accessed on
20 June 2022)

1 km 2000–2020

The sunlight and precipitation data The National Meteorological Science Data Sharing Service
Platform (https://data.cma.cn/, accessed on 1 August 2022) 1 km 2000–2020

The temperature data

The National Center for Environmental Information (NCEI)
of the National Oceanic and Atmospheric Administration
(NOAA) (https://www.ncei.noaa.gov/data/global-
summary-of-the-day/archive/, accessed on 5 August 2022)

1 km 2001–2020

www.stjj.guizhou.gov.cn
https://www.resdc.cn
www.gscloud.cn/search
https://e4ftl01.cr.usgs.gov
https://eogdata.mines.edu/products/vnl/
https://data.cma.cn/
https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
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2.3. Methods
2.3.1. Framework for Ecosystem Health Assessment

The research framework in this study comprised two stages (Figure 2). In the first stage,
the vigor, organization, resilience, and ESs in 2010 and 2020 were separately quantified.
Then, the EHI of Guizhou Province was evaluated. Land use was identified as one of the
key influencing factors for ESs [69,70]. Therefore, the ES supply and demand evaluation
matrices proposed by Burkhard et al. [71] were adopted to assess ESs in Guizhou Province.
In the second stage, the GD model was applied to identify key factors that significantly
affected ecosystem health in Guizhou Province between 2010 and 2020.
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2.3.2. Ecosystem Health Evaluation

A healthy ecosystem should be able to support its sustainable development and supply
ESs to humans. Ecosystem health was assessed using the following four indicators: vigor,
organization, resilience, and ESs, which were generally measured using the EHI [1,3,63].
Among them, the ecological benefits of humans were quantified based on services, and
the integrity of the ecosystem structure and function was measured using the following
three indicators: vigor, organization, and resilience. The ecosystem was considered healthy
when its structure, functions, and processes were relatively stable and had the capacity
to continuously provide ESs for human survival and social development [72]. They were
thought to have equivalent effects on ecosystem health and were given similar weight for
the EHI [73,74]. The EHI is determined as follows:

EHI =
√

V×O× R× S (1)

where, the EHI indicates the ecosystem health index, V represents ecosystem vigor, O signifies
ecosystem organization, R indicates ecosystem resilience, and S represents ecosystem services.

The relevant indicators for assessing ecosystem health were difficult to analyze and
evaluate. To finish the calculation and comparison of the data, we had to normalize each
indicator and remove any dimensional variations. The normalization range approach was
used to standardize positive and negative indicators within a range of 0–1 [37,75]. The
computation formulas are as follows:

Positive indicator : Yij =
xij − xjmin

xjmax − xjmin
(2)
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Negative indicator : Yij =
xjmax − xij

xjmax − xjmin
(3)

where, Yij is the standardized value of xij, xij is the value of the index j in year i, and xjmax
and xjmin are the maximum and minimum values of the indicator j in all the years.

Ecosystem vigor typically refers to the metabolic ability, activity, or NPP of an ecosys-
tem [1]. Previous studies have confirmed that NPP is more efficient for measuring ecosys-
tem vigor than are other factors [37,45,76]. NPP represents plant productivity, indicating
the amount of energy plants use for growth and reproduction after primarily consuming
energy for respiration. In this study, NPP was determined as the index for expressing
ecosystem vigor in Guizhou Province.

Ecosystem organization refers to the ability of an ecosystem to remain stable under
pressure from anthropological activities [3,77]. It is typically evaluated using three cat-
egories of landscape pattern indexes: heterogeneity, connectivity, and morphology [78].
Specifically, the SHDI [63] and modified Simpson diversity index [33] were used to quan-
tify landscape heterogeneity. The contagion Index [76] and landscape division Index [79]
were used to demonstrate landscape connectivity, while the aggregation index and patch
cohesion Index were used to demonstrate landscape morphology [63].

Ecosystem organization represents the number and diversity of the relationships
between components. The richness of the landscape factors corresponds to the complexity
of ecosystems, and complex organizational structures present a healthy ecosystem [80]. The
landscape diversity index was positively correlated with the complexity of the landscape.
Moreover, each category of the landscape structure indexes contributes differently to
ecosystem organization, as illustrated by assigning appropriate weights in the overall
assessment process. Landscape heterogeneity and landscape connectivity affect ecosystem
health, describe different aspects of the ecosystem structure and cannot be substituted for
one another; the weight of these two aspects needs to be equal. In this study, the weights
were set as 0.35 [45,63]. However, landscape morphology plays a comparatively lesser
role; thus, its weight was set to 0.3 [78,81]. SHDI and CONTAG are more important than
MSIDI and DI because they can determine whether or not the landscape is clustered or
fragmented. Therefore, SHDI and CONTAG were set to 0.2, whereas MSIDI and DI were
set to 0.15 [63]. Since AI and COHESION are equally dominant in landscape morphology,
their weights were both set to 0.15. The weight of each variable can be determined based
on relevant research [77,82]. The specific equation is expressed as follows:

O = 0.35× LH + 0.35× LC + 0.3×CC = (0.2× SHDI + 0.15×MSIDI)+
(0.2×CONTAG + 0.15×DI) + (0.15×AI + 0.15×COHESION)

(4)

where, EO represents ecosystem organization, LH signifies landscape heterogeneity, LC
denotes landscape connectivity, CC represents the patch connectivity index of important
ecological functions, SHDI indicates the Shannon diversity index, MSIDI represents the
modified Simpson diversity index, CONTAG represents the contagion index, DI is the
landscape division index, AI indicates the aggregation index, and COHESION signifies the
patch cohesion index.

Ecosystem resilience refers to the ability of an ecosystem to preserve its original
function and status after suffering external disruptions [83]. Ecosystem resilience generally
encompasses two aspects: (1) the ability to resist external disturbances and maintain
stability by avoiding decline or damage through self-regulatory mechanisms, measured
by the ecosystem resilience coefficient; (2) the ability to recover from damages caused by
external disturbances, measured by the ecosystem resistance coefficient. If the external
disturbance is so great that the self-regulatory ability is extremely weak, resilience is more
emphasized. Conversely, if the capacity for self-regulation and recovery is smaller than that
for resistance to external disturbances, more attention is paid to the resistance. Since land
use contributed to ecosystem resilience in different ways, the summation of area-weighted
ecosystem resilience coefficients for all land use types was employed to measure ecosystem
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resilience [63,84]. In general, land use types that reflect natural ecosystems may recover
more easily when experiencing external stress, whereas human-dominated land use types
(construction land) are less resilient to external pressures [63]. Based on relevant reference
materials, ecosystem resilience was determined [3,45,85]. In this study, both coefficients
were assigned based on land use types in Guizhou Province, which were reclassified into
six types (Table 2).

Table 2. Resilience and resistance coefficients of different land use types.

Farmland Forestland Grassland Water
Body

Construction
Land

Unused
Land

Cresilience 0.35 0.8 0.8 0.7 0.2 0.1
Cresistance 0.55 0.1 0.7 0.8 0.3 0.2

Cresilience represents the ecosystem resilience coefficients, while Cresistance represents the ecosystem resistance
coefficients.

As for the weighting setting, the weights were determined based on whether or not
the self-regulation ability of the ecosystem exceeds the external interference. If external
disturbances are less than the self–adjustment ability of the ecosystem, resistance should
be emphasized [3]. Because the regional development of Guizhou Province was slow and
human interference was relatively low, the weight of resistance was higher than that of
resilience, with the resilience and resistance values being 0.4 and 0.6, respectively [45,73].
The equation is as follows:

R = 0.4×Cresilience + 0.6×Cresistance (5)

where, R is ecosystem resilience. Cresilience and Cresistance represent the ecosystem resilience
and resistance coefficients, respectively, of land use type i in the study area.

ESs are referred to as environmental service functions [86]. In addition, ESs refer
to a variety of direct and indirect ecological services and intangible ecological benefits
provided by natural ecosystems to human beings [87]. ESs include provisioning services,
regulating services, cultural services, and support services [88,89]. Provisioning services
are fundamental to human survival and health; regulating services mitigating drought and
flood, cultural services bring satisfaction to human life, and support services maintaining
ecosystem capacity and landscapes. In most previous studies, the ecosystem service value
(ESV) [4,90] and the Invest model [45] were utilized to calculate ESs. In this study, the
supply, demand, and balance of ESs were evaluated and mapped using the supply and
demand evaluation matrices of ESs determined according to land use, initially proposed
by Burkhard et al. [71]. This approach serves as a model that connects land use to the
supply and demand of ESs while revealing the ability of different ecosystems to provide
ESs due to land use by assigning biophysical units to the supply capacity of ESs and human
demand [91]. The value of each item in the supply or demand matrix, ranging from 0 to
5, reflects the relationship between the supply or demand of ESs and a specific land use
type. The values indicate the level of correlation; 0 = no correlation, 1 = low correlation,
2 = average correlation, 3 = medium correlation, 4 = high correlation, and 5 = very high
correlation [92,93]. In this study, ESs were divided into 3 categories and 22 subcategories:
provisioning (11 subcategories), regulating (9 subcategories), and cultural (2 subcategories)
services. The 6 land cover types were linked to the 22 subcategories to construct the
supply, demand, and balance matrices of ESs in Guizhou Province. Notably, the value
of each subcategory for each land use type should be adjusted to reflect distinctive local
factors. The supply and demand matrices of ESs for Guizhou Province were based on the
quantitative evaluation of the supply, demand, and balance of ESs by Wu Xue et al. [94].
Wu et al. [94] studied the supply and demand matrices of ESs in China. These matrices can
be used to compare ESs in Guizhou Province with those in other provinces. In addition, the
matrix score of ESs relies on multiple data, such as monitoring data, expert knowledge, and
questionnaire data; however, due to the lack of funds and technology, the matrix score of
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Guizhou Province cannot be obtained. Therefore, this study uses the supply and demand
matrices of ESs as a matrix for ESs in Guizhou Province.

2.3.3. Influential Factors for Ecosystem Health

The spatial heterogeneity and driving factors of ecosystem health can be identified
using the GD model proposed by Wang et al. [53]. We compared the variation in ecosystem
health with the characteristics of the detection factors using the GD model.

(1) Factor detector

The q-statistic was used to determine the primary impact of each explanatory variable,
X (influencing factors in Table 3), on the dependent variable, Y (EHI) [53]. The equation is
as follows:

q = 1− ∑L
h=1 Nhσ

2
h

Nσ2 (6)

where h = 1, 2,...; L is a specific stratum of the variable X (influencing factor) and dependent
variable Y (EHI); Nh and N is the number of cells in stratum h and the total area, respectively;
σ2

h and σ2 are the variances in Y (EHI) values. The range of values for q is [0, 1], and a
higher value of q reflects a greater explanatory power of X (driving factor) in clarifying Y
(EHI) [95,96]. If the q-value is 1, X can completely account for the variation in Y. In contrast,
if the q-value is 0, then X and Y have no relationship. The q-statistic was used to determine
the primary impact that each explanatory variable, X (the influencing factors in Table 3),
had on the dependent variable, Y (EHI) [53]. Eleven influencing factors were determined
based on previous studies [4,26,79] and the actual situation of Guizhou Province.

Table 3. Influencing factors of ecosystem health.

Factor Variable Number Factor Variable Number

Gross domestic product (GDP) X1 Slope X7
Per capita GDP X2 Annual average temperature X8

Population density X3 Average annual precipitation X9
Added value of the secondary industry X4 Hours of sunlight X10

General public budget revenue X5 Elevation X11
Night light index X6

(2) Interaction detector

The interaction detector determines if the factors interact with variable Y (ecosystem
health). Because the elements of nature interact, evaluating these interactions is necessary
as they do not exist independently in nature. The interaction between the ecosystem health
detection parameters was determined using an interaction detector [97,98], which could
detect any relationship between the components. The methods employed are shown in
Table 4.

Table 4. Types of interactions.

Foundation Interaction

q (X1 ∩ X2) < Min [q (X1), q (X2)] Nonlinear weakening
Min [q (X1), q (X2) < q (X1 ∩ X2) < Max (q (X1), q (X2)] Univariate weakening

q (X1 ∩ X2) > Max [q (X1), q (X2)] Bivariate enhancement
q (X1 ∩ X2) = q (X1) + q (X2) Independent
q (X1 ∩ X2) > q (X1) + q (X2) Nonlinear enhancement

3. Results
3.1. Spatiotemporal Distribution of Land Use

The spatiotemporal distribution of land use in Guizhou Province is shown in Figure 3.
The six types of land use in Guizhou Province in 2010 and 2020 were sequenced in order of
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total area as follows: forestland > farmland > grassland > construction land > water body >
unused land. Forestland had the largest percentage of the six land use types, with areas of
94,833 km2 and 93,027 km2, accounting for 53.85% and 52.83% in 2010 and 2020, respectively.
Moreover, farmland showed a decrease of 986 km2, decreasing from 49,275 km2 in 2010 to
48,289 km2 in 2020. The construction land and water body areas increased significantly with
the decrease in forestland and farmland. Water bodies increased by 0.4% from 2010 to 2020,
while construction lands showed a greater increase of 0.99% in the same time. Between
2010 and 2020, the construction land in Guizhou Province increased by 1736 km2, primarily
due to rapid population and economic growth. Farmland was primarily concentrated in
the east of Guizhou Province, forestland was principally distributed in the north, and water
bodies were relatively scattered. Furthermore, most of the construction land was located
near the central part of Guiyang City, which serves as the political, economic, cultural, and
transportation center.
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Figure 4 showed significant transitions among farmland, forestland, and grassland,
although their overall areas were relatively stable during the study period. Around
6144 km2 of farmland was transformed into grassland, and about 5991 km2 of grassland
was converted into farmland. In addition, forestland underwent significant changes, with
16,765 km2 and 6772 km2 of forestland being converted into farmland and grassland, re-
spectively. Construction land, mainly converted from farmland, forestland, and grassland,
increased from 642 km2 to 2378 km2. During the research period, approximately 123 km2 of
farmland, 76 km2 of forestland, and 46 km2 of grassland were converted into construction
land. The changes in water bodies between 2010 and 2020 were insignificant, with minor
changes occurring in unused lands during the same period.

3.2. Analysis of Ecosystem Spatial Pattern
3.2.1. Vigor

As shown in Figure 5, ecosystem vigor in Guizhou Province changed significantly
between 2010 and 2020. The values of vigor in 2010 and 2020 were generally lower in the
northeast and higher in the southwest. The highest recorded value of ecosystem vigor
was 3.2767, while the lowest was 0.0674. The distribution of ecosystem vigor values was
related to regional land use. Areas with dense vegetation cover, such as forestland and
grassland, exhibited high ecosystem vigor, whereas construction land mainly showed
low ecosystem vigor. In 2010, the highest recorded ecosystem vigor was predominantly
concentrated in the southwestern and southern parts, specifically Qianxinan and Qiannan.
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However, it had spread to all regions of the province by 2020. This change indicated an
increase in vegetation coverage and an overall improvement of the ecosystem, primarily
due to the implementation of environmental protection policies by local governments and
the conversion of farmland into forest, effectively protecting and improving vegetation
coverage in the region. Ecosystem vigor is an important indicator of productivity. However,
as a typical karst area, Guizhou Province had poor sloping farmland, poor soil, and a low
productivity of farmland, resulting in an ecosystem vigor that was not as good as that of
forestland and grassland [99,100].
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Moreover, the vigor in the western regions (i.e., Bijie, Liupanshui, and Anshun) in-
creased from low to high from 2010 to 2020. Historically, the ecological environment
in these regions was extraordinarily fragile, especially with significant rocky desertifica-
tion [101,102]. The destruction of the ecological environment due to economic development
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accelerated the degradation of ecological health. Conversely, the vigor in the eastern part
of Guizhou Province, especially in Qiandongnan, declined from 2010 to 2020 due to the
conversion of grassland and forestland into farmland and construction land. Guiyang
City, experiencing rapid urbanization and having poor metabolic capacity in the urban
ecosystem, exhibited the lowest vigor over the study period.

3.2.2. Organization

Ecological organization remained relatively stable over the research period compared
to vigor, indicating that the ecosystem in Guizhou Province has a superior ability to
maintain its balance even under anthropological pressure. Figure 6 illustrates that in
2010 and 2020, the highest organization values were predominantly distributed in the
northeast and south of the study region, where forestland was abundant and predominant.
Conversely, the lowest values were distributed in the western and central parts of the
province, characterized by limited forestland and a high degree of land use fragmentation.
This distribution characteristic was mainly due to the typical karst landforms of Guizhou
Province, which make the land discontinuous and fragmented.
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3.2.3. Resilience

Figure 7 depicts the variation in ecosystem resilience in Guizhou Province. The
average value of ecosystem resilience increased from east to west between 2010 and 2020,
illustrating an improvement in overall ecosystem resilience in Guizhou Province. The
resilience values ranged from 0.16 to 0.8, with 0.16 being the lowest value. In 2010, the
western region had the highest ecological resilience value. Following the distribution of
land use (Figure 3a), this region, with abundant grassland, had relatively high ecosystem
resilience and resistance, enabling it to maintain or regain stability under severe external
disturbances associated with economic development. Conversely, the eastern and northern
regions, with abundant forestland, showed the lowest ecosystem resilience values. The
long growth cycle of forests in these regions contributed to their reduced capacity to recover
from external disturbances. The reason for this phenomenon was that Guizhou Province
was a typical karst landform. Because of poor soil fertility, the recovery of forest was
difficult after destruction; the recovery and stability of forest ecosystems were lower than
those of grassland ecosystems.



Land 2023, 12, 1439 12 of 23

Land 2023, 12, x FOR PEER REVIEW 12 of 24 
 

3.2.3. Resilience 
Figure 7 depicts the variation in ecosystem resilience in Guizhou Province. The aver-

age value of ecosystem resilience increased from east to west between 2010 and 2020, il-
lustrating an improvement in overall ecosystem resilience in Guizhou Province. The resil-
ience values ranged from 0.16 to 0.8, with 0.16 being the lowest value. In 2010, the western 
region had the highest ecological resilience value. Following the distribution of land use 
(Figure 3a), this region, with abundant grassland, had relatively high ecosystem resilience 
and resistance, enabling it to maintain or regain stability under severe external disturb-
ances associated with economic development. Conversely, the eastern and northern re-
gions, with abundant forestland, showed the lowest ecosystem resilience values. The long 
growth cycle of forests in these regions contributed to their reduced capacity to recover 
from external disturbances. The reason for this phenomenon was that Guizhou Province 
was a typical karst landform. Because of poor soil fertility, the recovery of forest was dif-
ficult after destruction; the recovery and stability of forest ecosystems were lower than 
those of grassland ecosystems. 

By 2020, the value of ecosystem resilience in Guizhou Province exhibited an increas-
ing trend. Specifically, the most notable improvements in resilience occurred in the north-
ern, eastern, and southern regions, primarily due to the increasing emphasis on local eco-
logical protection and the weakening of external disturbances, such as economic develop-
ment. Notably, the value of ecosystem resilience in Guiyang City and the urban area of 
Zunyi City had decreased by 2020 due to their significantly inferior ability to maintain 
and restore the stability of the local ecosystem under severe external disturbances due to 
urbanization. 

 
Figure 7. Ecosystem resilience in Guizhou Province in (a) 2010 and (b) 2020. 

3.2.4. Ecosystem Services 
The supply, demand, and balance of ESs in 2010 and 2020 were quantified and 

mapped using the LULC matrix (Figure 8). In 2010, the highest values of ecosystem supply 
(47.3) were observed across most regions of Guizhou Province, indicating their strong eco-
logical supply capacity. The western regions, such as Bijie, Liupanshui, and Qianxinan, 
were dominated by a higher value (27.5). The lowest value (4.3) occurred in Guiyang City, 
where a high population and urbanization resulted in insufficient ecological supply. By 
2020, the lowest value of ecosystem supply (4.3) had spread to surrounding regions, pre-
dominantly in urban areas experiencing an increase in construction land. Simultaneously, 
the value of ecosystem supply in the western regions had decreased significantly, indicat-
ing that the distribution of the highest value (47.3) decreased, whereas the distribution of 
the lower value (27.5) increased. This change was likely due to increasing anthropological 

Figure 7. Ecosystem resilience in Guizhou Province in (a) 2010 and (b) 2020.

By 2020, the value of ecosystem resilience in Guizhou Province exhibited an increasing
trend. Specifically, the most notable improvements in resilience occurred in the northern,
eastern, and southern regions, primarily due to the increasing emphasis on local ecological
protection and the weakening of external disturbances, such as economic development.
Notably, the value of ecosystem resilience in Guiyang City and the urban area of Zunyi
City had decreased by 2020 due to their significantly inferior ability to maintain and restore
the stability of the local ecosystem under severe external disturbances due to urbanization.

3.2.4. Ecosystem Services

The supply, demand, and balance of ESs in 2010 and 2020 were quantified and mapped
using the LULC matrix (Figure 8). In 2010, the highest values of ecosystem supply (47.3)
were observed across most regions of Guizhou Province, indicating their strong ecological
supply capacity. The western regions, such as Bijie, Liupanshui, and Qianxinan, were
dominated by a higher value (27.5). The lowest value (4.3) occurred in Guiyang City, where
a high population and urbanization resulted in insufficient ecological supply. By 2020, the
lowest value of ecosystem supply (4.3) had spread to surrounding regions, predominantly
in urban areas experiencing an increase in construction land. Simultaneously, the value
of ecosystem supply in the western regions had decreased significantly, indicating that
the distribution of the highest value (47.3) decreased, whereas the distribution of the
lower value (27.5) increased. This change was likely due to increasing anthropological
disturbances, such as road construction and farmland development. Furthermore, except
for the central and western regions, the value of ecosystem supply in other regions showed
minimal changes during the study period, benefiting from the effective protection of
local ecology.

In 2010 and 2020, the spatial pattern of total ecosystem demand in Guizhou Province
was basically stable, showing a spatial pattern of high in the east and low in the west,
similarly to the distribution of ecosystem resilience. In 2010, the lowest value (six) of
ecosystem demand dominated most areas of Guizhou Province, indicating their inferior
ecosystem demand capacity. In addition, the higher value (24.7) was distributed across the
western, central, and northwestern regions of Guizhou Province. Due to ecosystem demand
and ecosystem resilience being based on land use, the spatial distributions of them show
extraordinarily similar patterns. From 2010 to 2020, the distribution of the lowest value (six)
of ecosystem demand exhibited significant changes in most areas. Conversely, the value
of ecosystem demand in the west and Guiyang City significantly increased. Areas with a
marked growth in value of 11.5 were largely observed in the west due to the conversion
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from forestland into grassland. The highest value (41.9) in Guiyang City extended from the
center of the city to the entire region due to rapid urbanization and population expansion.
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Regarding ecosystem balance, a surplus situation was observed in the east, while a
deficit was observed in the central region. In 2010, the deficit area (−37.6), corresponding
to the region with a high demand for ecological services, was mostly located in the central
region of Guizhou Province, specifically Guiyang City. This phenomenon was mainly
because Guiyang City had a larger urban area and more construction land, resulting in
a low value of ES supply compared to the high-demand regions, ultimately leading to
a significant ES deficit. The surplus value of ESs (41.3) was widely distributed in the
eastern, northern, and southern regions of Guizhou Province, primarily because these
areas had higher supply (47.3) and demand (6) values. The balance value of ESs (0) was
primarily distributed in the western region, especially in Bijie, due to the high distribution
of supply (23) and demand (24.7) values in this region. The balance value of ESs in 2020 was
comparable to that in 2010 in this region, showing a significant deficit of ESs in Guiyang.
The deficit value (37.6) increased, while surpluses of ESs persisting in the eastern, northern,
and southern regions. The most notable change during the study period was the increase
in the ES deficit in Guiyang City due to the predominance of low supply values (4.3)
and the high distribution of demand values (41.9). The changes in other regions were
not significant.

3.3. Distribution of the EHI

Using the equal interval method, the EHI in 2010 and 2020 was comprehensively
evaluated and separated into five grades: Level 1 (0–0.2, extremely poor), Level 2 (0.2–0.4,
poor), Level 3 (0.4–0.6, moderate), Level 4 (0.6–0.8, good), and Level 5 (0.8–1, relatively
good) [29,33,103]. As shown in Figure 9 Levels 2 and 3 were distributed in most areas of
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Guizhou Province in 2010, implying that human disturbance weakened local ecosystem
health. Moreover, Level 1, covering 308.50 km2 (0.18%) of the overall area, was primarily
dominant in the central metropolitan regions of Guiyang City and Zunyi City, which were
associated with abundant construction land. Level 4 was scattered across Chishui City,
Weining County, and Jiangkou County, characterized by national scenic spots and nature
reserves. Level 5 was minimally distributed and scattered, covering an area of 31.76 km2

(0.02%). This rare distribution unveiled that despite the high vegetation coverage (including
forestland and grassland), a significant gap remained in the orderly protection of the
ecosystem in Guizhou Province. Overall, the distribution of the EHI in Guizhou Province
was uneven; that is, the EHI in the southeast significantly exceeded that in the northwest.
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In 2020, the changes in quantity and spatial distribution of the EHI in Guizhou Province
were significant. Level 2 and Level 3 were still the two levels with the biggest percentage in
area. On the one side, the area of Level 2 reduced by 6.72%, accounting for 11,818.73 km2,
and the range of Level 2 distinctly shrunk, especially in the northwestern region (mainly
including Tongren, Bijie and Liupanshui), which resulted in more fragmented distribution.
On the other side, areas with a noticeable upgrade in Level 3 were primarily located in the
northwest. The total area of Level 3 ascended to 147,566.70 km2, accounting for 83.80%. Of
note is that the distribution of Level 1 extended and occupied more urban areas in each
region, with the area rising by 0.86% (from 308.50 km2 to 1825.39 km2) while the most
marked growth was undoubtedly located in Guiyang City. Similarly, the distribution of
Level 4 also became wider and denser, and the area climbed to 3505.84 km2, representing
approximately 2.00%. These results generally reflect that, the ecosystem health of Guizhou
Province improved during the decade, and the gap in the ecosystem health between the
southeast and the northwest gradually narrowed. Nevertheless, Level 5 had almost no
spatial change, although it had tiny growth in area, increasing by 0.03%. Therefore, in
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establishing a healthier ecosystem, even high-quality ecological protection areas remained
a challenge for Guizhou Province.

3.4. Driving Factors of Ecosystem Health

(1) Factor detector

Figure 10 displays the results of the factor detector. In 2010, the magnitude of influ-
ence of each factor was sorted as follows: GDP (0.0432) > general public budget revenue
(0.0381) > slope (0.0380) > added value of the secondary industry (0.0365) > average annual
precipitation (0.0326) > annual average temperature (0.0318) > night light index (0.0215)
> elevation (0.0163) > per capita GDP (0.0141) > hours of sunlight (0.007) > population
density (0.0002). The GDP and general public budget revenue were significantly correlated
with ecosystem health in 2010. This was due to GDP and general public budget revenues
being important indicators with which to measure the level of human socioeconomic ac-
tivity in a region. The economic and social development level of the region increased,
human activities strengthened, and interference in the ecological environment increased,
which led to a decline in ecosystem health. The ecosystem health in Guizhou Province
was significantly impacted by the slope, average annual precipitation, and average annual
temperature in 2010. Due to the karst landscape, there was minimal ecological damage
from humans in areas with high slopes and altitudes, which were not conducive to human
activities. However, in the flat areas, the local ecosystem’s health was negatively impacted
by human activity and urban sprawl. Moreover, temperature directly affects land use,
specifically the forest area in built-up and wetland areas, which serve as indicators of
ecological health [80,104]. In addition, precipitation showed a correlation with ecosystem
health levels. Previous studies have proven that excessive regional precipitation can cause
soil erosion and damage the ecosystem [28,105], harming local ecosystem health.
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By 2020, the explanatory degrees of each factor in Guizhou Province were as follows:
night light index (0.0339) > annual average temperature (0.0334) > average annual pre-
cipitation (0. 0334) > hours of sunlight (0.0327) > GDP (0.0277) > general public budget
revenue (0.0276) > added value of the secondary industry (0.0275) > per capita GDP (0.0271)
> population density (0.0266) > slope (0.0169) > elevation (0.0123). The ecosystem health
in Guizhou Province was significantly impacted by the night light index, annual average
temperature, average annual precipitation, and hours of sunlight in 2020. From 2010 to
2020, the night light index increasingly influenced ecosystem health in Guizhou Province
because human socioeconomic activities became increasingly intensive. In the study period,
the GDP, average annual precipitation, annual average temperature, night light index and
general public budget revenue were the main influencing factors of ecosystem health of
Guizhou Province.
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(2) Interaction detector

The results of the interaction detector demonstrated that the factor interactions in-
creased the effects of each factor on ecosystem health. Figure 11 illustrates the outcomes of
these factor interactions in 2010. There were 66 pairs of interactions between two factors
on ecosystem health, in which 24 pairs exhibited a bivariate enhancement effect: X1–X3,
X1–X4, X1–X5, X1–X7, X1–X8, X1–X9, X2–X3, X2–X4, X2–X5, X3–X4, X3–X5, X3–X6, X3–X7,
X3–X8, X3–X9, X3–X10, X4–X5, X4–X9, X4–X10, X4–X11, X5–X7, X5–X8, X6–X7, and X7–X8.
The remaining 31 sets exhibited a nonlinear enhancement effect, with 11 sets exhibiting a
single-factor effect. In the nonlinear enhancement characteristic, the X9–X7 pair had the
highest impact on ecosystem health in Guizhou Province, with the q-value being equal to
0.1087. The X8–X7 and X10–X7 pairs had increased influence on ecosystem health, with
q-values of 0.1 and 0.0996, respectively. Figure 12 shows that the interactions between
driving factors had bivariate and nonlinear enhancement effects on ecosystem health in
2020. A total of 24 pairs showed a nonlinear enhancement effect: X1–X3, X1–X7, X1–X11,
X2–X3, X2–X7, X2–X11, X3–X4, X3–X5, X3–X7, X3–X11, X4–X5, X4–X7, X4–X11, X5–X7,
X5–X11, X6–X7, X6–X11, X7–X8, X7–X9, X7–X10, X7–X11, X8–X11, X9–X11, and X10–X11.
The remaining 31 sets exhibited a bivariate enhancement effect, with 11 sets exhibiting a
single-factor effect. In this study, the interactions among different factors enhanced the
influence of some factors on ecosystem health, such as X7–X11 (0.0776) and X7–X10 (0.067).
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Figure 11. Interactions among influencing factors in 2010. Notes: X1: Gross domestic product; X2: Per
capita GDP; X3: Population density; X4: Added value of the secondary industry; X5: General public
budget revenue; X6: Night light index; X7: Slope; X8: Annual average temperature; X9: Average
annual precipitation; X10: Hours of sunlight; X11: Elevation.
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4. Discussion
4.1. Comparison of EHI Results

We constructed the VORS framework to quantify ecosystem health in Guizhou
Province in 2010 and 2020, adopting land use change to enhance the ecosystem qual-
ity influenced by human activities [63]. The VORS framework incorporated ESs as an
extension of the VOR framework, and many studies have highlighted the need to inte-
grate ESs into ecosystem health assessments [106], because ESs are the most accurate in
identifying regional differences [76]. This study incorporates ESs into ecosystem health
assessments, because they may attract the attention of governments and the public, which
are promoting ecosystem conservation in Guizhou Province. A growing number of studies
have highlighted the need to include ecosystem ESs in ecosystem health assessments [45,46],
mainly through ecosystem service value (ESV) [4] and Invest models [76]. Previous stud-
ies have demonstrated that studying land use change is more conducive to exploring
changes in the EHI [62,107]. Forestland, regarded as a typical kind of ecological land, had
higher vigor and organization in the ecosystem than did grassland and water bodies. The
significant increase in forestland area improved vegetation cover, enhanced ecosystem
service provisioning capacity, and promoted ecosystem health in Guizhou Province. In
recent decades, ecological engineering projects such as returning farmland to forestlands,
afforestation and reforestation have played a crucial role in enhancing ecosystem health
in the region [4]. However, rapid population growth and urban expansion occupied large
amounts of ecological land, interfering with ecosystem structures and processes, and caus-
ing the deterioration of ecosystem health in Guiyang city. The EHI of Guizhou Province
gradually improved throughout the study period, although its growth was relatively slow.
These findings are consistent with those of previous studies. For example, Li et al. used the
VOR framework and found a slight improvement in the EHI of Guizhou Province from
2000 to 2010. Their results showed that in 2010, the EHI was lower in the west than in the
east under four different scenarios [78].

Furthermore, exploring differences in the EHI and its driving factors was crucial for
scientific research and policy [17,108]. The GD model was employed to pinpoint the driving
factors of ecosystem health in Guizhou Province. The results of single-factor geographic
exploration were statistically significant at the 99% significance level (p < 0.01). The GDP,
annual average temperature, average annual precipitation, and night light index were
found to be the strongest influencing factors on ecosystem health. GDP had the highest
q-value in 2010 (0.0433), while the night light index had the highest q-value in 2020 (0.0339).
The degree of human social activity in an area was mostly determined by the GDP and night
light index, which exhibited a significant negative correlation with ecosystem health. This
conclusion was the same as that of He et al. [4]. These results were mainly due to increased
regional economic development, alleviated strain on the ecosystem environment, and the
increased EHI. Conversely, annual average temperature and average annual precipitation
had significantly positive effects on the EHI, indicating that they were important causes
of variations in ecosystem health. In the short term, temperature change had a minimal
direct impact on EHI, but it indirectly impacted how the land was used in the region [80].
Temperature influenced the EHI in the study region by altering the ecosystem health
evaluation indicators, such as the green space area in the study region [28]. This is similar
to other studies, in which it was shown that ecosystem health was affected by complex
factors such as temperature and precipitation [4,24]. Some studies prove that the out-
migrant population could alleviate regional ecological pressures and have a positive impact
on ecosystem health [26]. However, in this study, population density had less of an impact
on ecosystem health in Guizhou Province. The reason for this may be that the population
density selected in this paper does not take into account the floating population. According
to the results, increased attention should be given to the combined development of the
economy and environmental protection in Guizhou Province. Moreover, the wetlands,
forests, and natural ecology in the research area should be conserved to improve the overall
ecological conditions and ecosystem health.
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4.2. Insights for the Ecosystem Health of Guizhou Province

The overall ecosystem health in Guizhou Province improved during the study period.
However, there were still significant differences in ecosystem health throughout the study
region. The findings revealed that high values of ecosystem vigor were concentrated in the
southeast and south of the study region, while low values were distributed in Guiyang City.
This phenomenon was because forest coverage in the southeast and south was relatively
high, with the forest coverage rates in Qiandongnan and Qiannan reaching 67.89% and
64.66%, respectively. Additionally, low vigor values were due to Guiyang City having
more construction land than ecological land. Moreover, the distribution of ecosystem
organization and vigor values was similar, proving that the environmental protection
policy in the southeast and south was effective and should be implemented in the future.
In addition, during development, the unsustainable expansion of construction land should
be controlled in Guiyang. Furthermore, the ecosystem resilience values were high in the
east and low in the west, with the low values mainly distributed in the western region
of Guizhou Province, while the high values were primarily distributed in the east. We
measured the ecosystem supply and demand assessment matrix to determine the ES value
of Guizhou Province. Surplus ESs were principally distributed in the eastern region. We
observed that the causes of these characteristics were similar to those of the vigor value,
which was related to the dispersion of land use types and forest cover.

It is suggested that Guizhou Province should protect important ecological resources,
increase the connectivity between ecological landscapes, optimize the ecological security
pattern, and maintain the integrity of ecosystem structure and function, in order to improve
ecosystem health. Meanwhile, Guizhou Province should implement hierarchical planning
and management in the process of ecological protection, and formulate different environ-
mental protection plans and ecological management systems according to the characteristics
of each region. In nature reserves, the government should form a network system of nature
reserves, establish a unified ecological environment monitoring network, and maintain
regional ecosystems to the greatest extent. Nature reserves such as Fanjing Mountain, Libo
Maolan, Weining Caohai and Leigong Mountain should be protected. Especially in Bijie
City, where the ecosystem health level is poor, the protection of nature reserves should be
strengthened. In urban development regions, the Guizhou province should implement
reasonable urban planning, strictly limit the scale of urban land, control the direction of
land use development, improve land use efficiency, and achieve high-quality economic
development and ecological protection. Guiyang City is a rapidly developing region, but
the region with the worst ecological situation, so we should pay attention to the coordina-
tion between the development of Guiyang City and ecological protection. In areas with a
fragile ecological environment, the Guizhou province should reduce human interference,
combine artificial restoration with natural restoration, coordinate the relationship between
resource utilization and environmental protection, and correctly handle the contradiction
between ecological protection and the development needs of local residents. In Liupanshui
City, there are many typical historical mines, and the problem of rocky desertification
is prominent, so ecological projects such as mine ecological restoration and soil erosion
control should be carried out. Moreover, as a typical karst area, Guizhou Province has a
prominent problem of rocky desertification. In the process of controlling rocky desertifi-
cation and maintaining the ecological environment, the government should make use of
land resources and suitable climatic conditions in mountainous areas, select appropriate
plant varieties, closing mountains for reforestation, control soil erosion, curb land rocky
desertification, improve land productivity, and develop the economy. In addition, the
implementation of the ecological policy of returning farmland to forest and grassland will
reduce the cultivated land area of local residents, reduce grain production and household
income, in order to make up for this deficiency, increase scientific and technological talents,
provide financial support, develop ecological agriculture, and provide a solid material
foundation for sustainable social development.
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4.3. Limitations and Future Research Directions

Ecosystems are extremely complicated systems that include all aspects of the natural
environment and human interactions. In this study, the VORS framework provided initial
insights into ecosystem health in Guizhou Province during the study period, although it
did not offer a complete standard [33]. The VORS framework is an extension of the VOR
framework and has proven effective in assessing ecosystem health in different regions.
However, certain uncertainties were encountered during its use. (1) Because the organi-
zation, resilience, and ESs directly impacted the evaluation results, their weights were
given significant consideration when building the framework [79]. Although the weights
of the factors were chosen according to the actual condition in Guizhou Province and
previous research findings, the index weight used in this study was subjective and could
not completely represent the components of the index system. Therefore, the objectivity
of the indicator weighting should be improved in the future. (2) We used the supply and
demand evaluation matrices to calculate ESs. ES supply and demand capacity depended
on expert scoring, which was still inevitably subjective. Thus, the Invest model should be
adopted to measure ESs. (3) Eleven influencing factors were selected for research, consid-
ering the availability of data. However, these influencing factors were universal and did
not account for the typical karst landforms and soils of Guizhou Province, which could
significantly impact the results. Hence, more attention should be devoted to exploring the
impact of factors such as karst landforms, topography, and ecological policies on ecosystem
health. Despite these limitations, this study holds significance and provides information for
researchers seeking to understand ecosystem health and influencing factors. Furthermore,
the findings of this study provide an important reference for ecological management and
the land use policy of Guizhou Province.

5. Conclusions

Using the VORS framework, we assessed ecosystem health in Guizhou Province. The
GD model was used to identify the main factors driving changes in the EHI and evaluate
the causes of EHI variations on spatial and temporal scales. The results showed that
Guizhou Province has a large forest area, accounting for 53.9% and 52.8% of the forest land
in 2010 and 2020, respectively. The overall state of ecosystem health in Guizhou Province
had exhibited a healthier distribution feature in the southwest than northeast over the past
20 years. While the deterioration was mainly distributed in Guiyang City, a deterioration
ring in ecosystem health was discerned surrounding Guiyang City. The results of the GD
model indicate that the GDP, average annual precipitation, annual average temperature,
night light index, and general public budget revenue were the most important factors
explaining the change in ecosystem health.

The results of this study are of great significance for improving the health of regional
ecosystems. However, due to the limitations of data acquisition and weight setting of the
indicator system, there are still some shortcomings. In future research, the index system
will be enriched to provide a more accurate reference for environmental protection.
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