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Abstract: Burning biomass exacerbates or directly causes severe air pollution. The traditional
active fire detection (AFD) methods are limited by the thresholds of the algorithms and the spatial
resolution of remote sensing images, which misclassify some small-scale fires. AFD for burning
straw is interfered with by highly reflective buildings around urban and rural areas, resulting in high
commission error (CE). To solve these problems, we developed a multicriteria threshold AFD for
burning straw (SAFD) based on Landsat-8 imagery in the context of croplands. In solving the problem
of the high CE of highly reflective buildings around urban and rural areas, the SAFD algorithm,
which was based on the LightGBM machine learning method (SAFD-LightGBM), was proposed to
differentiate active fires from highly reflective buildings with a sample dataset of buildings and active
fires and an optimal feature combining spectral features and texture features using the ReliefF feature
selection method. The results revealed that the SAFD-LightGBM method performed better than the
traditional threshold method, with CE and omission error (OE) of 13.2% and 11.5%, respectively. The
proposed method could effectively reduce the interference of highly reflective buildings for active
fire detection, and it has general applicability and stability for detecting discrete, small-scale fires in
urban and rural areas.

Keywords: remote sensing; active fire detection; machine learning; Landsat-8; LightGBM

1. Introduction

Biomass burning because of human activities has become one of the main sources of
emissions in air pollution management [1,2]. China has the largest agricultural enterprise
worldwide with an estimated 1.4 million km2 of area for crop production [3,4]. Agricultural
burning in China was estimated to contribute ~3–6% to global agricultural fires [5]. The
agricultural burning component is mainly straw, which creates fires different from forest
fires. The average forest fire burns more than 104 m2 and sometimes more than 106 m2.
Since the average cultivated area of a farming household is very limited in China (around
104 m2), each agricultural fire burns within a small extent [6]. Straw burning usually
occurs during the harvest season, with specific regularity that is more frequent than forest
fires. Crop straw burning constitutes a major portion of biomass burning by releasing a
large amount of particulate matter (PM) and gaseous pollutants into the atmosphere [7].
Therefore, it is of great significance to study the burning of straw around rural areas
in China.

Most traditional field methods for monitoring burning biomass use a bottom-up ground
survey approach, which requires extensive human and material resources and can only be
achieved through point monitoring. There is significant uncertainty in estimating the spatial
distribution of burning biomass at the macroscopic scale, and it is difficult to obtain accurate
spatiotemporal information about active fires [8]. Remote sensing technology has become

Land 2023, 12, 1246. https://doi.org/10.3390/land12061246 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12061246
https://doi.org/10.3390/land12061246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0003-2427-0585
https://doi.org/10.3390/land12061246
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12061246?type=check_update&version=1


Land 2023, 12, 1246 2 of 19

an effective method, with its fast, simple, and macroscopic advantages for monitoring
burning fires. Applying remote sensing technology to small-scale AFD can provide strong
support for environmental improvement and management [9] and is of critical importance
for practical research.

Satellite sensors have been widely used for monitoring the spatiotemporal distri-
bution of regional and global active fires [10–12]. Most of the existing AFD algorithms
are based on sensors with moderate or low spatial resolutions [13–16]. Moreover, the
existing global monitoring systems for active fires mainly utilize polar-orbiting satellites
(1 km) or geostationary satellite data with mid-infrared (3–4 µm) and thermal infrared
(10–12 µm) bands [14,17,18]. These satellites can be used for near real-time monitoring
of large-scale active fires with rapid response capabilities [19]. However, their spatial
resolution may not meet the requirements for detecting small-scale fires, resulting in many
small-scale fires being missed [2]. Detecting small-scale fires remains challenging and
requires more time-consistent satellite data with higher resolution than simple observations
of burned areas.

With the development of moderate and high-resolution satellite sensors with SWIR
bands, for instance, Landsat-8 and Sentinel-2 (2A, 2B), multispectral images are available
for active fire detection. The Landsat-8 OLI sensor has a 16-day revisit period with 30-m
spatial resolution, and 15 m resolution can be obtained after image fusion [20]. The Sentinel-
2 MSI sensor is also available, with revisit periods of 5 days or less and resolutions of
10 m, 20 m, and 60 m in the visible (VIS) to short-wave infrared (SWIR) bands [21]. It has
been established that a suitable spatiotemporal resolution for AFD can be achieved by
integrating the available sensors with moderate and high spatial resolution [22–24].

Previous studies have established a variety of AFD algorithms based on the reflectance
difference of Landsat-8 data, including threshold methods (single threshold, multithreshold,
dynamic threshold) and contextual algorithms [10,19,25–28]. Schroeder et al. [28] developed
daytime and nighttime AFD algorithms based on the proposed threshold algorithms
using ASTER and Landsat-7 ETM data, and they improved the CE using a multitemporal
analytical method [25,27]. Murphy et al. [19] proposed an improved Landsat-8 Temporal
Contextual Analysis (CA) algorithm based on the algorithms established by Giglio et al. [25]
and Schroeder et al. [27,28]. Kumar and Roy [26] proposed a Landsat-8 AFD algorithm
(GOLI) using fixed reflectance thresholds, and its results had lower CE compared with the
algorithms proposed by Murphy et al. [19] and Schroeder et al. [28]. A U-Net deep learning
AFD algorithm of Landsat-8 data revealed better accuracy than the traditional threshold
model [29]. These AFD algorithms use images with higher spatial resolution, and they
are capable of detecting smaller-scale fires, reducing the CE and improving the accuracy
compared with traditional methods.

However, Landsat-8′s reflectance-based threshold and deep learning AFD algorithms
may still be interfered with by potential false detections. Interference from highly reflective
buildings is a considerable problem for AFD in urban and rural areas [26,28,30,31]. These
persistent effects of highly reflective buildings have generally been solved by multitemporal
analytical methods or by fixing thresholds [19,28]. The multitemporal analytical method
proposed by Schroeder et al. [28] was applied to urban areas, and they found that the CE
reached 34.6%. The CA (Contextual Analysis) algorithm was used for AFD in urban areas
using single-view Landsat-8 imagery, generating an average of more than 500 false pixels
and up to 3400 false pixels [19]. Some algorithms avoid potential misclassification by not
selecting urban areas as the study area [26]. Researchers have tried to improve the problem
of highly reflective buildings being misclassified as active fires, but it has still not been well
resolved [22,30].

Machine learning methods have been widely used for classification via remote sensing
because of its advantages of encoding more complex rules with more accurate weights,
coefficients, and threshold settings [32]. Using a weighted support vector machine (SVM)
method for AFD with an unbalanced dataset framework achieved a compromise between
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accuracy and CE [33,34]. Machine learning methods are capable of enhancing the problems
of CE and OE that may be caused by slight changes in the threshold settings [29].

In summary, most research objectives have mainly focused on detecting active fires in
specific areas that are far from urban areas, and there has been less research on detecting
burning fires in urban and rural areas. Here, we propose a burning fire algorithm for urban
and rural areas based on a machine learning method (SAFD-LightGBM) using Landsat-8
images. In particular, we used the ReliefF feature selection method to select the spectral
and texture features, and we obtained the optimal combination of features based on the
LightGBM method to improve the problem of mixing between burning fires and highly
reflective buildings. The accuracy and robustness of the burning fire algorithm were
analyzed and validated in each study region.

2. Materials and Methods
2.1. Study Areas

The study areas were located in northeast, north, central, southeast, and northwest
China (Figure 1), where typical crops are grown. Three major crops (rice, wheat, and
corn) are the principal resources regarding crop straw, and they comprise ~75% of the total
straw production in China [35]. The areas of burning fires were identified according to
the major grain-growing subregions. In line with the types and phenological character-
istics of crops in the administrative subregions in China, the study areas were divided
into three different types: “spring–autumn dominant”, “autumn–winter dominant”, and
“summer–autumn dominant”.
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Figure 1. Location of the Landsat-8 images used in this study.

Three areas of burning fires mainly occur during the crop harvesting season, which is
from February to October, from September to March, from June to July, and from October
to December, respectively, for the northeast, north, central, southeast, and northwest.
The “spring–autumn dominant” areas are mainly in central and southeast China, the
“autumn–winter dominant” areas are mainly in northern and northeast China, and the
“summer–autumn dominant” areas are mainly in northwest China. The crops grown in
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these areas are mainly rapeseed in spring, rice in summer, and wheat in winter; corn and
wheat in spring; or corn in summer and wheat in winter.

2.2. Data
2.2.1. Landsat-8 Images

The Landsat-8 satellite was designed by NASA and launched on 11 February 2013 into
a sun-synchronous orbit at an altitude of 705 km with a 16-day revisit period. The Landsat-8
satellite carries the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TRIS),
and the OLI sensor has 30-m spatial resolution for Bands 1–7 and 9 and resolution of
15 m for the panchromatic band (Band 8) [36]. In this study, Landsat-8 OLI (L1T) data
corrected for standard topography and geometry were converted to top-of-atmosphere
(TOA) spectral reflectance using L1T calibration coefficients in the metadata (MTL) file.

Table 1 summarizes the acquisition time for and information about the nine cho-
sen Landsat-8 images, which included three scenes each for “spring–autumn dominant”,
“autumn–winter dominant”, and “summer–autumn dominant” areas. Figure 1 shows the
locations of the selected Landsat-8 imagesin study areas, in which the images’ features
include burning fires, burning areas, croplands, urban and rural buildings, etc. This image
dataset contained image patches of 500 × 500 pixels, excluding the patches of the images
covered with clouds, and it was extracted from Landsat-8 images between March 2016 and
December 2018.

Table 1. Acquisition time for and information about Landsat-8 images.

Dominant Type WRS Image Acquisition
Date Areas Usage

Spring–autumn dominant
124/39 11 May 2016 Southeast Training and testing
123/39 1 March 2016 Central Training and testing
121/40 3 March 2016 Southeast Validation

Autumn–winter dominant
123/33 15 November 2017 North Training and testing
122/34 13 December 2018 North Training and testing
117/28 2 November 2016 Northeast Validation

Summer–autumn dominant
132/33 29 October 2017 Northwest Training and testing
133/33 20 October 2017 Northwest Training and testing
128/36 13 July 2018 Northwest Validation

2.2.2. Burning Fires and Non-Fire Datasets

The dataset included burning fires and non-fire datasets, with the non-fire dataset
including cropland vegetation, buildings, highly reflective buildings, and water. Table 2
shows the type and quantity of samples in the datasets. The ground truth (GT) data
were composed of visual interpretations of 15-m images based on a fusion of Landsat-8
images, the locations of historically active fires, and information from a comparison based
on Google Earth images acquired before and after the fires occurred. The locations and
information of historically active fires were derived from the Satsee-Fire active fire detection
system (http://satsee.radi.ac.cn:8080/index.html) of the Institute of Remote Sensing and
Digital Earth Research, Chinese Academy of Sciences.

The ground truth (GT) dataset comprised 480 burning fires, 360 of which were used
for training and testing and 120 for model validation. A burning fire was defined as a
true active fire characterized by noticeable smoke from burning or a burning area. We
determined and manually labeled burning fires in the Landsat-8 images from a combination
of Band 7 (SWIR: 2.20 µm), Band 6 (SWIR: 1.61µm), and Band 4 (red: 0.66 µm) [26,36],
combined with the true color B4–B3–B2 bands to form the ground truth ROI (region of
interest). The coordinates of the burning fires were then saved for training and testing.

http://satsee.radi.ac.cn:8080/index.html
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Table 2. Information on dataset and other features.

Type of Data Name Number of Samples

Active fire dataset Burning fires 480

Non-fire dataset

Highly reflective buildings 1220
Cropland vegetation 1712

Water bodies 50
Ordinary buildings 50

Total 3512

2.3. Spectral Analysis of Burning Fires

Planck’s law, the blackbody radiation law, is the basic theory behind active fire de-
tection [25], and it defines the blackbody spectral emissivity on the basis of the blackbody
temperature. The spectral radiance of the satellite observations of active fires is related to
the temperature and size of the non-fire components [37]. When an active fire is smaller than
the size of Landsat-8 pixels (30 m), the spectral radiance includes the non-fire component
and the burning fire component. Planck’s law is defined as follows

BB(λ,T) =
2hc2

λ5 ·
1(

ehc/λkT − 1
) (1)

where B(λ, T) is the blackbody emitted radiance (W/sr/(m2·m)), h (J·s) is Planck’s constant,
c (m/s) is the speed of light in a vacuum, and T (K) is the thermodynamic temperature.

Active fires were divided into smoldering and flaming phases. The typical tempera-
tures of smoldering and flaming fires are about 400–500 K and 800–1200 K, respectively,
with the specific temperature depending on the actual environmental conditions and com-
ponents being burned [25,37]. The components of burning straw are dominated by crop
straw. Typically, the areas of crop burn-offs are scattered and smaller than those of for-
est fires, and the intensity of burning may be smaller than the 30-m pixel dimension of
Landsat-8 images [26].

Planck’s radiation equation allows us to simulate the spectral radiance and determine
the spectral reflectance based on active fires with different temperatures and different pixel
sizes, assuming that an active fire is an ideal blackbody (spectral emissivity = 1), neglecting
the atmospheric conditions. The reflectivity of an active fire is negligible, and the spectral
reflectance profile of an active fire can be simulated for different temperatures and sizes
according to Equation (2) [26]

ρsim,λ = (1− f )·ρveg,λ + f ·
BB(λ,T)

E0,λ
(2)

where ρsim,λ is the simulated spectral reflectance corresponding to the wavelength λ, f
is the spatial fraction [0–1] of the burning pixels, ρveg,λ is the spectral reflectance of the
background vegetation, and E0,λ (W/sr/(m2·m)) is the surface-level solar irradiance.

Figure 2a shows the simulated spectral reflectance profile [17,26] using typical spectra
of vegetation as non-fire spectra. The spectral reflectance of active fires was simulated with
different spatial fractions of the pixels (f ), namely f = 0.005 and f = 1, when the temperature
was 1200 K and 400 K, respectively. We assumed that, when the temperature was 1200 K,
the spatial fraction of the pixel was f = 0.005 for small-scale burning fires, and the actual
burning area occupied about 4.5 m2 of the Landsat-8 image.
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It can be seen that, at the same temperature (1200 K), the extent of burning fires
mainly affected the near-infrared variation in the reflectance, and the smaller the area of
combustion was (f = 0.005), the more it was correlated with the reflectance characteristics
of the background value [38]. At the same extent of burning fires (f = 1), the temperature of
the fire mainly affected the change in the reflectance of the SWIR band (1.61 µm to 2.5 µm),
and the higher temperature (1200 K) was more sensitive. Temperature variations have a
strong influence on SWIR bands; in particular, B6 (1.61µm) and B7 (2.2 µm) of Landsat-8
are the sensitive and crucial band features for constructing the burning fire model [39].

To further understand the distinction between burning fires and the spectral reflectance
of other typical features (Figure 2b), spectral statistics were collected from 50 samples of
burning fires, water, original buildings, vegetation, and highly reflective buildings in the
Landsat-8 imagery for the study area. The reflectance of burning fires is significantly
different from that of typical land features except for highly reflective buildings. The trend
of the spectral reflectance of highly reflective buildings is basically the same as that of
burning fires, especially in B6 and B7, for which it is difficult to set the threshold. The
burning fires in the range of the NIR bands were similar to the trend of the reflectance
of vegetation, consistent with the reflectance of active fires and vegetation simulated in
Figure 2a.

2.4. Methods
2.4.1. The SAFD Multicriteria Threshold Algorithm in the Context of Croplands

A crucial aspect of constructing the SAFD algorithm is determining the threshold
between burning fires and non-fires. This algorithm was based on the advantages of the
Landsat-8 GOLI algorithm proposed by [26] and the AFD-S2 algorithm proposed by [22].
According to the spectral analysis of burning fires presented in Section 2.3, the SAFD
algorithm constructed a relational equation based on the B4, B6, and B7 Landsat-8 images.
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The algorithm was based on three criteria (Equations (3)–(5)) and was divided into
two steps. First, potential active fires were detected in the context of croplands by
Equations (3) and (4) with the objective of marking as many fire pixels as possible. An
OLS (ordinary least squares) regression was established using the B4 and B7 bands based
on the cropland samples to determine the threshold (Equation (3)). Second, Equation (5)
was constructed to further differentiate burning fires from non-fire pixels. The improved
threshold reduced the interference of highly reflective buildings for detecting burning fires.
The specific threshold was as determined in Section 3.1.

ρ0.66 ≤ a·ρ2.20 − b (3)

ρ2.20 ≥ c (4)

where ρ0.66 and ρ2.20 represent the Landsat-8 TOA reflectance of B4 and B7, respectively;
the thresholds of a, b, and c are determined by the probability intervals; a and b are
determined by the predicted lower 3σ standard deviation; and the value of c is determined
by the 0.99 quantile, which is greater than or equal to the corresponding threshold.

ρ2.20/ρ1.61 ≥ d OR ρ1.61 ≥ e (5)

where d represents the fixed thresholds. Note that d takes the value statistically de-
termined by the spectral reflectance values of active fires and non-fires calculated by
Equations (3) and (4), and e takes a value with reference to [22].

2.4.2. Constructing the Algorithm to Consider the Interference of Highly
Reflective Buildings

The LightGBM machine learning algorithm was constructed to improve the problem
of the high CE of the threshold methods for detecting burning fires in urban and rural areas.
The LightGBM (light gradient boosting machine) algorithm is a GBDT framework based
on the decision tree algorithm proposed by Microsoft Research Asia (2017). That research
used the GOSS (gradient-based one-side sampling) and EFB (exclusive feature bundling)
methods to improve the limitations of the GBDT algorithm with the aims of reducing
the samples and features, respectively. The LightGBM algorithm performs better with
multidimensional features and can construct classification rules based on fewer samples.
It is more suitable for models with smaller samples than neural networks or some other
machine learning methods, and it was used to detect burning fires in this study.

This method focused on selecting the features of active fires and buildings using the
ReliefF method for selecting a combination of features. We initially extracted 25 features
of burning fires and buildings (Table 3), including the original bands (Band 1 to Band 7),
a spectral index (NDBI) [40], NDVI, NBR [41], and the textural features (mean, variance,
standard deviation, homogeneity, contrast, and correlation) of B4, B6, and B7.

Table 3. Description of the specific information of selected features.

Feature Description Formula Total

Landsat-8
Imagery bands Landsat-8 Bands 1–7 - 7

Spectral index

Normalized difference building
index (NDBI) NDBI = (SWIR − NIR)

(SWIR + NIR)
3Normalized difference vegetation

index (NDVI) NDVI = (NIR − RED)
(NIR + RED)

Normalized burned ratio (NBR) NBR = (NIR − SWIR)
(NIR + SWIR)
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Table 3. Cont.

Feature Description Formula Total

Texture features
(Band 4, Band 6, Band 7)

Mean Mean = 1
n × n ∑i ∑j f (i, j)

15
Correlation Cor = ∑i ∑j (i − µi)(i − µi) f (i,j)

σiσj

Contrast Con = ∑i ∑j(i − j)2 f (i, j)
Homogeneity Hom = ∑i ∑j

f (i,j)
1 + (i − j)2

Variance Var = ∑i ∑j( f (i, j) − µn×n)
2

Total 25

Where f (i, j) is the GLCM value of the element (i,j), µ = 1
n × n ∑i ∑j f (i, j) is the mean GLCM, and n is the number

of gray levels used.

The texture features were selected via the gray-level co-occurrence matrix (GLCM) [42].
The basic aim was to calculate the co-occurrence frequency of the pixel values in the sliding
window and then to extract the characteristics of the co-occurrence matrix via various
statistical measures. The texture features were calculated using a 3 × 3 sliding window,
and the formula is shown in Table 3.

2.4.3. Evaluation Metrics

The algorithm’s detections were evaluated by their accuracy, based on the confusion
matrix (Table 4) compared with the GT dataset. Five indicators of accuracy, namely precision
(P), recall, commission errors (CE), omission errors (OE), and the evaluation index (F), were
computed via Equations (6)–(10) [43]. Precision and recall are defined as the ratio of the
correct targets detected to the number of detected targets and the ratio of correctly detected
targets to the actual number of targets, respectively. The higher the precision and recall, the
more accurate the detection.

P =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

CE =
FP

TP + FP
(8)

OE =
FN

TP + FN
(9)

F =
2P(1−OE)
1 + P−OE

(10)

where TP represents the true positive predictions of active fire pixels; TN represents
the true negative predictions of active fire pixels, indicating correctly labeled non-fires;
FP represents non-fire pixels that were predicted to be active fires; and FN represents active
fire pixels incorrectly labeled as non-fires.

Table 4. Confusion matrix.

Reference Data

Active Fires Non-Fires

Classified data
Active fires TP FP
Non-fires FN TN
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3. Results
3.1. Specifying the Threshold of the Multicriteria SAFD Algorithm

The threshold range of potential burning fires was specified on the basis of 1712
cropland samples using random sampling with 30-m landcover products (http://www.
webmap.cn). The samples’ locations were uniformly distributed in the study area. Figure 3
shows the scatterplot of the range of potential burning fires. The scatterplots correspond to
the Landsat-8 TOA reflectance in the B4 and B7 bands. The fitted curve (blue line) of the
OLS regression for cropland samples showed a significant relationship, as the coefficient of
determination (R2) was 0.56 due to the differences in the croplands’ vegetation types. The
threshold range of potential active fires was determined by Equations (11) and (12). When
a point was within this threshold range, it was considered to be a potential active fire.

B4 ≤ 0.4731 ∗ B7− 0.0147 (11)

B7 ≥ 0.267 (12)
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Figure 3. Scatterplot of the range of potential active fires in the context of croplands. The blue line
shows the OLS regression, and the green, dashed line represents the predicted range based on the
lower 3σ predicted by the OLS regression. The dashed vertical lines represent the thresholds derived
via Equation (13). The bottom-right range between the dash-dotted line and the dashed vertical line
is the range of possible active fire pixels. The histogram on the right represents the density in the
bands (B4 and B7), where red represents greater density.

The statistical histogram for the thresholds specified for d and e is displayed in Figure 4.
Samples were selected on the basis of the threshold range of potential active fires, with
totals of 960 and 480 active fire samples and non-fire samples, respectively. As shown in
Figure 4, the red dashed line is the dividing line in the interval of 2–2.2. The correct rate of
active fires showed a rapidly increasing trend of 77.78%, and the correct rate increased and
tended to become stable after the interval of 2.2–2.4. In the algorithms proposed by [19,28],
the ratios of ρ2.20 and ρ1.61 took values of 1.4 and 1.6, respectively, and these values had
high CE in urban and rural areas. Therefore, the fixed threshold of burning fires in urban
and rural areas was 2. Equation (13) is as follows

ρ2.20/ρ1.61 ≥ 2 OR ρ1.61 ≥ 1 (13)

http://www.webmap.cn
http://www.webmap.cn
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3.2. Selection of the Features’ Variables via the SAFD-LightGBM Model

To consider the effects of highly reflective buildings on the detection of burning
fires, a total of 1580 training samples were used, of which 360 were positive samples of
active fires, and 1220 buildings were misclassification samples. Regarding the imbalance
between the samples of burning fires and non-fires [44], Logloss was used as the objective
function, and the weight parameter scale_pos_weight was optimized by the GridSearch-CV
hyperparameter selection method. The optimal weight parameter for constructing the
SAFD-LightGBM model was 0.3.

Figure 5 shows the importance of the ReliefF method for each feature, where the
spectral index features NDVI, NDBI, and NBR were ranked among the top 10 features. The
NDVI index is a reference for burning fires that ranked first among all the features [45].
The texture features of the variance and contrast of B7 (SWIR2) contributed significantly
to the detection of burning fires. The backward selection method was used to find the
optimal combination of features. The optimal combination of features was 10 selected
features. The recall and precision were 0.93 and 97%, respectively, and the F1 score was 0.95.
The results of validating the model for various iterations are shown in Figure 6. In total,
100 iterations of model validation were performed, and it can be noted that the variation in
Logloss appeared to be low and fluctuated slightly from Iterations 55 to 60.

3.3. Comparison of the SAFD and SAFD-LightGBM Algorithms
3.3.1. Analysis of the Results of Detecting Burning Fires

Figure 7 shows a comparison of the results with each algorithm for Scenes a and b.
Scene a is a burning fire in a rural area, with more obvious smoke from burning. Scene b is
a burning fire in an urban area, with which smoke is not apparent, and the burning area
is prominent. Position a in Scenes a and b represents the location where the burning fire
occurred, and Positions b to f indicate locations of false detections.
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It can be seen that the results of SAFD for Scene a had five burning fire pixels, while
the results for SAFD-LightGBM showed four fire pixels. SAFD identified six fire pixels in
Scene b, and SAFD-LightGBM missed some fire pixels around the burning area because the
smoke obscured the burning fire, resulting in weak penetration or affecting the ability to
detect smoldering fires. Second, the scenes were analyzed against a mixed crop background
spectrally due to the high-temperature burning fires with very small fractional areas
(f < 0.01, that is, 9 m2). The spectra fitted well for pixels that contained a relatively
larger fractional area of smoldering fire and cropland (Figure 2) [38]. Nevertheless, SAFD-
LightGBM had little influence on the locations of burning fires or the information acquired.
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Figure 7. Comparison between the SAFD algorithm and the SAFD-LigthtGBM algorithm. (a) A
burning fire in a rural area. (b) A burning fire in an urban area. Red pixels are the results predicted
by the detection algorithms, the bright blue boxes represent results that detected the burning fires
(marked as position a), and the yellow boxes represent false detections caused by highly reflective
buildings (marked as position b to f).

On the other hand, highly reflective buildings interfere substantially with the process
of detecting burning fires. The misclassified pixels are scattered in Scenes a and b, and the
anomalies on the buildings’ rooftops significantly increased the CE of the SAFD, mainly
due to the threshold, which mostly considered the relationship of the critical bands and
could not completely differentiate the buildings from the burning fires. The results of
SAFD-LightGBM showed that the pixels of highly reflective buildings were effectively
eliminated in Scene a and reduced in Scene b.

The misclassified highly reflective buildings were divided into three categories to
further discuss the algorithms’ results (Figure 8). Figure 8a shows the false flame that was
generated during the production or operation of factories. Figure 8b shows that the false
fire was on a stadium roof. Figure 8c shows the false detection of the rooftops of single
or multiple discrete buildings. The SAFD algorithm in urban and rural areas generated a
large CE, consistent with the findings of previous studies [19,26,28]. The results showed
that SAFD-LightGBM performed better than SAFD, especially for the suspected flames
generated by factories due to their operations.

3.3.2. Accuracy Validation

Three scenes (WRS: 117/28, 128/36, 121/40) (Table 1) with a total of 120 burning fires
were used to evaluate the algorithms. Figure 9 shows the scatterplot of both algorithms’
results. This plot revealed that some misclassified pixels of highly reflective buildings in
SAFD’s results were distributed on the threshold edge of ρ2.20/ρ1.61 ≥ 2 in Figure 9c. The
results of SAFD-LightGBM found that most of the misclassifications were eliminated, as
shown in Figure 9e. Table 5 shows a comparison of the accuracy of the algorithms. In terms
of CE and OE, SAFD had a low CE and a high OE of 8.9% and 29.0%, respectively. While
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the CE of the SAFD-LightGBM was 15.8% lower, the OE was higher relative to those of the
SAFD algorithm. The SAFD-LightGBM algorithm had a better balance between the OE and
the CE. The accuracy (P) was 86.8%, and the comprehensive evaluation index (F) was 87.6,
which was 7.8% higher and better than that of the SAFD algorithm.
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Figure 8. False detection results of different types of highly reflective buildings: (a) factories;
(b) a large stadium; (c) residential buildings. The red boxes indicates the locations of the anomalies,
the bright blue pixels represent the highly reflective buildings (in the first column), and the second
and third columns represent the results of the SAFD and SAFD-LightGBM algorithms, respectively,
with a binary mask. The buildings on the Landsat-8 images were categorized by Google Earth images
from the corresponding dates.

Table 5. Accuracy statistics of the algorithms for detecting burning fires.

Algorithm CE (%) OE (%) P F

SAFD multicriteria algorithm 29.0% 8.9% 71.0% 79.8
SAFD-LightGBM algorithm 13.2% 11.5% 86.8% 87.6
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4. Discussion
4.1. Comparison of Commission Errors in Different Regions

The CEs of both algorithms were used to further analyze the applicability in study
areas with different dominant seasons, as shown in Figure 10. The SAFD and SAFD-
LightGBM algorithms had the lowest CE in the “summer–autumn dominant” regions. The
highest CEs in the “spring–autumn dominant” regions were 38.7% and 24.5%, respectively,
for SAFD and SAFD-LightGBM. A high CE was found for the “spring–autumn dominant”
regions located in the eastern and central regions of China, where many major agricultural
provinces have a high degree of rural agglomeration and rich cropland resources that
may cause potential misclassifications of pixels during burning [46,47]. In contrast, the
“summer–autumn dominated” areas are located in northwestern China, which has a dry
climate, low vegetation cover, a single crop type, and a transparent partition between urban
and rural areas and arable crop areas. The SAFD-LightGBM algorithm had a significantly
improved CE in the “summer–autumn dominated” area, which was reduced by 16.81%.
The algorithm could also be applied in similar areas, especially in “summer–autumn
dominated” areas.

4.2. Influence of Hyperparameter Adjustment on the Model

To investigate the effect of parameter selection on the results, we performed hyperpa-
rameter optimization of the model. The key parameters of the model, namely learning rate,
n_estimators and num_leaves, were selected, and their effects on the model were observed
by setting different intervals (Table 6, Figure 6). It can be seen that the improvement in
the model by setting different intervals of learning_rate is not obvious (Figure 11a). Fur-
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ther, the n_estimators and num_leaves parameters showed significant improvement. The
model tended to be stable when n_estimators was in the range of 150–200, and the model
performance was no longer significant when n_estimators ≥ 200. Meanwhile, the model
performance was better when num_leaves was in the range of 25–45. The model results of
optimized parameters showed that OE and CE were 11.5% and 13.2%, respectively.
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Name Implication Value Range Interval

learning_rate learning rate [0.1, 1] 0.05
n_estimators number of decision trees [10, 250] 10
num_leaves maximum number of leaves [10, 100] 5
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4.3. Advantages and Limitations of the SAFD-LightGBM Algorithm

The influence of highly reflective buildings on the detection of active fires has been
widely discussed by researchers [26,28,48]. Our method highlights the ability of machine
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learning to discriminate between highly reflective buildings and burning fires. One dif-
ficulty with the current methods of monitoring small-scale fires is that OEs are usually
caused by small and cool fires, and CEs are likely to occur in soil-dominated pixels or the
highly reflective rooftops of buildings [49,50]. A second difficulty is that the occurrence,
location, and information of fire pixels are randomly changing and are disturbed by a large
amount of background information during the period, and the proportions of the active fire
and the background pixels are unbalanced [49]. The proposed statistics-based algorithm
can consider burning fires as a linear process of removing the background information,
leaving the potential fire information, which can improve the quality of the machine learn-
ing algorithm. However, the statistical approach has some limitations in its generalizability,
and there have been studies showing that specific vegetation environments have different
effects on active fires [51,52], so the statistics-based algorithm combined with machine
learning method should mainly be used for detecting small-scale fires in croplands, which
are of considerable significance.

5. Conclusions

We proposed the SAFD-LightGBM algorithm to improve the problem of the high CE
of the threshold method in urban and rural areas. The SAFD-LightGBM algorithm is a
feasible solution to the problem of reducing the influence of highly reflective buildings on
the detection of burning fires. It can also reduce the false positives caused by buildings
while ensuring the accuracy of detecting burning fires as much as possible. The algorithm
has stability and applicability for discrete burning fires in urban and rural areas.

1. Based on the statistical samples, a multicriteria threshold method was constructed to
eliminate the background pixels of the cropland. Burning fires were then accurately
extracted from the dataset of potential fires and other non-fires. It was found that the
proposed improved threshold model was mainly influenced by the buildings around
urban and rural areas, with detection precision of 71%.

2. We used machine learning to accurately detect burning fires and found that the texture
features of variance and contrast made a greater contribution to distinguishing fires
from non-fires, and the precision of the algorithm in terms of the texture features
was 86.8%. We ran the algorithm for different regions and found that the improved
algorithm had the highest precision of 96.91% in summer–autumn dominant regions.

3. For detecting small burning fires, in most regions, the majority of false fire pixels
were linked to clusters of true fire pixels, suggesting that most false fire pixels oc-
cur along the ambiguous boundaries of fires. This phenomenon occurred more in
northeastern China.

The application of this method could be promoted by further experiments with more
medium- and high-resolution sensors without thermal infrared bands and by combin-
ing the method with images from other satellites with different resolutions and periods
(e.g., Landsat-8 combined with Sentinel-2 and Landsat-9 satellites). Presently, the pollutants
emitted from burning fires remain the dominant source of air pollution. The next step will
be a more targeted exploration of the construction of a high-quality and reliable sample set
for detecting burning fires to improve the applicability and reliability of the algorithm.
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