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Abstract: Accurately extracting impervious surfaces (IS) and continuously monitoring their dynamics
are crucial practices for promoting sustainable development in regional ecological environments
and resources. In this context, we conducted experiments to extract IS of the Dianchi Lake Basin by
utilizing various features extracted from remote sensing images and applying three different machine
learning algorithms. Through this process, we obtained the optimal combination of features and a
machine learning algorithm. Utilizing this model, our objective is to map the evolution of IS in the
Dianchi Lake Basin, from 2000 to 2022, and analyze its dynamic changes. Our results showed the
following: (1) The optimal model for IS extraction in the Dianchi Lake Basin was IMG-SPESVM based
on the support vector machine, remote sensing images, and spectral features. (2) From 2000 to 2022,
the spatial distribution and shape of the IS in the Dianchi Lake Basin changed significantly, but they
all developed in the area around Dianchi Lake. (3) From 2000 to 2015, the rate of expansion of IS
gradually accelerated, while from 2015 to 2022, it contracted. (4) From 2000 to 2022, the center of mass
of IS moved to the northeast, and the standard deviation ellipse shifted greatly in the south–north
direction. (5) Natural factors negatively affected the expansion of IS, while social factors positively
affected the distribution of the IS.

Keywords: impervious surface; Dianchi Basin; machine learning algorithm; model optimization

1. Introduction

The expansion of impervious surfaces can drive global land cover and land use change,
and it is a result of global economic growth and environmental changes [1]. Impervious
surface (IS) is a type of surface coverage where water cannot infiltrate below the surface
layer, and it mainly includes artificial landscapes, such as roads, squares, parking lots, and
building tops [2]. As an artificial land cover, the IS strongly affects the quality of the regional
ecological environment. The proliferation of IS mirrors urbanization patterns, and it can be
viewed as a tangible result of economic globalization. Economic globalization instigates a
redistribution of the urban populace, prompting extensive and rapid urban transformation.
These changes, in turn, alter the composition and properties of the land cover beneath,
correlating with an elevated demand for ecological and environmental resources. Over
recent decades, global economic growth has yet to disengage from ecological demand [3].
For developing nations, such as China, certain disparities in urbanization exacerbate the
imbalance between economic and ecological costs [4], leading to numerous environmental
and ecological issues. Examples include an increased risk of urban flooding [5], the
intensification of the urban heat island effect [6], and the diminishment of carbon storage
and biodiversity [7,8]. Hence, comprehending the current state and expansion mechanisms
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of IS, along with studying the rules governing the dynamic change of IS, is crucial for
sustainable urban ecological development.

Traditional methods for identifying IS largely rely on data collection, field surveys,
or mapping. However, these approaches are labor-intensive, time-consuming, slow in
updating data, and exhibit poor real-time performance. Rapidly advancing remote sensing
technology is now widely utilized for the mapping and dynamic monitoring of IS, given its
convenience, speed, and real-time capabilities [9]. Existing IS extraction methods, based
on remote sensing technology, primarily comprise the regression model method [10], the
exponential method [11], the spectral mixture–decomposition method [12], and various
machine learning methods [13]. The exponential method is preferred by many researchers
for its simplicity and ease of implementation, but its subjective threshold selection and the
spatial resolution limitations of remote sensing images may lead to the misclassification of
ground objects [14]. The spectral mixture–decomposition method is more objective; how-
ever, the selection of IS endmembers is intricate, and an improper selection can significantly
affect the precision of IS extraction [15].

Machine learning algorithms excel in detecting changes in land use and land cover.
Ghayour et al. [16] evaluated the performance of several machine learning algorithms for
generating land use and land cover (LULC) maps using Sentinel 2 and Landsat 8 satellite
data, wherein the overall accuracy of the support vector machine classifier was reported to
be 94%. Based on the GEE platform, Saeid et al. [17] mapped LULC variations accurately
by using historical Landsat datasets, demonstrating the efficacy of the random forest algo-
rithm as a potent classifier. Machine learning algorithms are also progressive techniques
in the investigation of artificial surface extraction. These models minimize the influence
of subjective factors in the learning process, providing swift and precise recognition. For
instance, Mahyou et al. [18] used the random forest algorithm to extract sample points
and artificial neural networks to identify IS, which effectively and accurately extracted the
impervious water surface of Marrakesh. Utilizing Sentinel 1 and Sentinel 2 data, Shrestha
et al. [19] employed the random forest algorithm to identify the IS of nine cities in Pakistan,
achieving an overall classification accuracy between 85% and 98%. Esch et al. [20] combined
Landsat images and road network data, with the support vector machine method, to map
IS in parts of Germany, attesting to the method’s ability to accurately map large-scale IS.
Jiang et al. [21] improved the extraction accuracy of Baoding’s built area by using Landsat
8 images and night lighting data, along with the support vector machine algorithm. Despite
their significant role in land use and artificial surface monitoring, machine learning algo-
rithms encounter limitations when applied to IS recognition in medium-resolution remote
sensing images. The primary reason lies in the inherent complexity and computational
intensity of machine learning algorithms. Additionally, medium-resolution remote sensing
images are inherently constrained by limitations in resolution and imaging performance.
When these limitations are combined with the rich diversity and intricate complexity of the
landscape, the result is spectral confusion. This, in turn, leads to a reduction in the accuracy
of impervious water extraction [22].

Many researchers have fused multiple features of remote sensing images to obtain
high-quality information on IS and improve the accuracy of IS extraction. Shaban et al. [23]
extracted three texture features, including the gray level co-occurrence matrix (GLCM),
gray level difference histogram (GLDH), and difference histogram (SADH), which were
combined with spectral features to significantly improve the accuracy of IS extraction. Wang
et al. [24] used the normalized difference vegetation index (NDVI) time series, reflectance
spectral features, and spatial texture features as the feature input of support vector machine
classification and extracted IS. The overall classification accuracy of the method was 93.66%.
The IS extraction method, based on multi-feature inputs, can significantly improve spectral
mixing and increase the classification accuracy of IS. Traditional research methodologies
typically take into account a limited number of features present in remote sensing images,
thereby failing to comprehensively capture the distinctions between IS and other land
types. There are studies that attempt to leverage a diverse set of features in the process
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of IS identification, but they often overlook the significance of feature selection [25,26],
leading to feature redundancy. In this research, it is hypothesized that the classification
accuracy may be influenced by both the category and the number of combined features,
and distinct categories of features might be optimally suited to varying machine learning
algorithms. Consequently, we selected spectral features, texture features, and seasonal
land cover features for further examination. This was done to investigate the extraction
accuracy of IS under the impact of varying feature combinations and diverse machine
learning algorithms.

The Dianchi Lake Basin is the largest plateau lake basin in the Yunnan–Guizhou
Plateau. It is an important water conservation ecological function area, identified based
on the ecosystem assessment and ecological security of China [27], and it is also the most
economically dynamic area in Yunnan Province. Due to the rapid expansion of IS, the urban
surface of the Dianchi Lake Basin has undergone rapid and dramatic changes, threatening
the regional ecological environment, which is vulnerable and sensitive. Therefore, in this
study, we investigated the Dianchi Lake Basin, based on remote sensing and machine
learning algorithms, to realize the following objectives: (1) To optimize the IS extraction
method, the optimal coupling model of the machine learning algorithm and remote sensing
features are selected, and they map the IS in the Dianchi Lake Basin from 2000 to 2022.
(2) Based on the long time-series mapping results of IS, the dynamic change characteristics
of IS in the Dianchi Lake Basin were quantitatively analyzed. Furthermore, building upon
the foundation of prior studies, we implemented two key enhancements: (1) We carried
out comparisons among the coupling models of various machine learning algorithms
and different remote sensing features. The aim was to select the most effective coupling
model to maximize the accuracy of IS extraction. (2) We adopted the empirical analysis
methodology of the partial least square structural equation model. This was done to dissect
the causative link between IS distribution and its influencing factors, thereby providing a
more precise depiction of the impact of both latent and observed variables.

2. Study Area and Data
2.1. Study Area

The Dianchi Lake Basin (Figure 1) is located in the middle of the Yunnan Plateau
(102◦29′–103◦10′ E, 24◦29′–25◦28′ N). The area has a relatively independent ecosystem that
includes the Dianchi Lake at the center and the water systems flowing into the Dianchi
Lake. The Dianchi Lake Basin is an important area of urbanization in Kunming. It mainly
consists of seven districts and counties [28], including the Wuhua District, the Xishan
District, the Panlong District, the Guandu District, the Chenggong District, the Jinning
District, and the Songming County. The total area is about 2900 km2; it includes the
main economic sites, and it houses most of the population of Yunnan Province. The basin
is higher in the northeast than in the southwest, with an altitude of 1735–2825 m. The
region possesses a tropical plateau monsoon climate, characterized by distinct dry and
wet periods throughout the year, and it offers a temperature range conducive to human
habitation. The wet season spans from May to October, while the dry season extends from
November through April. The Dianchi Lake Basin epitomizes a quintessential plateau
basin. It has undergone rapid urban expansion and rapid growth of construction lands,
such as residential land, tourism land, and transportation facilities. These changes have
strongly affected the regional ecosystem structure and land use pattern.
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Figure 1. Study area. (a) shows the location of Dianchi Lake Basin in Yunnan Province. (b) shows 
the elevation of Dianchi Lake basin. (c) shows the county-level administrative regions involved in 
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digital elevation model provided by the geospatial data cloud official website. High-reso-
lution historical satellite imagery and land use data were procured from the Bigemap web-
site and the Data Center for Resources and Environmental Sciences under the Chinese 
Academy of Sciences, respectively. GAIA (Global artificial impervious area) IS products 
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Cover-2015 v0.1. (2) Additionally, statistical data were gathered, which include annual 
average temperature, annual average rainfall, and GDP data. These were sourced from 
the Data Center for Resources and Environmental Sciences of the Chinese Academy of 
Sciences and the Yunnan Statistical Yearbook. The data on A-level scenic spots were ob-
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Table 1. Data and sources. 
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Landsat 2000–2022 United States Geological Survey official web-

site (https://www.usgs.gov/) 

Extract spectral features 
and texture features, se-
lect samples, extract IS, 

Figure 1. Study area. (a) shows the location of Dianchi Lake Basin in Yunnan Province. (b) shows the
elevation of Dianchi Lake basin. (c) shows the county-level administrative regions involved in the
Dianchi Lake Basin.

2.2. Data

The data used in this study mainly included remote sensing data and statistical data
(Table 1). (1) Remote sensing data: Landsat remote sensing images, from 2000 to 2022,
were used as the data source, and Landsat images with no cloud or low cloud coverage
in the study area were selected (see Table 2 for specific data products); all data were
obtained from the official website of the United States Geological Survey. The MOD13A1
data used to obtain NDVI were obtained from the official remote sensing data website of
NASA. The data on elevation were obtained from the SRTM (Shuttle Radar TopogRaphy
Mission) digital elevation model provided by the geospatial data cloud official website.
High-resolution historical satellite imagery and land use data were procured from the
Bigemap website and the Data Center for Resources and Environmental Sciences under
the Chinese Academy of Sciences, respectively. GAIA (Global artificial impervious area)
IS products were extracted from the Finer Resolution Observation and Monitoring-Global
Land Cover-2015 v0.1. (2) Additionally, statistical data were gathered, which include
annual average temperature, annual average rainfall, and GDP data. These were sourced
from the Data Center for Resources and Environmental Sciences of the Chinese Academy
of Sciences and the Yunnan Statistical Yearbook. The data on A-level scenic spots were
obtained from the Yunnan Provincial Department of Culture and Tourism. The data on the
population and road network were obtained from the official websites of WoldPop and
OpenStreetMap.
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Table 1. Data and sources.

Type Name Time Range Data Source Usage

Remote Sensing
data

Landsat 2000–2022
United States Geological Survey

official website
(https://www.usgs.gov/)

Extract spectral
features and texture

features, select samples,
extract IS, calculate

remote sensing
ecological index

MOD13A1 2022
NASA official remote sensing data

network (https://ladsweb.
modaps.eosdis.nasa.gov/)

Obtain the seasonal
features of land cover

Digital elevation
model (DEM) - Geospatial Data Cloud Official

Website (www.gscloud.cn)
As a factor affecting the

distribution of IS
High definition
satellite images 2000–2022 Bigemap

(http://www.bigemap.com/)
Used to assist in

selecting samples

Land use data 2000–2022

Data Center for Resources and
Environmental Sciences of the
Chinese Academy of Sciences

(https://www.resdc.cn/)

Calculate carbon
storage

Statistical data

Global artificial
impervious area

(GAIA)
2000–2018 http://data.ess.tsinghua.edu.cn/ Evaluate the extraction

accuracy of IS

A-level scenic spot
catalogue 2010–2022

Yunnan Provincial Department of
Culture and Tourism official

website (http://dct.yn.gov.cn/)
As factors affecting the

distribution of IS
Mean annual
temperature 2000–2022 Data Center for Resources and

Environmental Sciences of the
Chinese Academy of Sciences

(https://www.resdc.cn/)Yunnan
Statistical Yearbook

Average annual
rainfall 2000–2022

GDP 2000–2022

Population 2000–2022 Woldpop
(https://www.worldpop.org/)

Roads data 2000–2010 Openstreetmap (https:
//www.openstreetmap.org/)

Table 2. Landsat data products.

Data Set Spatial Resolution Time Range

Landsat 5 TM
30 m

20000212
20050209
20101224

Landsat 8 OLI_TIRS
20150104
20220312

3. Methodology

The study had two main parts (Figure 2). (1) IS extraction: Based on different combi-
nations of spectral features, texture features, and seasonal features of surface coverage, the
optimal coupling model of IS extraction was selected after coupling with three machine
learning algorithms (artificial neural network, support vector machine, and random forest).
The IS of the Dianchi Lake Basin, from 2000 to 2022, was extracted based on the optimal
coupling model. (2) Dynamic change analysis of IS: Based on the spatial and temporal
distribution of IS, from 2000 to 2022, the expansion speed, expansion direction, spatial
correlation, and driving mechanism of IS were studied, and the dynamic changes in IS in
the Dianchi Lake Basin were evaluated.

https://www.usgs.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
www.gscloud.cn
http://www.bigemap.com/
https://www.resdc.cn/
http://data.ess.tsinghua.edu.cn/
http://dct.yn.gov.cn/
https://www.resdc.cn/)Yunnan
https://www.worldpop.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
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Figure 2. Research framework.

3.1. Impervious Surface (IS) Extraction
3.1.1. Machine Learning Algorithm

Classification based on machine learning algorithms is commonly performed for IS
extraction. Specifically, artificial neural networks, support vector machines, and random
forests are widely used in IS extraction studies, as these algorithms have high recognition
accuracy. Therefore, we selected the three machine learning algorithms, discussed above,
for IS extraction experiments in the Dianchi Basin.

(1) Artificial neural network (ANN)

An artificial neural network (ANN) is a computational system that is designed in
accordance with the biological neural network structure of the animal brain. It boasts a
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suite of advantages, including nonlinearity, a robust resistance to disturbance, and high
adaptability [29]. The training of an ANN involves the processing of instances, with each
comprising a known “input” and “result”. The learning rules are then adjusted based on
the discrepancy between the “processing output” and the “target output”. ANNs possess
formidable modeling capacities, particularly when the relationship within the underlying
data remains unidentified.

An ANN constitutes an assembly of interlinked units and nodes that represent artificial
neurons, devised to emulate neurons in a biological brain. It operates by receiving impulses
from other neurons, transmitting these impulses as outputs, and subsequently forwarding
them to other neurons in a cyclical manner. Neurons are real functions of the input vector
(x1, . . . , xn), and the output function is shown below [30]:

f (y) = f
(

θ + ∑n
i=1 wi × xi

)
(1)

Here, f is an activation function, and θ represents the threshold value.

(2) Support vector machine (SVM)

A support vector machine (SVM) represents a supervised learning algorithm and
serves as a classification prediction model that operates on statistical principles [31]. Gener-
ally speaking, its fundamental principle involves assigning a group of training samples
into two categories. After the modeling of the SVM’s training algorithm, the two types of
samples are allocated to their respective models for training, eventually becoming a non-
probabilistic binary linear classifier used for classification, regression analysis, or anomaly
detection. Besides addressing linear classification problems, SVMs are also proficient at
performing nonlinear classification. Often hailed as one of the most resilient prediction
methods, SVMs are capable of tackling a multitude of practical issues.

Assuming that the n-dimensional space training sample set is {Xi, Yi} [i = 1, 2, . . . , n]
(n represents the number of samples), a linear regression function can be expressed as
follows [32]:

f (x) = ωϕ(x) + b (2)

Here, ω represents the direction vector, ϕ(x) represents the mapping function, and
b represents the bias term. The problem of solving ω and b can be transformed into the
problem of finding the extremum of the objective function as follows:

min

(
1
2
||ω||2 + c

n

∑
i=1

(ξi + ξi∗)

)
(3)

s.t


f (xi)− yi ≤ ε + ξi

yi = f (xi) ≤ ε + ξi∗

ξi ≥ 0; ξi∗ ≥ 0; i = 1, 2, . . . , n
(4)

Here, c represents the penalty factor; ξi and ξi∗ represent the relaxation variables; ε
represents the loss function. The Lagrangian multipliers ai and a∗i are introduced, and the
Lagrangian function is constructed to obtain the pairwise form:

maxQ(a, a∗) =
1
2

k

∑
i=1

k

∑
j=1

(ai − a∗i )
(

aj − a∗j
)(

xi − xj
)
− ε

k

∑
i=1

(ai + a∗i ) +
k

∑
i=1

(ai + a∗i )yi (5)

k

∑
i=1

(ai − a∗i ) = 0(ai ≥ 0, a∗i ≤ C, i = 1, 2, . . . , n) (6)

Solving the above equation yields the SVM regression function:

f (x) =
n

∑
i=1

(ai − a∗i )K
(
xi, xj

)
+ b (7)
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Here, K
(

xi, xj
)
= ϕ(xi)ϕ

(
xj
)

is the inner product kernel function, which the SVM
maps use to sample to a higher dimensional space H. It also performs a linear partitioning
function of the original problem in H.

(3) Random Forest (RF)

Random Forest (RF) constitutes an ensemble algorithm, which is well-suited for tasks
involving classification, regression, and prediction. It incorporates numerous decision trees,
with the output category being determined by the count of categories produced by an indi-
vidual tree [33]. Its advantage is that the random sampling process and the features of the
random forest decrease the sensitivity to data noise and outliers in the classification process,
thus avoiding overfitting [34]. A sequence of classification models {h1(X), h2(X) . . . hk(X)}
is obtained after training through K rounds. This sequence constitutes a multi-classification
model system, and the final classification results are obtained by using a simple majority
voting decision [35]. The final classification decision is shown in Equation (8).

H(x) = argmaxY ∑k
i=1 I(hi(x) = Y) (8)

Here, H(x) denotes the combined classification model, hi denotes the individual deci-
sion tree classification model, Y denotes the output variable, and I denotes the trialability
function.

3.1.2. Remote Sensing Image Multi-Feature Extraction

The reduction in spectral confusion is the key to extracting IS at the pixel scale. How-
ever, distinguishing IS from other ground objects using only a single feature is difficult, and
it limits the accuracy of IS extraction. In this study, the spectral features, texture features,
and seasonal features of the ground cover of remote sensing images were extracted from
multi-temporal remote sensing images (Table 3). The specific features are presented as
follows:

(1) Spectral features (SPE): Algebraic operations between different spectral bands can
highlight the spectral features of remote sensing images. In this study, the normalized
difference IS index (ENDISI) and the modified normalized difference water body index
(MNDWI) were used to distinguish between IS and water bodies [36]. Additionally,
the minimum noise fraction (MNF) image enhancement method was used to improve
the signal-to-noise ratio of the image and enhance the discrimination between different
ground cover types [37]. The first three components of MNF were used as an aid to
extract the spectral features of IS.

(2) Texture features (TEX): Most IS are anthropogenic, exhibiting regular geometric pat-
terns that differentiate their texture features from those of other entities within an
image. These texture attributes can be employed to accentuate the information per-
taining to IS [38]. In this investigation, the Gray Level Co-occurrence Matrix (GLCM)
was utilized to extract such texture features [39].

(3) Seasonal features of ground cover (SSC): A major difficulty in IS extraction is that
IS are easily confused with bare soil. The IS is almost impervious to the seasonal
changes, while bare soil areas tend to have differences in vegetation cover due to
different seasons, so this feature can be used to accurately differentiate between IS
and bare soil. Therefore, the normalized vegetation index (NDVI) of four seasons,
including spring, summer, autumn, and winter, was extracted as the seasonal features
of surface cover for extracting IS [36].
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Table 3. Remote sensing image features.

Feature Type Feature Number Band Name Meaning of Band

Spectral signature 5 ENDISI, MNDWI,
MNF1, MNF2, MNF3

MNF1, MNF2, and
MNF3 are the first

three components of
MNF

Texture feature 8

Mean, Variance,
Homogeneity,

Contrast,
Dissimilarity, Entropy,

Second Moment,
Correlation

Geometric features

Seasonal features of
land cover 4 NDVI1, NDVI2,

NDVI3, NDVI4

NDVI1–4 is NDVI in
spring, summer,

autumn and winter

As different features might contain the same information, and the class and number
of fused features might affect the extraction accuracy, different features were combined
as follows: Combination 1 was based on spectral features; Combination 2 was based on
texture features; Combination 3 was based on ground cover seasonal features; Combination
4 was based on spectral features and texture features; Combination 5 was based on spectral
features and ground cover seasonal features; Combination 6 was based on texture features
and ground cover seasonal features; Combination 7 was based on spectral features, texture
features, and ground cover seasonal features.

3.1.3. Accuracy Evaluation Methods

(1) Accuracy evaluation based on pixels

The sample points of IS and other land use types in the study area were collected
using high-definition historical satellite images, land use data, and Landsat images. Then,
they were evaluated based on the overall accuracy (OA), the Kappa coefficient, producer
accuracy (PA), and user accuracy (UA). The calculation formulas are as follows:

OA =
1
N ∑r

i=1 xii (9)

Kappa =
N ∑r

i=1 xii −∑r
i=1(xi+ × x+i)

N2 −∑r
i=1(xi+ × x+i)

(10)

where N is the total number of pixels, xii is the diagonal element of the confusion matrix,
and xi+ and x+i are the sum of rows and columns, respectively.

UA =
TP

TP + FP
(11)

PA =
TP

TP + FN
(12)

where TP or TN is the number of “IS” or “non-IS” that is correctly classified, FP is the
number of “non-IS” pixels misclassified as “IS”, and FN is the number of “IS” pixels
misclassified as “non-IS”.

(2) Accuracy evaluation based on indices

The consistency and fit between the results of the classification of IS and available
products (GAIA data) can be assessed to evaluate the accuracy. The percentage of IS in each
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image element was calculated by regional statistics, and the root mean square error (RMSE)
and coefficient of determination (R2) were used as judgment indices for evaluation.

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(13)

R2 = 1− ∑n
i (ŷi − yi)

2

∑n
i (yi − yi)

2 (14)

In the formula, n is the number of samples, and yi, ŷi, and yi are the real value, the
predicted value, and the real value, respectively.

3.1.4. Selection of the Optimal Coupling Model

To select the optimal coupled model for IS extraction in the Dianchi Basin, 24 sets
of experiments were set up for the study based on the data collected in 2022 (Table 4).
In the experiments, to consider the land use cover categories and remote sensing image
characteristics, the features were divided into IS, vegetation, water bodies, and bare land
(the latter three were all permeable). The sample points were randomly and evenly selected
within the study area (Figure 3), a total of 8050 pixels were selected as the IS sample points,
and 19,145 pixels were selected as the permeable surface sample points. About 70% of the
sample points were used as training samples for model training, and 30% were used as
validation samples.

Table 4. Introduction of Impervious Surface extraction experiments.

Machine Learning Algorithm Input Layers The Abbreviation of the Experiments

ANN

Remote Sensing image IMGANN

Remote Sensing image, spectral features IMG-SPEANN

Remote Sensing image, seasonal features of land cover IMG-SSCANN

Remote Sensing image, seasonal features of land cover, spectral
features IMG-SSC-SPEANN

Remote Sensing image, texture features IMG-TEXANN

Remote Sensing image, spectral features, texture features IMG-SPE-TEXANN

Remote Sensing image, seasonal features of land cover, texture
features IMG-SSC-TEXANN

Remote Sensing image, spectral features, seasonal features of land
cover, texture features IMG-SPE-SSC-TEXANN

SVM

Remote Sensing image IMGSVM

Remote Sensing image, spectral features IMG-SPESVM

Remote Sensing image, seasonal features of land cover IMG-SSCSVM

Remote Sensing image, seasonal features of land cover, spectral
features IMG-SSC-SPESVM

Remote Sensing image, texture features IMG-TEXSVM

Remote Sensing image, spectral features, texture features IMG-SPE-TEXSVM

Remote Sensing image, seasonal features of land cover, texture
features IMG-SSC-TEXSVM

Remote Sensing image, spectral features, seasonal features of land
cover, texture features IMG-SPE-SSC-TEXSVM

RF

Remote Sensing image IMGRF

Remote Sensing image, spectral features IMG-SPERF

Remote Sensing image, seasonal features of land cover IMG-SSCRF

Remote Sensing image, seasonal features of land cover, spectral
features IMG-SSC-SPERF

Remote Sensing image, texture features IMG-TEXRF

Remote Sensing image, spectral features, texture features IMG-SPE-TEXRF

Remote Sensing image, seasonal features of land cover, texture
features IMG-SSC-TEXRF

Remote Sensing image, spectral features, seasonal features of land
cover, texture features IMG-SPE-SSC-TEXRF
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Figure 3. Distribution of sample points of the IS extraction experiment in 2022.

The ANN, SVM, and RF algorithms were executed on the ENVI platform, with their
parameters set in accordance with the ENVI user manual. For the ANN algorithm, the Acti-
vation function chosen was the Logistic function. The Training Threshold Contribution was
employed to modulate the shift in the internal weight of the node, with the parameter being
designated as 0.9. The Training Rate was established at 0.2, while the Training Momentum,
which facilitated weight alteration along the current direction, was designated as 0.9. The
training concluded when the RMS error reached 0.1. The Number of Hidden Layers was
set at 1, and the Number of Training Iterations was established at 1000. Regarding the SVM
algorithm, the Kernel Type selected was the Radial Basis Function, the Gamma Index was
set at 0.143, and the default Penalty Parameter was 100. The RF algorithm invoked the
extension tool of the ENVI platform, with the Number of Trees fixed at 100 and the Gini
Index being used as the Impurity Function. The Minimum Number of Samples was set
to 1.

The confusion matrix and the results of the evaluation of the 24 IS datasets’ accuracy
were determined (Figure 4), and the optimal coupling model for IS extraction in the Dianchi
Basin was obtained as IMG-SPESVM.
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3.2. Dynamic Change Analysis of IS
3.2.1. The IS Expansion Index

The rate of IS expansion is the growth of IS within a specific duration. It can be used
to quantitatively assess the rate of change of IS within a specific duration, expressed as the
expansion index [40]:

V =
Ub −Ua

T
(15)

Here, V indicates the IS expansion rate index, T indicates the time interval (year), Ua
indicates the IS area at the beginning of the study, and Ub indicates the IS area at the end
of the study. The expansion rate can be classified as low expansion (V ≤ 10), medium
expansion (10 < V ≤ 20), fast expansion (20 < V ≤ 50), and high expansion (V > 50).

3.2.2. Analysis of the Standard Deviation Ellipse and the Center of Mass

The standard deviation ellipse and the center of mass are spatial statistical models
that can be used to accurately determine the centrality, directionality, and deviation of
change direction of the spatial distribution of geospatial elements. We used it to analyze
the directional characteristics of IS expansion in the Dianchi Basin; the azimuthal short
axis indicated the degree of dispersion, and the long axis reflected the directionality of the
spatial distribution [41], which was calculated as follows:

M =

(√
∑n

1 xi
n

,

√
∑n

1 yi
n

)
(16)

D =

√√√√∑n
1 (xicosR− yisinR)2

∑n
1 (xisinR− yicosR)2 (17)
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S =

√
∑n

1 (xisinR− yicosR)2

n
(18)

R = tan−1

∑n
1 xi

2 −∑n
1 yi

2 +
√
(∑n

1 xi
2 −∑n

1 yi
2)

2 + 4 ∑n
1 xiyi

2 ∑n
1 xiyi

 (19)

Here, M represents the center point coordinates of the standard deviation ellipse, xi
and yi represent the two-dimensional spatial coordinates of the ith geographic element, n
represents the number of geographic elements, D represents directionality, S represents
dispersion, and R represents the azimuth of the standard deviation ellipse.

3.2.3. Analysis of Spatial Correlation

Spatial autocorrelation refers to regions with similar locations with similar values of
variables, and it is generally divided into global spatial autocorrelation and local spatial
autocorrelation. Global spatial autocorrelation describes the spatial characteristics of the
attribute values (IS coverage) of the whole region, and it is generally measured using
global Moran’s I. However, global spatial autocorrelation ignores the local instability in
a small area, so local spatial autocorrelation needs to be used to accurately determine the
heterogeneous characteristics of spatial elements [42]. In this study, Getis-Ord Gi* was used
to analyze the local spatial autocorrelation of IS cover in the Dianchi Basin. The formula
used for calculating it is shown below.

G∗i (d) =
n

∑
i=1

wij(d)Xj/
n

∑
j=1

Xj (20)

Here, d represents the distance scale, and wij(d) represents the spatial weight between
statistical units i and j.

3.2.4. Analysis of PLS-SEM-Based Driving Mechanism

A structural equation model (SEM) is a statistical analysis method that encompasses
factor analysis and path analysis. This technique primarily bifurcates into covariance-based
structural equation modeling (CB-SEM) and partial least squares-based structural equation
modeling (PLS-SEM) [43]. PLS-SEM has fewer sample requirements, and it does not neces-
sitate that the sample data adhere to a normal distribution [44]. In this investigation, the
factors influencing the expansion of IS in the Dianchi Basin were scrutinized for employing
partial least squares structural equation modeling (PLS-SEM) [45].

With k latent variables, there are k groups of explicit variables, each containing m
variables, and each group of explicit variables can be expressed as shown below:

Xi =
{

Xi1, Xi2, Xi3, . . . , Xim
i
}

i = {1, 2, 3, . . . , k} (21)

The prediction model equation is:

Xij = λijξi + σij(i = 1, 2, 3, . . . , k; j = 1, 2, 3, . . . , mi) (22)

The equation of the structural model is:

ξi = ∑i 6=j βijξ j + εi (23)

Here, ξi represents the latent variable after normalization, λij represents the factor
loading, βij represents the path coefficient, and both σij and εi are error correction terms.
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4. Results
4.1. Impervious Surface (IS) Mapping and Accuracy Evaluation in the Dianchi Basin

Based on the optimal coupled model IMG-SPESVM, the IS of the Dianchi Basin was
determined from 2000 to 2015, and the classification accuracy of IS was evaluated for each
year based on the pixel and index methods (Table 5). Model training samples and validation
samples from 2000 to 2015 were updated every 5 years, based on the image element to
calculate the confusion matrix. The OA for 2000–2015 was above 88%, the Kappa coefficient
was greater than 0.83, and the UA and PA were greater than 80%. To quantitatively evaluate
the accuracy of the extraction results, the spatial consistency between IS and GAIA was
verified by evaluating the indices for each year, and the results showed that all R2 values
were above 0.65 and all values of RMSE were below 0.2. This indicated that the IMG-
SPESVM model might be applied for extracting IS in the Dianchi Basin, and the classification
results could meet the needs of subsequent studies.

Table 5. Evaluation of IS extraction accuracy from 2000 to 2015.

Year OA Kappa UA PA R2 RMSE

2000 91.9949% 0.8916 0.8000 0.9346 0.6545 0.1016
2005 88.1903% 0.8386 0.8896 0.9304 0.7541 0.1006
2010 89.6847% 0.8537 0.8969 0.9006 0.6675 0.1424
2015 91.0225% 0.8786 0.8103 0.9678 0.6639 0.1721

The results of IS mapping in the Dianchi Basin, from 2000 to 2022, are shown in
Figure 5. In general, the spatial distribution and shape of the IS of the Dianchi Basin
changed significantly from 2000 to 2022. From 2000 to 2005, the IS were mainly distributed
along the north shore of Dianchi, including the southeastern part of the Wuhua District, the
northeastern part of the Xishan District, the southwestern part of the Panlong District, and
the southwestern part of the Guandu District. In 2008, Changshui International Airport
was built at the center of the Guandu District, and in 2010, universities were established in
the Chenggong District, where a university town was established. This strongly promoted
further construction of IS, such as roads, and the IS spread to the middle of the Guandu
District, the west of the Chenggong District, and the middle of the Jinning District. After
2010, due to rapid urbanization, the IS of the Dianchi Basin continued to expand.
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4.2. Analysis of IS Dynamics in the Dianchi Basin
4.2.1. Rate of Impermeable Surface Expansion

The results of the evaluation of the rate of change of IS in the Dianchi Basin, based on
the expansion index, are shown in Table 6. The IS of Dianchi basin expanded at a medium
rate from 2000 to 2005 with an expansion area of 86.92 km2, at a fast rate from 2005 to 2010
with an expansion area of 181.02 km2, and at a high rate from 2010 to 2015 with an expansion
area of 271.49 km2. The IS expansion from 2000 to 2015 showed sequential acceleration,
while that from 2015 to 2022 showed a low rate of contraction. Rapid economic development
occurred in Yunnan Province from 2005 to 2015 [46], where the urbanization rate increased
from 27.17% in 2005 to 43.33% in 2015, and the IS also increased from 384.1236 km2 in 2005
to 836.6355 km2 in 2015. Based on the demand for sustainable development, in Yunnan
Province, the macro-regulation mechanism of land use was strengthened, the structure of
land use was actively adjusted, and the efficiency of construction land use was enhanced. In
central Yunnan, especially in the Dianchi Basin area, the relationship between population,
economic development, and the ecological environment was actively adjusted to build a
firm ecological security barrier in the upper reaches of the Yangtze River, which effectively
prevented the excessive expansion of the IS.

Table 6. Expansion rate of impervious surface in Dianchi Lake Basin.

Time Range Rate of Expansion/km2/y Dilation Degree

2000–2005 17.38 Medium-speed expansion
2005–2010 36.20 Fast expansion
2010–2015 54.30 High-speed expansion
2015–2022 −5.16 Low-speed contraction

The rate of change of IS in the main districts and counties in the Dianchi Basin is
shown in Table 7. From 2000 to 2005, the IS in the Guandu District expanded at the fastest
rate (4.394 km2/y), followed by the Jinning District (3.675 km2/y); Chenggong District
expanded at the slowest rate (0.892 km2/y). From 2005 to 2010, the IS in the Xishan District
expanded at the fastest rate (16.779 km2/y), followed by the Jinning District (13.972 km2/y);
Wuhua District expanded at the slowest rate (1.150 km2/y). From 2010 to 2015, the IS in the
Xishan District contracted at a rate of 11.370 km2/y, while the Jinning District had the fastest
IS expansion rate (15.961 km2/y), followed by the Chenggong District; Wuhua District still
had the slowest expansion rate, but its expansion rate increased slightly relative to that
recorded in 2000–2010. From 2000 to 2015, the IS of the Jinning District expanded at a fast
rate, and as an important area of the urban “north-south extension” strategy of Kunming,
it played a pivotal role in the overall development of Kunming. From 2015 to 2022, the IS
of all districts and counties, except for that of the Chenggong District, contracted, and the
IS of the Wuhua District contracted at the fastest rate (7.170 km2/y).
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Table 7. The expansion rate of impervious surface in the Dianchi Lake Basin (km2/y).

Area 2000–2005 2005–2010 2010–2015 2015–2022

Wuhua 2.043 1.150 3.271 −7.170
Panlong 2.853 2.439 5.042 −1.757
Guandu 4.394 8.475 10.880 −1.135
Xishan 2.867 16.779 −11.370 −0.559

Chenggong 0.892 7.871 12.326 1.002
Jinning 3.675 13.972 15.961 −1.408

4.2.2. The Direction of IS Expansion and Spatial Correlation Analysis

The center of mass of IS shifted to the northwest from 2000 to 2005, to the northeast
from 2005 to 2010, to the northeast from 2010 to 2015, and to the northwest from 2015 to
2022 (Figure 6). Overall, with the rapid urban development, from 2000 to 2022, the IS center
of mass shifted to the northeast, which indicated that, with the economic and population
movement, the IS expanded to the northeast with Dianchi as the center, and the urban
core also moved [47]. From the standard deviation ellipse (Figure 6, Table 8), we found
that the standard deviation ellipse of the IS of the Dianchi Basin shifted slightly, in the
south and north, from 2000 to 2005; the direction changed from 12.95◦ to 13.78◦, the X-axis
became shorter, and the degree of dispersion decreased. A shift in the northeast–southwest
direction occurred from 2005 to 2010; the direction changed to 13.55◦, the X-axis became
longer, and the dispersion increased. A shift occurred in the northeast–southwest direction
from 2010 to 2015. The direction changed to 12.16◦, the X-axis continued to become longer,
and the dispersion increased further. From 2015 to 2022, the direction changed to 11.32◦,
and the X-axis became longer. In general, from 2000 to 2022, the standard deviation ellipse
of IS in the Dianchi Basin shifted significantly in the south–north direction, the degree of
dispersion continued to increase, and the IS expanded in the north, east, and south.
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Table 8. Standard deviation ellipse parameters of IS in the Dianchi Lake Basin.

Year X-Axis Y-Axis X-Axis/Y-Axis Direction
Angle/◦

2000 12,827.20 32,650.22 0.39 12.95
2005 12,347.73 35,750.50 0.35 13.78
2010 13,338.70 38,401.55 0.35 13.55
2015 13,462.45 41,278.03 0.33 12.16
2022 13,500.90 40,529.79 0.33 11.32

To determine the spatial correlation of IS coverage in the Dianchi watershed from
2000 to 2022, the study area was divided into 1 km × 1 km grids, and the IS coverage
on each grid unit was calculated. From the perspective of spatial global autocorrelation,
the spatial global Moran’s I in 2000, 2005, 2010, 2015, and 2022 were 0.865, 0.847, 0.826,
0.802, and 0.816, respectively, which passed the test at a 1% level of significance, indicating
that the IS coverage of the Dianchi Basin, from 2000 to 2022, showed a certain spatial
global autocorrelation on the grid scale of 1 km × 1 km. Additionally, we also conducted
the hotspot analysis of IS cover in the Dianchi Basin, from 2000 to 2022 (Figure 7), to
further determine the local spatial agglomeration characteristics of IS cover in the Dianchi
Basin [48]. In 2000 and 2005, there were mainly hotspots and non-significant areas; hotspots
were distributed on the east and north sides of Dianchi Lake, and coldspots appeared
in 2010. Due to differences in the geographical location and topographic conditions, the
coldspots were mainly distributed in Songming County, the north of the Panlong District,
the southeast of the Guandu District, and the south and east of the Jinning District, while
the hotspots gradually expanded outward from the east and north sides of the Dianchi
Lake. This trend matched the expansion trend of the IS.
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4.2.3. Analysis of Impermeable Surface Drivers Based on PLS-SEM

To determine the accuracy of the model based on PLS-SEM, the variance expansion
coefficient (VIF) was used to measure the multicollinearity of multiple variables [43].
The results are shown in Table 9. The VIF of each variable was less than 3, indicating
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the absence of multicollinearity among the variables. Additionally, the reliability and
validity of the model were tested, and after an appropriate adjustment of each index of
the model, the average extracted variation (AVE) was found to be more than 0.5, and the
heterogeneity–elemental ratio (HTMT) was less than 0.9. Therefore, the model based on
PLS-SEM constructed in this study was reasonable and reliable.

Table 9. Variance expansion coefficient of each index in the PLS-SEM model.

Variable 2000 2005 2010 2015 2022

Slop 1.893 1.743 1.740 1.440 1.665
DEM 2.580 2.958 2.959 - -

Mean annual temperature 1.702 2.206 2.390 2.016 2.482
Average annual rainfall 1.039 1.409 2.387 1.729 1.653

GDP 1.977 1.118 2.092 1.169 -
Population 1.826 - - 1.215 1.351

Distance from the road 1.146 1.118 - - -
Distance from scenic spot - - 2.092 1.169 1.3338

The results of the model analysis for 2000–2022 are shown in Table 10. Natural factors
negatively affected IS expansion, and this negative effect increased slightly after 2010; the
annual average temperature had a suppressive effect on the distribution of IS, and the
slope, elevation, and annual average rainfall had a facilitating effect on the distribution
of IS. Within the study area, human settlements were mainly concentrated in areas with
lower temperatures, and because natural disasters, such as droughts, often occur in Yunnan
Province, the IS were mainly concentrated in areas with more rainfall. The elevation and
slope were high for mountainous cities, and thus, they facilitated the distribution of IS.
Social factors positively affected the distribution of IS, and their effect gradually decreased
from 2005 to 2022. Among them, the GDP and population density had a positive effect,
while the distance from the road had a negative effect. Since 2010, the index of “distance
from the scenic spot” was added to analyze the impact of tourism on the distribution of IS.
The “distance from the scenic spot” negatively affected the IS, i.e., the farther away from
the scenic spot, the lower the coverage of the IS. This indicated that tourism promoted the
expansion of IS.

Table 10. The analysis of influencing factors of IS in the Dianchi Lake Basin based on PLS-SEM.

Impact of Variables on IS Distribution in 2000 Impact of Variables on IS Distribution in 2005

Natural
factors

−0.383

Average
annual
rainfall

−0.031
Natural
factors

−0.333

Average
annual
rainfall

0.543

Mean annual
temperature −0.740 Mean annual

temperature −0.838

DEM 0.922 DEM 0.919
Slop 0.864 Slop 0.834

Social factors 0.398

Distance
from the road −0.708

Social factors 0.485

Distance
from the road −0.755

Distance
from scenic

spot
-

Distance
from scenic

spot
-

GDP 0.882 GDP 0.866
Population 0.746 Population -
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Table 10. Cont.

Impact of Variables on IS Distribution in 2010 Impact of Variables on IS Distribution in 2015

Natural
factors

−0.560

Average
annual
rainfall

0.807
Natural
factors

−0.658

Average
annual
rainfall

0.725

Mean annual
temperature −0.829 Mean annual

temperature −0.866

DEM 0.827 DEM -
Slop 0.905 Slop 0.867

Social factors 0.341

Distance
from the road -

Social factors 0.302

Distance
from the road -

Distance
from scenic

spot
−0.907

Distance
from scenic

spot
−0.749

GDP 0.947 GDP 0.889
Population - Population 0.908

Impact of Variables on IS Distribution in 2022

Natural factors −0.645

Average annual rainfall 0.578
Mean annual temperature −0.911

DEM -
Slop 0.870

Social factors 0.261

Distance from the road -
Distance from scenic spot −0.889

GDP -
Population 0.847

5. Discussion
5.1. Effects of IS Expansion on the Ecological Quality in the Dianchi Basin

Greenness, humidity, dryness, and heat are closely associated with the quality of the
ecological environment. Most studies used these four indicators to construct the remote
sensing ecological index (RSEI) [49–51]. To realize the goal of “carbon neutralization”, in
this study, we added “carbon storage” to the RSEI. Carbon storage is based on the carbon
density dataset and land use type/cover, and it is calculated using the InVEST model.
Leveraging insights from prior research [52,53], the carbon density dataset was adapted
via the rainfall and temperature model [54,55]. This modification yielded the final carbon
density data for the Dianchi Lake Basin. Finally, the improved remote sensing ecological
index, C-RSEI, was constructed by conducting a principal component analysis coupled
with five indices, including greenness (NDVI), humidity (WET), dryness (NDBSI), heat
(LST), and carbon storage (Carbon). A larger value indicated a better eco–environmental
quality.

The C-RSEI of the Dianchi watershed in 2000, 2005, 2010, 2015, and 2022 was 0.5054,
0.5071, 0.5118, 0.5085, and 0.5055, respectively, showing an inverted “U” trend, i.e., the
eco–environmental quality first increased and then decreased. The temporal and spatial
distribution of the eco–environmental quality in the Dianchi Basin, from 2000 to 2022, is
shown in Figure 8. The overall eco–environmental quality in the Dianchi Basin showed
the zonal distribution characteristics of “good north-south, poor middle”. The overall
level of urbanization of Songming County, the south of the Jinning District, the east of
the Chenggong District, the east and north of the Panlong District, and the eastern part of
the Guandu District was low, the intensity of land use development was small, and the
quality of the ecological environment was good. In contrast, the quality of the ecological
environment was poor in the Wuhua District, the southwest of the Panlong District, the
northeast of the Xishan District, the west of the Guandu District, the west of the Chenggong
District, and the central part of the Jinning District because of the high level of urbanization,
the accumulation of construction land, and the fragmentation of ecological land. From
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2000 to 2022, with the continuous expansion of the IS, the eco–environmental quality of the
north bank of Dianchi Lake gradually decreased.
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2022.

To analyze the influence of IS expansion on the quality of the ecological environment,
the study area was divided into grids of 1 km × 1 km; then, the IS coverage in each grid
was calculated, and the average value of the C-RSEI was extracted. Pearson’s correla-
tion coefficients for the relationship between IS coverage and the C-RSEI in the Dianchi
Basin, from 2000 to 2022, were −0.408, −0.366, −0.403, −0.419, and −0.532, respectively,
indicating a moderate negative relationship between IS coverage and the quality of the
ecological environment at the scale of 1 km × 1 km. We then performed the bivariate
spatial autocorrelation analysis on the data. The bivariate global spatial autocorrelation
was expressed using the bivariate Moran’s I index. From 2000 to 2022, the bivariate Moran’s
I indices of IS coverage and the C-RSEI in the Dianchi Basin were −0.398, −0.354, −0.387,
−0.398, and −0.519, respectively, indicating a spatial global negative correlation between IS
coverage and the quality of the ecological environment in the Dianchi basin. The bivariate
LISA clustering diagram of IS coverage and the C-RSEI, in the Dianchi watershed, is shown
in Figure 9. The main clustering types were “low-high” and “high-low”, i.e., the quality of
the ecological environment of the region with lower IS coverage was better. In contrast,
the quality of the ecological environment of the region with higher IS coverage was poor,
indicating a spatial local negative correlation between IS coverage and the quality of the
ecological environment.
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5.2. Comparison of the Results of IS Extraction for Each Coupled Model

Based on the classification accuracy of each coupling model (Figure 4), in the extraction
experiment of ANN, the OA and Kappa coefficients of IMG-SPE-SSC-TEXANN were the
highest (84.0093% and 0.7830, respectively). The UA of IMG-TEXANN was the highest
(92.5602%), and the PA of IMG-SSCANN was the highest (90.3676%). In general, the clas-
sification effect of IMG-SPE-SSC-TEXANN was the best; the OA and Kappa coefficients,
as well as UA of IMGANN, using only images for IS extraction were the lowest, and the
PA of IMG-SPEANN and IMG-TEXANN were also the lowest. In the extraction experiment
based on the SVM coupling model, the OA and Kappa coefficients of IMG-SPESVM were
the highest (91.9841% and 0.8882, respectively). The UA of IMG-SSCSVM was the highest
(90.7648%), and the PA of IMG-SSC-SPESVM was the highest (95.7752%). The extraction
effect of IMG-SPESVM was the best. The OA and Kappa coefficients of IMGSVM were the
lowest, the UA of IMG-SPE-SSC-TEXSVM was the lowest, and the PA of IMGSVM and IMG-
TEXSVM was the lowest. In the RF-based IS extraction model, the OA and Kappa coefficient
of IMG-SSCRF were the highest (90.4579% and 0.8673, respectively). The UA of IMG-TEXRF

was the highest (88.7873%). The PA of IMG-SSC-SPERF was the highest (96.3245%). The OA
and Kappa coefficients of IMG-SPERF were the lowest, the UA of IMGRF was the lowest,
and the PA of IMG-TEXRF was the lowest.

We found that only using remote sensing images to extract the impervious water sur-
face limited its extraction accuracy, while using remote sensing image features as auxiliary
information improved the classification accuracy to some extent, and the type and fusion
number of features affected the extraction accuracy. This was because different kinds of
features had the same information, and the fusion of too many features caused redundancy
and decreased classification accuracy. For these three machine learning methods, the best
overall classification result was provided by the SVM, followed by the RF, and the ANN
provided the worst classification result. The coupled models with the highest extraction
accuracy among the three machine learning algorithms, including IMG-SPE-SSC-TEXANN,
IMG-SSCRF, and IMG-SPESVM, respectively, were selected to compare the classification
results of the three models.
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The differences in the extraction ability of the three IS were mainly concentrated in
the extraction of low-reflectivity IS (such as roads, cement floors, etc.), and the details
are compared in Figure 10. As shown in Figure 10a, the suburban area in the central
part of the Dianchi Lake Basin was where the ANN had low-reflectivity IS leakage, and
more IS was erroneously classified as bare land. The ability of SVM and RF to identify
low-reflectivity IS was considerably higher than that of ANN. As shown in Figure 10b, at
Changshui International Airport in the Guandu District, the ANN also showed IS leakage
and identified it as bare land, while RF identified permeable areas (mostly bare land) as IS
and showed multi-partitioning identification of the impervious water surface, while the
SVM showed a better recognition ability. As shown in Figure 10c, in the eastern suburb of
the Chenggong District, it is difficult for ANN to identify IS with low reflectivity, which
was similar to the results described in Figure 10a; thus, the ANN was poor at identifying
low IS cover areas.
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5.3. Limitations and Prospects

Based on the three machine learning algorithms and the multi-features of coupled
remote sensing images, the optimal model was selected for extracting and mapping the
impervious water surface of the Dianchi Lake Basin from 2000 to 2022. Starting with
the expansion speed, expansion direction, spatial correlation, and driving mechanism,
the dynamic characteristics of the IS in the Dianchi Lake Basin, from 2000 to 2022, were
analyzed. In this study, we proposed a relatively innovative research framework for
extracting and analyzing the IS of regional long-time series. Our methods and findings
might be important for the economic and urban development, as well as the sustainable
coordination, of the Dianchi Lake Basin.

However, this study had some shortcomings. First, in the IS extraction experiment, the
quantity and quality of sample points were directly related to the IS extraction accuracy, so
the selection of sample points was very important but extremely tedious. For subsequent
experiments on the extraction of IS in a large area, we can use OpenStreetMap and other
open-source products to obtain sample points automatically. Second, in this study, only
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three machine learning algorithms were used—ANN, SVM, and RF—which have some
limitations. We need to use other machine learning algorithms to compare and analyze
the results obtained here. Additionally, this study was based on the empirical analysis
method, where PLS-SEM was used to identify the driving mechanism of IS expansion in the
study area; only the influences of elevation, slope, temperature, rainfall, GDP, population,
tourism, road, and other factors were considered, while the reasons for IS changes were
complex and diverse. Future studies might consider the impact of natural factors, such as
soil types and solar radiation, as well as social factors, such as hospitals and schools.

6. Conclusions

Based on the Landsat images from 2000 to 2022, the optimal coupling model was used
to extract and analyze the impervious water surface of the Dianchi Lake Basin. The results
showed the following: (1) By comparing the confusion matrix and accuracy evaluation
results of 24 sets of impervious datasets, the optimal coupling model for extracting IS in the
Dianchi Basin was found to be IMG-SPESVM, and the extraction effect of SVM was better
than that of the other two machine learning methods. (2) The mapping results of IS, in
different years, showed that significant changes occurred in the spatial distribution and
shape of IS in the Dianchi Lake Basin between 2000 and 2022, but all changes occurred in the
area around Dianchi Lake. (3) The IS expanded at a medium speed from 2000 to 2005, at a
fast speed from 2005 to 2010, and at a high speed from 2010 to 2015. The rate of IS expansion
showed a sequential acceleration from 2000 to 2015 and contracted slowly from 2015 to
2022. (4) The center of mass of the IS moved to the northeast in 2000, the IS expanded
to the northeast with Dianchi Lake as the center, and the urban core also moved with it.
The standard deviation ellipse shifted considerably in the south–north direction, and the
degree of dispersion continued to increase. The IS expansion showed “north extension, east
extension, and south extension”. (5) The coverage of IS showed a certain spatial global and
local autocorrelation from 2000 to 2022. (6) Natural factors negatively affected the expansion
of the IS, and this effect increased slightly after 2010. In contrast, social factors positively
affected the distribution of the IS, and its effect gradually weakened from 2005 to 2022.
(7) Within the scale of 1 km× 1 km used for the survey, a moderate negative correlation was
recorded between IS coverage and the eco–environmental quality in the study area, and a
global and local negative correlation was found between them. (8) In this investigation,
sample selection largely hinged on visual interpretation, which presents certain limitations.
Future studies focusing on impervious extraction might benefit from utilizing open-source
products, such as OpenStreetMap, to acquire samples automatically. Further research could
also consider deploying a range of machine learning or deep learning algorithms, beyond
ANN, SVM, and RF, for comparative evaluation. Moreover, the influence of factors such as
soil types, solar radiation, hospitals, schools, and others on the distribution of impervious
surfaces can be explored in forthcoming studies.
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